

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.comnet.2015.02.032

http://hdl.handle.net/10251/63832

Elsevier

Friginal, J.; Andrés Martínez, DD.; Ruiz García, JC.; Martínez Raga, M. (2015). REFRAHN:
A Resilience Evaluation Framework for Ad Hoc Routing Protocols. Computer Networks.
82:114-134. doi:10.1016/j.comnet.2015.02.032.

REFRAHN: A Resilience Evaluation Framework
for Ad Hoc Routing Protocols

Jesús Friginala,b, David de Andrésc, Juan-Carlos Ruizc, Miquel Mart́ınezc

jesus.friginal@scassi.com, {ddandres, jcruizg, mimarra2}@disca.upv.es

aSCASSI, Bâtiment AGORA 1, 209 Rue Jean Bart, 31670 Labège, France
bCNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France

cSTF-ITACA Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain

Abstract

Routing protocols are key elements for ad hoc networks. They are in charge of es-
tablishing routes between network nodes efficiently. Despite the interest shown by the
scientific community and industry in converting the first specifications of ad hoc routing
protocols in functional prototypes, aspects such as the resilience of these protocols remain
generally unaddressed in practice. Tackling this issue becomes critical given the increas-
ingly variety of accidental and malicious faults (attacks) that may impact the behavior
exhibited by ad hoc routing protocols. The main objective of this paper is to deepen the
methodological aspects concerning fault injection in routing protocols. As a result, we
will design and implement a framework based on the injection of accidental and malicious
faults to quantitatively evaluate their impact on routing protocols. This framework, called
REFRAHN (Resilience Evaluation FRamework for Ad Hoc Networks), can be used to (i)
reduce the uncertainty about the sources of perturbations in the deployment of ad hoc
routing protocols, (ii) design fault tolerance mechanisms that address and minimize such
problems, and (iii) compare and select which is the routing protocol that optimizes the
performance and robustness of the network.

Keywords: ad hoc networks, fault and attack injection, resilience, experimental eval-
uation, testbeds.

1. Introduction

Ad hoc networks are multi-hop wireless networks where all nodes cooperate to maintain
the network connectivity without centralised administration. The use of this emerging
technology ranges from military to civilian applications. Ad hoc networks are expected to
be the basis to interconnect future ecosystems of devices based on the notion of Internet
of Things [1].

Yet, to fully unleash the potentials of such ad hoc networking paradigms, new chal-
lenges must be addressed and solved. In particular, effective routing solutions must be
integrated within the lower network layers for a better perception of the physical envi-
ronment, thus taking more accurate routing decisions [2]. Another challenge concerns the
provision of adaptive fault tolerance and secure technologies. In evolving dynamic sce-
narios, more effective procedures are required to protect paths with minimal effect on the
perceived quality [3]. In addition, the battery lifetime of mobile devices defies our ability
to define secure and efficient low energy consumption routing protocols [4]. Despite the

importance of providing solutions to face these issues, such efforts will remain questionable
in practice while suitable techniques to guarantee persistent routing in spite of changes
(also referred to as resilience) in their implementations remain unavailable [5].

The occurrence of faults in ad hoc networks, and more concretely in ad hoc routing pro-
tocols, which are critical elements for such networks, represents a major source of changes
in the behavior of the system. Unavoidably, they may dramatically degrade the service
provided to the upper layers of the network. In order to mitigate the effect of potential
accidental faults and attacks on default versions of routing protocols, some authors have
proposed secure and fault-tolerant alternatives. Some examples are SEAD [6], SOLSR [7],
SAODV [8] or CONFIDENT [9]. Traditionally, simulation has been the platform chosen to
evaluate these secure and fault-tolerant protocols. However, there is a growing awareness
of the fact that current simulators make several simplifying assumptions to model many
essential characteristics of real systems, thus limiting the credibility of their results [10].
The gap between simulated and experimental results may lead to differences between the
behavior of the simulated network and that of the real one. This gap becomes extremely
important when addressing real systems that may rely on routing protocols, especially
when human lives might be at risk, large economic losses may derive from their malfunc-
tioning or even when the reputation of service providers may be dramatically affected, even
in non-critical domains. So, it is of prime importance to validate the theoretical design
and analysis of routing protocols with sound experiments that are representative of their
final deployment. Thus, the experimental resilience evaluation of ad hoc routing protocols
plays an essential role to determine the confident use of ad hoc routing protocols.

