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Abstract

In this paper, a computational technique to deal with uncertainty in dynamic
continuous models in Social Sciences is presented. Considering data from sur-
veys, the method consists of determining the probability distribution of the
survey output and this allows to sample data and fit the model to the sampled
data using a goodness-of-fit criterion based on the χ2-test. Taking the fitted
parameters that were not rejected by the χ2-test, substituting them into the
model and computing their outputs, 95% confidence intervals in each time in-
stant capturing the uncertainty of the survey data (probabilistic estimation)
is built. Using the same set of obtained model parameters, a prediction over
the next few years with 95% confidence intervals (probabilistic prediction) is
also provided. This technique is applied to a dynamic social model describing
the evolution of the attitude of the Basque Country population towards the
revolutionary organization ETA.

Keywords: Social dynamic models, Probabilistic estimation, Probabilistic
prediction, Attitude dynamics

1. Introduccion

Uncertainty quantification in dynamic continuous models is an emerging area
[1]. Because of the numerous complex factors that usually involve social behav-
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ior, it is particularly appropriate the consideration of randomness in this kind of
models. In practice, the introduction of randomness in continuous models can
be done using different approaches. Stochastic differential equations of Itô-type
consider uncertainty through a stochastic process called white noise, i.e., the
derivative of a Wiener process. As a consequence, this approach limitates the
introduction of uncertainty to a Gaussian process whose sample trajectories are
somewhat irregular since they are nowhere differentiable. A more convenient
approach in social modelling is to permit that input parameters can become
random variables and/or stochastic processes and, therefore can follow other
type of probability distributions apart from Gaussian. This approach leads to
continuous models usually referred to as random differential equations (r.d.e.’s).
In dealing with r.d.e.’s, generalized Polynomial Chaos (gPC) is one of the most
fruitful methods [2, 3].

Most of the existing methods and techniques, assume that input model pa-
rameters have known standard probability distributions. In general, setting the
probability distribution of the model parameters, standard or empirical, is a cru-
cial and difficult task currently under study which is required for uncertainty
modeling approaches.

Also, the computation is an important issue in dealing with uncertainty.
For instance, gPC technique may not be affordable when the number of model
parameters which are assumed random variables, increases, or the interval where
the mean and the standard deviation are valid may be very short [4]. It may
turn these techniques inappropriate for modeling real problems.

On the other hand, if we consider that there is not information available
for setting the model parameters probabilistic distribution, techniques as boot-
strapping [5, 8] or Bayesian [6] are other useful approaches. Related to these
statistical techniques, in this paper we propose a computational approach where
the data, retrieved from surveys, play a fundamental role to introduce the uncer-
tainty, in estimation and prediction, from the very beginning. This probabilistic
approach is applied to a model describing the evolution of the attitude of the
Basque population towards the revolutionary organization ETA [7] presented in
[8]. In this latter paper, the authors apply the bootstrapping technique to the
model in order to deal with uncertainty with the system of differential equations,
because we do not assume error in the data. As we will see in the present paper,
the uncertainty comes with the data (data sample error) and we will propose
new techniques to make the model captures the data uncertainty.

The paper is organized as follows. In Section 2, we summarize the model
building described in [8]. In Section 3 we propose a technique which will allow
us to obtain a set of model parameters that provide 95% confidence intervals
(95% CI) for each time instant such that the data uncertainty is captured. We
will call this technique probabilistic estimation. With the set of parameters
obtained in Section 3, in Section 4 we obtain a probabilistic prediction of the
attitude towards ETA of the people of the Basque Country over the next four
years. In Section 5, we discuss the results and present the conclusion.
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2. Model building

In [8], a deterministic mathematical model was introduced, and series data
were retrieved from the Euskobarometro of November 2012 on the attitude of
the Basque Country population towards ETA [9, Table 20]. The eight types
of attitudes towards ETA that appear in the Euskobarometro (Total support;
Justification with criticism; Goals yes / Means no; Before yes / Not now; In-
different; ETA scares; Total rejection; No answer) were simplified to only three
(Support; Rejection; Abstention) and allowed us to divide Basque Country pop-
ulation into the following three subpopulations, time t in years (see [8] for more
details):

• Supporters. A1(t) denotes the percentage of people in the Basque Coun-
try who have an attitude of support towards ETA at the time instant t,

• Rejectors. A2(t) denotes the percentage of people in the Basque Country
who have an attitude of rejection towards ETA at the time instant t,

• Abstentionists. A3(t) denotes the percentage of people in the Basque
Country whose attitude towards ETA is not defined (indifferent), abstain
or simply they do not want to declare their opinion, at the time instant t.

Data in these three groups appear, in percentages, in Figure 1 from May
1995 until November 2012. In May 2005 the Spanish Parliament approved the
possibility the Government to support dialogue with ETA. This fact has been
considered as a substantial change in the anti-terrorist policy. This policy is
still in force and it justifies that we have chosen this time instant as our model
initial condition. In Table 1, the figures in percentages of each subpopulation
from May 2005 to November 2012 are presented.
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Figure 1: Percentage of Basque Country population with an attitude of support, rejection or
abstention towards ETA since May 1995 until November 2012. Vertical lines correspond to
remarkable dates: in Jun 2002 the Law of Political Parties was passed and left-wing nationalist
political parties were outlawed because their proven relation with ETA; in May 2005 the
Spanish Parliament approved the possibility the Government to support dialogue with ETA;
in May 2007 left-wing nationalist parties could present candidates again; in Jan 2011 ETA
announced a permanent cease-fire. Observe that large jumps in the Rejection population
correspond to large jumps in the Abstention population, but in the opposite sense. Supporting
population remains with minor variations since the Law of Political Parties passed.

As it was shown in [8], the following system of nonlinear differential equations
describes the evolution of attitudes towards ETA in the Basque Country over
the time:
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Survey date Support (%) Rejection (%) Abstention (%)
May 05 2 93 5
Nov. 05 3 93 4
May 06 3 93 4
Nov. 06 4 86 10
May 07 2 84 14
Nov. 07 2 90 8
May 08 3 90 7
Nov. 08 1 93 6
May 09 4 90 6
Nov. 09 3 89 8
May 10 3 90 7
Nov. 10 4 88 8
May 11 4 90 6
Nov. 11 3 89 8
May 12 5 89 6
Nov. 12 3 92 5

Table 1: Percentage of people in the Basque Country with respect to their attitude towards
ETA from May 2005 to November 2012.

A′1(t) = β21A2(t)A1(t)− β12A1(t)A2(t) + β31A3(t)A1(t)− β13A1(t)A3(t),

A′2(t) = β12A1(t)A2(t)− β21A2(t)A1(t) + β32A3(t)A2(t)− β23A2(t)A3(t),

A′3(t) = β13A1(t)A3(t)− β31A3(t)A1(t) + β23A2(t)A3(t)− β32A3(t)A2(t).

Taking γ12 = β12 − β21, γ13 = β13 − β31 and γ23 = β23 − β32, the above
system can be simplified as follows

A′1(t) = −γ12A2(t)A1(t)− γ13A3(t)A1(t), (1)

A′2(t) = γ12A2(t)A1(t)− γ23A3(t)A2(t), (2)

A′3(t) = γ13A3(t)A1(t) + γ23A3(t)A2(t). (3)

Note that if γij > 0 the net movement of individuals is from Ai to Aj . The
above system of differential equations can be represented by the diagram of
Figure 2. See [8] for more details.

3. Probabilistic estimation: A computational technique to determine
the empirical probabilistic distribution of model parameters

3.1. Data

Data collected in Table 1 correspond to the mean percentage obtained from
the Euskobarometro surveys since May 2005 to November 2012 [9, Table 20]. In
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Figure 2: Graph depicting the model (1)-(3). The circles represent the subpopulations and
the arrows denote the flow of people who change their attitude towards ETA over the time.

the technical specifications of each survey, 1800 and 1200 interviews are reported
(see column 3 ”Sample size” in Table 2).