The resilience evaluation of ad hoc routing protocols is essential to study how the
features of ad hoc networks evolve in time. Designing systems, and specially ad hoc
networks with resilience in mind [5] is no more a choice but a requirement. So, the need
for frameworks to evaluate and justify their resilience is, without doubt, one of the major
challenges faced by ad hoc networks [11].

This paper presents a unified framework called Resilience Evaluation FRamework for
Ad Hoc Networks (REFRAHN) that exhaustively addresses a problem that previous stud-
ies have rarely considered: resilience evaluation in ad hoc routing protocols. Consequently,
REFRAHN is not another framework for wireless ad hoc routing protocols. Instead, it
is a framework that follows a detailed (but pragmatic) methodology to conceive evalua-
tion from a very specific viewpoint: resilience. This implies addressing the definition of
specific measures, the injection of pertinent faults and attacks, and the interpretation of
complex and heterogeneous results. So, on one hand, REFRAHN defines an experimental
methodology to evaluate the resilience of real ad hoc routing protocols executed in real
devices and, on the other hand, it implements a tool that exploits the benefits of emulation
to support the process of resilience evaluation. The REFRAHN methodology ensures an
adequate level of controllability, repeatability and observability of experiments through
the definition of three basic stages. First, it is mandatory to understand which parameters
bound the variability of results in the evaluation of ad hoc routing protocols. Then, it is
necessary to address the experimental procedure to carry out the evaluation of the ad hoc
routing protocols in the presence of faults. Finally, it is essential to define how to trans-
form obtained measurements into resilience metrics that can be analyzed and interpreted
by final users.

The rest of this paper is structured as follows. Section 2 analyzes present gaps in
the evaluation of ad hoc routing protocols. Section 3 introduces how our fault injection
methodology can complement traditional evaluation. The first implementation of RE-
FRAHN is introduced in Section 4 whereas Section 5 shows its feasibility through a case
study. Finally Section 6 concludes the paper.

2

2. Evaluation of ad hoc routing protocols

The practical experimental evaluation of ad hoc routing protocols is essential to deter-
mine whether the risks to which ad hoc networks are exposed are acceptable or not. To
properly evaluate ad hoc routing protocols, it is necessary to pay attention to three basic
aspects that influence the quality of the results: (i) the type of platform used to carry out
the evaluation; (ii) the recreation of the conditions affecting ad hoc routing protocols; and
(iii) the properness of the set of metrics selected to represent the system behavior.

2.1. Critical overview of experimental evaluation approaches

This section briefly introduces most of current evaluation platforms in the domain of
ad hoc networks. Let us present them according to the three major strategies to address
the evaluation of ad hoc routing protocols: simulation, prototyping or emulation.

Simulation platforms are in general a good option to check design proposals and discard
them before they become too costly to modify in next stages of their life cycle. However,
although a simulation platform has a much lower cost compared to an actual testbed,
simulations typically simplify several factors from reality, leading to less accurate results.
Most well-known approaches today are Network Simulator (NS) 2 and 3 [12], Opnet [13], or
Glomosim [14]. Alternatively, there is a module for NS, called click, that enables evaluators
to run protocols first in a simulator and later on real hardware1.

Conversely to simulation, real-world prototyping, that refers to the execution of exper-
iments in real scenarios performed by technically skilled persons or target audience [15],
provides more representative results to evaluate ad hoc networks. Real-world prototyp-
ing is a good option to evaluate mature developments in their expected environment. In
the bibliography it is possible to find different open-source prototype-based approaches
enabling the use of real devices and applications such as Roofnet [16], Floornet [17], the
Ad Hoc Protocol Evaluation Testbed (APE) [18], or the Reconfigurable Mobile Multi-hop
Wireless Network Testbed (MINT) [19]. Although these platforms provide a higher level
of accuracy, reproducing the experiments is particularly hard. Specifically, it is necessary
to define the experimentation in such a way that it is controllable and observable, as far as
possible, so that results can be repeatable, and thus comparable. In addition, this problem
is specially critical in case of considering mobile networks, where the larger the physical
distance among nodes, the more tedious and time-consuming the task of setting up a
multi-hop topology. On one hand, several research projects, like APE at Uppsala Univer-
sity [20], have reported experiences of setting up a multi-hop wireless testbed spending a
significant amount of time and work using volunteers to carry mobile devices in an orches-
trated manner. However, this approach may affect the controllability and observability of
the experimentation process. On the other hand, the radio range of wireless nodes operat-
ing in the 2.4 GHz band and using off-the-shelf IEEE 802.11b/g wireless network interface
cards (NICs) may vary dramatically (from 50 m to 100 m). This variation depends on
factors such as the way the driver provider interprets the standard specification for a given
operating system and/or the presence of perturbations, such as multi-path interference
or noise in the channel, among others. This may negatively impact the repeatability of
experiments.