Taking into account that the sample is not the same for each survey, let
us assume that the survey outputs are independent. For each one of the 16
available surveys, let us denote by Xj = (Xj

1 , X
j
2 , X

j
3), 0 ≤ Xj

i ≤ nj , i = 1, 2, 3,

j = 1, . . . , 16, a random vector whose entries are Xj
1 = Support, Xj

2 = Rejection,

Xj
3 = Abstention and nj ∈ {1200, 1800} is the sample size of survey j. These

components represent exclusive selections (events) with probabilities

P j(Xj
1 = x1) = θj1, P

j(Xj
2 = x2) = θj2, P

j(Xj
3 = x3) = θj3, j = 1, . . . , 16,

where θj1, θj2 and θj3 are the percentages collected in Table 1 for each survey
j, j = 1, . . . , 16. Thus, each random vector Xj has a multinomial (trinomial)
probability distribution. Therefore, the probability that Xj

1 occurs x1 times,

Xj
2 occurs x2 times and Xj

3 occurs x3 times is given by

P j
nj

(x1, x2, x3) =
nj !

x1!x2!x3!
(θj1)x1(θj2)x2(θj3)x3 , j = 1, . . . , 16,

where x1 + x2 + x3 = nj . The resulting trinomials for each Euskobarometro
survey can be seen in the last column ”Joint trinomial probability function” in
Table 2.

3.2. Probabilistic estimation

In this section, we are going to sample data from each survey using the
joint trinomial distribution set in Table 2. This will be carried out a high
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Survey Sample Joint trinomial probability function
dates size

j = 1 t1 = May 05 n1 = 1800 P 1
1800(x1, x2, x3) =

1800!
x1!x2!x3!

0.02x10.93x20.05x3

j = 2 t2 = Nov. 05 n2 = 1200 P 2
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.03x10.93x20.04x3

j = 3 t3 = May 06 n3 = 1800 P 3
1800(x1, x2, x3) =

1800!
x1!x2!x3!

0.03x10.93x20.04x3

j = 4 t4 = Nov. 06 n4 = 1200 P 4
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.04x10.86x20.1x3

j = 5 t5 = May 07 n5 = 1200 P 5
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.02x10.84x20.14x3

j = 6 t6 = Nov. 07 n6 = 1200 P 6
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.02x10.9x20.08x3

j = 7 t7 = May 08 n7 = 1800 P 7
1800(x1, x2, x3) =

1800!
x1!x2!x3!

0.03x10.9x20.07x3

j = 8 t8 = Nov. 08 n8 = 1200 P 8
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.01x10.93x20.06x3

j = 9 t9 = May 09 n9 = 1200 P 9
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.04x10.9x20.06x3

j = 10 t10 = Nov. 09 n10 = 1200 P 10
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.03x10.89x20.08x3

j = 11 t11 = May 10 n11 = 1200 P 11
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.03x10.9x20.07x3

j = 12 t12 = Nov. 10 n12 = 1200 P 12
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.04x10.88x20.08x3

j = 13 t13 = May 11 n13 = 1200 P 13
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.04x10.9x20.06x3

j = 14 t14 = Nov. 11 n14 = 1200 P 14
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.03x10.89x20.08x3

j = 15 t15 = May 12 n15 = 1200 P 15
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.05x10.89x20.06x3

j = 16 t16 = Nov. 12 n16 = 1200 P 16
1200(x1, x2, x3) =

1200!
x1!x2!x3!

0.03x10.92x20.05x3

Table 2: Data for probabilistic model estimation. Date, sample size and joint trinomial
probability function of each survey.

number of times (104 times) in order to generate a representative sample for each
survey. Every time we sample data survey, we determine the model parameter
estimations γ12, γ13, γ23, using the Nelder-Mead optimization algorithm [11, 12]
with goodness-of-fit χ2-test [10]. The parameters with p−value less than 0.05
will be rejected. The remainder will be sorted by p−value descending order.
Selecting some of these model parameter vectors, we will be able to use the
model outputs to provide a confidence band determined by the percentiles 2.5
and 97.5 (95% Confidence Interval (CI)) in each time instant. This 95% Model
Confidence Band (95% MCB) is what we define as probabilistic estimation. Let
us describe in detail the procedure.