Emulation is a hybrid solution, halfway between simulation and prototype-based eval-
uation platforms, enabling different combinations [15]: real devices with virtual wireless
NICs, real NICs deployed in emulated wireless medium, or real-world experiments in a
virtual environment (e.g., virtual mobility). Being a trade-off solution, emulation is the
most recommendable option to quickly evaluate developments (being mature or not) in

1http://www.read.cs.ucla.edu/click/nsclick

3

different scenarios. It considers typical elements from real deployments like the use of real
devices and applications and simulates others that are difficult to recreate and repeat, like
mobility. Most representative platforms are the Open-Access Research Testbed for Next-
Generation Wireless Networks (ORBIT) [21], the Carnegie Mellon University Wireless
Emulator (CMUWE) [22], Castadiva [23], Mobiemu [24] or Emulab [25].

2.2. Recreation of threats

Recreating as faithfully as possible the features of the environment under which ad hoc
networks typically operate is a key aspect to justify the credibility of results derived from
the evaluation of ad hoc routing protocols. More precisely, the dynamic features of such
environments require considering in the evaluation definition aspects such as the mobility
of nodes (in case of mobile devices), and the presence of internal or external threats related
to the nature of the wireless medium, the limited resources of devices, and the absence of a
fixed infrastructure, that may lead to the occurrence of faults in ad hoc routing protocols.
This also includes, for example, misconfigurations, quality of service (QoS) aspects, and
large scale disasters that may compromise the infrastructure.

It is worth noting that most of current platforms take mobility into account. Never-
theless, very few of them consider the occurrence of faults despite their importance during
the execution of experiments in the evaluation process. This fact is typically avoided by
main current evaluation platforms given the added difficulty to recreate the presence of
faults in systems in a controllable and repeatable way. Despite that fault injection has
been widely explored in the dependability domain through frameworks such as NFTAPE
[26], XCEPTION [27], or FIAT [28], its application to ad hoc networks is limited to just
two frameworks: MINT [19] and AVR-INJECT [29]. Nevertheless, whereas the former
just exploits the impact of packet dropping, the latter only focuses on the injection of bit-
flips within nodes’ processor, thus obviating all potential faults affecting the interaction
between nodes at the communication layer, such as those listed in Table 1. Additionally,
AVR-INJECT introduces a considerable intrusiveness in the evaluation metrics, since the
injection of bit-flips is emulated through the insertion of additional instructions in the
assembly code. Furthermore, authors do not evaluate any routing protocol in their works.

Table 1: Accidental and malicious threats affecting the routing layer of ad hoc networks. Most
of them have a transient nature given the dynamic features of ad hoc network deployments.
Obviously, these are not the only threats to ad hoc networks, but they are enough in number and
importance to justify the need of evaluating ad hoc routing protocols from the perspective of their
resilience.
Network characteristic Main threats identified

Resources limitations (hardware
integrity and battery lifetime)

Physical damage, flooding attack, neighbors saturation, battery
extenuation

Wireless communication medium
(open shared wireless channel)

Signal attenuation, multifading, ambient noise, jamming attack,
exposed node, traffic analysis, cryptanalysis

Mobility of nodes (unpredictable
topology)

Sequence number replay, replay attack, Sybil attack, tampering
attack, Doppler shift

Deployment issues (incorrect
network configuration)

Wrong nodes distribution, wrong routing protocol configuration,
peak in service demand, QoS aspects

Absence of infrastructure (lack of
Public Key Infrastructure (PKI)
and certification authorities)