1. Compute the quantiles 2.5 and 97.5 (95% CI) of each one of the joint
multinomial distributions in Table 2, j = 1, 2, . . . , 16, for Support, Re-
jection and Abstention subpopulations sampling multinomials a hundred
thousand times, obtaining

Qsupport
2.5 = (1.39, 2.08, 2.22, 2.92, 1.25, 1.25, 2.22, 0.50, 2.92,

2.08, 2.08, 2.92, 2.92, 2.08, 3.83, 2.08),

Qsupport
97.5 = (2.67, 4.00, 3.78, 5.17, 2.83, 2.83, 3.83, 1.58, 5.17,

4.00, 4.00, 5.17, 5.17, 4.00, 6.25, 4.00),

Qreject
2.5 = (91.80, 91.50, 91.80, 84.00, 81.90, 88.20, 88.60, 91.50,

88.20, 87.20, 88.20, 86.20, 88.20, 87.20, 87.20, 90.40),
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Qreject
97.5 = (94.20, 94.40, 94.20, 87.90, 86.10, 91.70, 91.40, 94.40,

91.70, 90.70, 91.70, 89.80, 91.70, 90.70, 90.70, 93.50),

Qabstention
2.5 = (4.00, 2.92, 3.11, 8.33, 12.10, 6.50, 5.83, 4.67, 4.67,

6.50, 5.58, 6.50, 4.67, 6.50, 4.67, 3.83),

Qabstention
97.5 = (6.00, 5.17, 4.94, 11.80, 16.00, 9.58, 8.22, 7.33, 7.33,

9.58, 8.50, 9.58, 7.33, 9.58, 7.42, 6.25).

The 95% CI determined by the above percentiles constitute an approxi-
mation of the survey results. These 95% CI have been drawn in Figures
3 and 4 as vertical segments (error bars). Moreover, these 95% CI will be
used to find the best probabilistic estimation.

2. Let us define the following function of the parameters γ12, γ13 and γ23:

(A) For given values of γ12, γ13 and γ23 parameters, compute the model
output in t1 = May 2005, t2 = November 2005, ..., t15 = May 2012
and t16 = November 2012 for the three subpopulations, Support,
Rejection and Abstention.

(B) For each subpopulation, compare the model output obtained in step
(2A) with the data values we will sample in step (3A) using the
χ2-test and then, obtain a p−value for each subpopulation.

(C) Calculate the minimum p−value among the three previous p−values.

3. For i = 1 to 104

(A) Sample another set of values of all the trinomial distributions col-
lected in Table 2. Then, we will have one sample of 16 surveys with
percentages for Support, Rejection and Abstention populations from
May 2005 until November 2012. Therefore, we will have a set of
sampled data as in Table 1.

(B) Find the model parameter values γi12, γi13 and γi23 with the highest
p−value (maximizing the function defined in steps (2A), (2B) and
(2C)). To do that, Nelder-Mead optmization algorithm is used [11, 12]
using as a goodness-of-fit the χ2-test.

4. Once the above process is completed, store the obtained parameter values
and the p−value as the vector

(γi12, γ
i
13, γ

i
23, p− valuei), 1 ≤ i ≤ 104.

5. Reject the model parameters with p−value less than 0.05. In our case,
4990 out of 104 satisfy this restriction. Then, they are sorted by p−value
descending order as follows,

(γi12, γ
i
13, γ

i
23, p− valuei), 1 ≤ i ≤ 4990. (4)

6. For k = 2 to 4990
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(A) Substitute into the model the parameters (γj12, γ
j
13, γ

j
23), for j =

1, 2, . . . , k, and compute the model output in t1 = May 2005, t2 =
November 2005, ..., t15 = May 2012 and t16 = November 2012.

a1) Take the k model outputs for Support, Rejection and Abstention
at the time instant t1 = May 2005 and calculate the correspond-
ing quantiles 2.5 and 97.5 (95% CI).

a2) Take the k model outputs for Support, Rejection and Absten-
tion at the time instant t2 = November 2005 and calculate the
corresponding quantiles 2.5 and 97.5 (95% CI).

– · · ·
a16) Take the k model outputs for Support, Rejection and Absten-

tion at the time instant t16 = November 2012 and calculate the
corresponding quantiles 2.5 and 97.5 (95% CI).

(B) Now, gather the calculated quantiles 2.5 for Support, Rejection and
Abstention subpopulations and store them sequentially on the vectors
Sk
2.5, Rk

2.5 and Ak
2.5, respectively.

(C) Gather the calculated quantiles 97.5 for Support, Rejection and Ab-
stention subpopulations and store them sequentially on the vectors
Sk
97.5, Rk

97.5 and Ak
97.5, respectively.

(D) Calculate the p−values using the χ2-test to datasets obtained in steps
(1), (6B) and (6C) grouped in pairs as follows,

d1) Qsupport
2.5 and Sk

2.5,

d2) Qsupport
97.5 and Sk

97.5,

d3) Qreject
2.5 and Rk

2.5,

d4) Qreject
97.5 and Rk

97.5,

d5) Qabstention
2.5 and Ak

2.5,

d6) Qabstention
97.5 and Ak

97.5.

Note that, in order to know the parameter values which allow us to
define the 95% MCB (probabilistic estimation), we compare percentil
vectors obtained by the trinomial sampling with the ones obtained
using the model outputs considering the 4990 optimal values.

E) Calculatemk, the minimum p−value among the six previous p−values
and build the pair (k,mk).

7. Select the pair (k,mk) among the 4990− 1 with the maximum mk.

In our case, the obtained value is k = 77 with m77 = 0.972991 and, conse-
quently, the p-values corresponding to percentiles 2.5 and 97.5 for each subpop-
ulation are greater than m77.

Now, we take the k = 77 set of parameters obtained in the above procedure,
compute the model output from t1 = May 2005 to t16 = November 2012, in
jumps of 0.05 and, in each point, we calculate the percentiles 2.5 and 97.5

8
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Figure 3: Probabilistic estimation. The vertical segments (error bars) correspond to the 95%
CI of the simulated data using trinomial distributions appearing in Table 2. The points in
the middle of the segments are the mean values in Table 1. The continuous lines are the
model 95% MCB (probabilistic estimation) obtained with the described procedure. Note that
most of the segments cross continuous lines determined by the model, capturing the data
uncertainty. Only for Rejection and Abstention subpopulations in time instants November
2006 and May 2007 the uncertainty is not captured.

for each subpopulation (95% MCB). The result (probabilistic estimation) is
depicted in Figure 3 as red continuous lines.

The vertical segments (error bars) correspond to the 95% CI of the survey
data simulated by trinomial distributions appearing in Table 2. The points
in the middle of the segments are the mean values collected in Table 1. The
continuous lines are the model 95% MCB obtained from the model outputs of
the first k = 77 out of 4990 sets of model parameters that best fit the samples
of the trinomial distributions in Table 2.

3.3. Probabilistic estimation analysis

The idea of the probabilistic estimation described in the previous section
is to obtain 95% model confidence interval bands (MCB) as close as possible,
in the χ2-test sense, to 95% CI of the data distributions appearing in Table 2
(vertical segments in Figure 3). This closeness depends on both the model and
the data. In general, in Social Sciences and, in particular in our case, these data
are very sensitive to punctual events, not considered explicitly through model
hypotheses, that in the model under study, may affect the attitude towards
ETA.

It is remarkable to note that the application of χ2-test in the procedure of the
previous section to select the best fittings, allowed us to find 4990 sets of model
parameters for which the model estimation cannot be rejected as explanation
of the data representing the phenomenon under study. In fact, we also could
select the best (highest p−value) among all of them.

In addition, looking at the graphics in Figure 3, we can see that almost all the
vertical segments (error bars) cross at least a continuous line indicating that data
uncertainty is captured by the model, in particular for Support subpopulation.

An especial mention deserves the Rejection and Abstention subpopulation
graphics, where we can distinguish two parts. The first one, from May 2005
to May 2007, the probabilistic estimation intends to follow the data trajectory

9



but the data uncertainty in November 2006 and May 2007 is not captured
when sudden jumps happen. As we mentioned in Figure 1, large jumps in the
Rejection population correspond to large jumps in the Abstention population,
in the opposite sense. We consider that the jumps in November 2006 and May
2007 are due to certain events that occurred from Sep 2006 to May 2007 as:
increasing of vandalism acts from Sep 2006 to Dec 2006 linked with young left-
wing nationalist groups; Barajas Airport Terminal 4 attack claimed by ETA
(Dec 2006); in May 2007 local elections, the left-wing nationalist party EAE-
ANV was allowed to present candidates in some villages and cities. In the second
part, from November 2007 until November 2012, the continuous lines capture
the data uncertainty.