Sink hole, black hole, selective forwarding attack, jellyfish attack

4

2.3. Metrics considered in the evaluation

Ad hoc routing protocols are normally characterized through metrics used by evalua-
tion platforms. Table 2 summarizes the metrics typically considered by analyzed frame-
works. It is worth noting that AVR-INJECT has not been included since it has not been
used to evaluate routing protocols. Results show how the behavior of ad hoc routing pro-
tocols is massively characterized through performance metrics reporting the throughput,
delay, routing overhead, or packet delivery ratio exhibited by the network. Indeed, almost
90% of the evaluation platforms considered in this study provide throughput and delay as
a reference measure, which is an example of how, to date, the evaluation of ad hoc routing
protocols has been generally limited to functional aspects.

Additionally, it is worth noting that non-functional aspects surprisingly remain in the
background. With respect to resources consumption, few metrics are normally considered.
In particular, they are only considered by those evaluation platforms that are able to recre-
ate networks with resources limitations, such as wireless sensor networks. It is remarkable,
from a resilience viewpoint, the limited presence of metrics to quantify aspects related to
the ability of the system to coexist and tolerate the presence of threats in the system. Al-
though there are platforms, like MINT, that evaluate the impact of threats in the system
through the degradation of mainstream performance metrics in a process typically referred
to as performability evaluation [30], it is also necessary to define and use specific resilience
metrics to understand and explain the behavior of routing protocols. This lack is one of
Achilles’ heels in the evaluation of ad hoc networks.

Table 2: Summary of metrics considered by current evaluation platforms

Measure O
p
n

et
[1

3]

N
S

3
[3

1]

G
lo

m
o
si

m
[1

4]

C
M

U
W

E
[2

2]

O
R

B
IT

[2
1]

C
a
st

a
d
iv

a
[2

3]

E
m

u
la

b
[2

5
]

M
o
bi

E
m

u
[2

4]

R
oo

fn
et

[1
6]

F
lo

o
rn

et
[1

7]

A
P

E
[1

8]

M
IN

T
[1

9
]

Performance
Throughput 3 3 3 3 3 3 3 3 3 3 3
Packet delivery ratio /
Packet loss

3 3 3 3 3 3

Delay 3 3 3 3 3 3 3 3 3 3

Resources consumption
Routing overhead 3 3 3
Energy consumption 3 3 3

Resilience
Link flapping 3
Connectivity 3 3

2.4. Discussion

This section has reviewed the most widely used evaluation trends. Thus, it has been
possible to identify some challenges and opportunities related to the lack of works that
consider, despite its great importance, (i) the presence of faults and attacks in the network
during experimentation and (ii) the use of resilience metrics addressed to evaluate the
impact of those faults and attacks on routing protocols. These points, as explained in this
section, could be addressed by applying the notions of resilience evaluation, an approach
that can be used to determine the ability of a computing systems to perform properly in
the presence of faults/attacks and to recover from any service degradation. On one hand,
the deliberate introduction of faults in the system in a repeatable and controllable way
(fault injection) could be useful to deal with the former issue. On the other hand, selecting
a suitable set of resilience metrics may address the second issue.

Previous testbeds have improved the state of the art. In particular, emulation repre-
sents a trade-off between simulation and real-world prototyping that eases the study of real

5

ad hoc networks while avoiding the problem of deploying and controlling a large number
of actual mobile nodes within a wide area. Most of these testbeds, such as Emulab and
PlanetLab, are typically shared by multiple users. So, administrators need to define some
testbed policies to limit the intrusiveness between experiments from different users. In
practice, these policies are adequate for the platform governance, but unfortunately, they
impose certain constraints that limit their coexistence with the fault injection strategies
proposed in this paper. For example, they forbid the injection of continuous bursts of
messages, thus preventing the injection of packet flooding-based faults or attacks. This is
one of the reasons why resilience evaluation requires the use of exclusive resource testbeds.