Therefore, even though the estimation for Rejection and Abstention sub-
populations do not capture the data uncertainty in two time instants, the three
subpopulations capture the remainder. This leads us to consider the model and
its probabilistic estimation appropriate to provide a prediction of the evolution
of the population’s attitude towards ETA over the next four years.

4. Probabilistic predictions over the next four years

Now, taking the model and the k = 77 set of parameters obtained in the
probabilistic estimation, we are going to give the probabilistic prediction over
the next four years by computing the model outputs from November 2012 to
November 2016 and then, obtaining the 95% MCB (model continuous lines).
We show the results graphically in Figure 4 and some numerical values in Table
3.
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Figure 4: Probabilistic prediction. These graphs have been plotted from the Figure 3 including
the predictions over the next four years as 95% MCB (model continuous lines).

Figure 4 and Table 3 show that the attitude towards ETA of the population
living in the Basque Country will remain fairly stable over the next four years.

4.1. Robustness of the proposed method

Note that if we run the proposed procedure again, taking into account that
the multinomial sampling is random, we may obtain a different value of k,
however, we will see that the corresponding mk will be very similar. In fact,
we did it twice more obtaining k = 129 and k = 84 with mk = 0.9624 and
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Date Support Rejection Abstention
Mean 95% CI Mean 95% CI Mean 95% CI

May 2013 3.10 [1.54, 4.32] 90.69 [88.02, 93.38] 6.22 [4.52, 9.01]
Nov. 2013 2.98 [1.55, 4.54] 90.28 [88.11, 93.15] 6.74 [4.63, 8.87]
May 2014 2.68 [1.41, 4.06] 90.40 [87.87, 92.90] 6.92 [4.63, 8.78]
Nov. 2014 2.43 [1.43, 3.88] 90.86 [88.21, 93.55] 6.71 [4.74, 8.90]
May 2015 2.44 [1.47, 3.84] 91.23 [89.03, 93.41] 6.34 [4.33, 8.66]
Nov. 2015 2.62 [1.42, 4.26] 91.22 [88.76, 93.25] 6.17 [4.60, 8.08]
May 2016 2.72 [1.42, 4.17] 91.01 [88.56, 93.39] 6.27 [4.49, 8.99]
Nov. 2016 2.72 [1.46, 4.28] 90.87 [88.13, 93.13] 6.41 [4.43, 8.82]

Table 3: Mean and 95% confidence interval predictions for the coming eight Euskobarometro
surveys.

mk = 0.966348, respectively. The probabilistic predictions in these two new
cases are given in Tables 4 and 5. We can see that the predictions were very
similar. This shows the robustness of the proposed method.

Date Support Rejection Abstention
Mean 95% CI Mean 95% CI Mean 95% CI

May 2013 3.08 [1.48, 4.76] 91.02 [88.40, 93.44] 5.90 [4.42, 8.33]
Nov. 2013 3.09 [1.59, 4.61] 90.41 [87.90, 93.33] 6.50 [4.35, 8.97]
May 2014 2.86 [1.39, 4.52] 90.30 [88.05, 92.89] 6.84 [4.43, 8.89]
Nov. 2014 2.59 [1.48, 4.22] 90.64 [88.50, 93.28] 6.77 [4.15, 8.71]
May 2015 2.45 [1.46, 3.86] 91.10 [88.54, 93.21] 6.45 [3.89, 8.53]
Nov. 2015 2.51 [1.56, 3.93] 91.35 [88.98, 93.31] 6.14 [3.67, 8.41]
May 2016 2.67 [1.47, 4.32] 91.28 [88.79, 93.33] 6.05 [3.56, 8.29]
Nov. 2016 2.75 [1.31, 4.40] 91.06 [88.09, 93.19] 6.19 [3.74, 8.75]

Table 4: Mean and 95% confidence interval predictions for the coming eight Euskobarometro
surveys for the second procedure execution, k = 129 and mk = 0.9624.