In our previous conference papers we performed some preliminary steps towards fault
and attack injection in ad hoc networks. In our prior work [32], we developed a methodol-
ogy to experimentally evaluate and compare the behavior of routing protocols. In [33] we
showed how the robustness of two security (prevention and detection) mechanisms for ad
hoc routing protocols in the presence of two different attacks could be improved by prop-
erly tuning the target protocols. Further, in [34], we extended the scope of our research to
evaluate additional routing protocols in presence of a wider set of 11 faults and attacks.
While these works focused on obtaining experimental results, the present paper achieves
a higher procedural maturity level. Indeed, the present paper focuses on the specification
of suitable measures and how to obtain them in practice while addressing the definition
and implementation of processes to achieve adequate levels of controllability, repeatability,
and observability in the resilience evaluation of ad hoc routing protocols.

3. REFRAHN methodology

The previous section showed the impairments that limit the resilience evaluation of ad
hoc routing protocols in practice. The present section proposes a methodology to cover
such lacks. Thus, the interest of REFRAHN is not to merely perform resilience-related
experiences. Instead, it aims at identifying the key points when addressing resilience
evaluation in a very specific domain: ad hoc routing protocols. Conversely to previous
frameworks or testbeds, our research focuses on the requirements to resilience evaluation.
Then, Section 4 will exemplify one way, among those possible, to implement these re-
quirements. Our goal is to share with the research community our conclusions about the
need and the way to recreate more realistic conditions in the evaluation of ad hoc rout-
ing protocols. This involves proposing (i) techniques to simulate or emulate the presence
of perturbations from both accidental and malicious nature; and (ii) specific resilience
measures to determine the impact of those perturbations on the network behavior, thus
guiding the decision of evaluators.

The REFRAHN methodology defines three basic stages: the experiments configura-
tion, the experiments execution, and the analysis of results. Figure 1 introduces such
stages.

3.1. Experiments configuration

All the parameters that characterize the target scenario must be precisely determined
prior to experiments execution. As previously stated, recreating the execution environment
characteristics and selecting a proper set of metrics that reflects such characteristics is
essential for the quality of evaluation results. Accordingly, our methodology divides such
sensitive parameters into four categories: (i) the network profile, which configures all the
parameters related to the network deployment; (ii) the execution profile, that animates the
network deployment with realistic workloads and faultloads; (iii) the metrics definition to
quantify the behavior of the system in presence of such elements; and (iv) the campaign
configuration, to delimit the statistical representativeness of the experimental execution.

The network profile is in charge of accurately defining the network under study, its
characteristics and deployment. Among those parameters, the topology defines the relative

6

Figure 1: Summary of the experimental resilience evaluation stages.

position and initial distribution of the nodes within a delimited area. The network size is
determined by the total number of network nodes. The area bounds the physical space
where nodes are confined for the duration of the experiments. Finally, thanks to the
mobility pattern (like Manhattan [35], random way point [36], or walking [37] models) and
the node speed, it is possible to compute the trajectory followed by network nodes. The
routing protocol to be considered is another parameter of prime importance.

The execution profile is defined in terms of the workload and the faultload. The work-
load describes the application traffic exchanged among nodes. Data flows are generated by
the applications used by source and destination nodes. Real applications are preferred to
increase the representativeness of results. Some examples of useful applications to study
particular behaviors are voice over IP (VoIP) conferences, instant messaging, or peer-to-
peer (P2P) file exchanging. Yet, the use of synthetic workloads could be also interesting
to study data flows from a generic viewpoint. The bit rate of synthetic workloads can
be constant or variable. Conversely to real workloads, synthetic ones offer a higher level

7

of controllability because their execution does not depend on interactions with end users.
The faultload defines the adverse conditions the system will face during the evaluation.
One of the major issues along these years of research concerns the representativeness of
injected faults and attacks [38]. In other words, the faultload should include those faults
and attacks that could actually be experienced during the system lifetime in order to ob-
tain realistic evaluation results. If injected faults and attacks are not representative, then
the usefulness of the evaluation process can be compromised.

The set of metrics proposed in this methodology characterizes different features of rout-
ing protocols such as performance, resources consumption, and resilience, thus providing
the evaluator with different criteria to assess target protocols.

The proposed resilience evaluation approach focuses on the practical execution of ex-
periments. Such experiments can be grouped into experimental campaigns. Several pa-
rameters define the configuration of experimental campaigns: the warm-up time required
for the establishment of initial routes between network nodes, the duration of the experi-
ments, and the number of repetitions determining the suitable number of experiments to
be performed.