Also, we should say that last June 27th, 2013 was published the Eusko-
barometro of May 2013 with 1200 interviews. Its figures are shown in Table
6. The 95% confidence intervals to this last Euskobarometro were calculated as
the Step 1 of the procedure described in Section 3.2.

Comparing data in Table 6 with the results collected in Tables 3, 4 and 5,
we can see that the data uncertainty in Euskobarometro May 2013 is captured
by our predictions in the three tables.

5. Conclusion

In this paper, a computational technique to deal with uncertainty (in pa-
rameter estimation and output predictions) in dynamic social models based on
systems of differential equations is presented. This technique takes data from
surveys to introduce the uncertainty into the model from the very beginning and
returns 95% model confidence interval bands that capture the data uncertainty
and predict what will happen over the next future.
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Date Support Rejection Abstention
Mean 95% CI Mean 95% CI Mean 95% CI

May 2013 3.13 [1.73, 4.79] 90.89 [88.29, 93.22] 5.98 [4.47, 8.32]
Nov. 2013 3.08 [1.79, 4.59] 90.34 [87.87, 92.99] 6.57 [4.38, 8.81]
May 2014 2.85 [1.47, 4.61] 90.31 [88.17, 92.28] 6.84 [4.79, 8.89]
Nov. 2014 2.56 [1.47, 4.23] 90.66 [88.11, 92.88] 6.78 [4.79, 8.67]
May 2015 2.39 [1.50, 3.66] 91.12 [88.65, 93.34] 6.50 [4.27, 8.51]
Nov. 2015 2.48 [1.54, 3.84] 91.34 [89.30, 93.05] 6.18 [4.40, 8.37]
May 2016 2.67 [1.47, 4.26] 91.17 [88.63, 93.08] 6.15 [4.71, 8.09]
Nov. 2016 2.71 [1.43, 4.35] 90.94 [87.93, 93.28] 6.35 [4.18, 8.69]

Table 5: Mean and 95% confidence interval predictions for the coming eight Euskobarometro
surveys for the third procedure execution, k = 84 and mk = 0.966348.

Date Support Rejection Abstention
Mean 95% CI Mean 95% CI Mean 95% CI

May 2013 3 [2.08, 4.00] 89 [87.17, 90.75] 8 [6.50, 9.58]

Table 6: Mean and 95% confidence interval of the Euskobarometro corresponding to May
2013.

The proposed technique has been applied to a mathematical model to study
the evolution dynamics of the attitude of Basque population towards ETA in
order to illustrate its possibilities. Once the model is stated, we determine a
probabilistic estimation in order to find out if the model captures the Eusko-
barometro data evolution. We observe that the model captures the data uncer-
tainty only partially from May 2005 to May 2007, but from November 2007 the
probabilistic estimation improves perceptibly. Anyway, the model estimation
is non-rejectable using the χ2-test. Then, we provide a probabilistic prediction
of the attitude towards ETA of the population of the Basque Country over the
next four years. The predicted results point out that, if the political scenario
does not change, the current situation will remain fairly stable.

Additionally, some benefits that can be obtained with this approach are:

• If we consider the model parameters as random variables, the technique
presented here as probabilistic estimation allows the estimation of samples
of these model parameters (Steps 3, 4 and 5 of the procedure described in
Section 3.2). This fact is of paramount interest because one of the main
challenges in modeling real problems using random differential equations
is to determine the distribution function of model parameters. Therefore,
if we use the probabilistic estimation to obtain some samples of the model
parameters, in our case k = 77 parameter samples, we can use these
samples together statistical hypothesis testing or kernel functions in order
to find distribution functions of the model parameters.

• Other aspect that should be mentioned and it could be interesting for
survey prediction estimations is the fact that Table 3 (4 and 5) may be
considered as an estimation of the results of the coming Euskobarometro
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surveys (mean and 95% confidence interval). This idea may be applied to
this and other type of surveys where a reliable underlying dynamic model
can be built. As a consequence, some surveys may not be carried out
with the corresponding saving of money. Therefore, we consider that this
approach may be an interesting tool for social behavior studies.
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