3.2. Experiments execution

During its start-up, each experiment requires an initial set-up time to reset the system
to its original state, followed by a warm-up time, devoted to lead the targeted routing
protocol to a controllable state. From our experience, this means that after the warm-up
period, results tend to be more steady and repeatable. This strategy is compatible with
the idea of evaluating the bootstrapping of a routing protocol. Indeed, it is possible to
schedule the start of experiments to any instant of time t, even when t is scheduled before
the protocol launching. This type of experiment configuration can be useful to determine
the time devoted to the protocol to be operational.

Network nodes are configured to play their assigned role via a control network. Com-
mon nodes are programmed to generate network traffic according to the selected workload,
whereas injector nodes are in charge of introducing faults in the system according to the
defined faultload. Regardless whether nodes are configured as common or injector nodes,
they follow the predefined topology and execute the targeted routing protocol.

3.2.1. Golden run execution
After the network initialization, the baseline phase, known as golden run in the de-

pendability domain, starts. It consists of a number of successive experiments in which
the system executes the selected workload, in absence of faults, while nodes activity is
monitored. To cope with this task, common nodes will exchange application data flows
according to the evaluator preferences. A number of probes will be required in each node
to monitor its activity during experimentation. Basically, these probes collect information
about the amount and type of packets exchanged, the timestamps identifying when packets
were received and forwarded, and the energy consumed by each packet.

3.2.2. Fault injection execution
The fault injection phase corresponds to the execution of the workload in presence of

the faultload to evaluate the impact of faults and attacks on the system behavior. Its
procedure is identical to the golden run phase, but introducing a fault into the system at a
particular location at a given time. The injection procedure, the injection point (or target),
the trigger, and the duration of each considered fault are aspects that must be specified.
The injection point determines where to inject the fault, which may require monitoring the
network to identify a suitable location. Once determined, the generation, delay, removal,
and modification of packets takes place. Essentially, injector nodes are prepared to carry
out a set of generic basic actions that can be applied at the routing level in the right order.

8

Such list, introduced in the gray box in Figure 1, represents the union between the sets
of actions proposed in previous works [39, 40, 41]. These actions involve (i) sniffing and
storing packets from the wireless medium, (ii) processing stored information, (iii) creating
packets, (iv) sending packets, (v) relaying packets, (vi) introducing a given lapse of time
between one packet and the following, (vii) altering the content of legitimate packets, or
(viii) deleting packets.

The combination of these basic actions can result into far more complex faults. Ad-
ditionally, injector nodes can trace their malicious activity (start of fault injection, fault
activation, and end of fault injection) for its subsequent analysis. The injection procedure,
injection point, trigger, and duration of some of the perturbations listed in Table 1 are
next presented as an example of the novelty of the methodology:

Signal attenuation

• Injection procedure: As our methodology emulates the location of nodes, the effect
of increasing or decreasing the distance among them is recreated through packet
loss. Previous works using physical attenuators such as [42], similarly obtained a
degradation in the packet loss when emulating an increment in the distance between
a given pair of nodes.

• Injection point : The packet loss is applied over routing and applicative packets
received by the NIC of every node participating in the experiment campaign, thus
recreating the worst possible scenario.

• Injection trigger: The fault is activated from the beginning until the end of the
experiment.

• Fault duration: Although generally considered transient, this fault is bounded by
the experiment duration given its activation in every network node.

Ambient noise

• Injection procedure: The interferences created in the wireless medium are emulated
through packet corruption [43].

• Injection point: A packet corruption rate is applied over the routing and applicative
packets received by the NIC of every node participating in the experiment campaign
to recreate the worst possible case.

• Injection trigger: The fault is activated from the beginning until the end of the
experiment.

• Fault duration: Although generally considered as a transient fault, its duration is
bounded by that of the experiment given its activation in every network node.

Battery extenuation

• Injection procedure: This fault can be emulated by disabling the packet receiving
and sending capabilities of injector nodes [43]. Affected nodes will be seen as fallen
nodes by their neighbors.

• Injection point: The fault disables the functions at the victim node’s wireless NIC.

• Injection trigger: The fault is activated from the beginning until the end of the
experiment.

9

• Fault duration: The duration of the fault, typically permanent, is bounded by the
experiment duration.

Traffic peak

• Injection procedure: This fault is injected by increasing the packet sending rate of
an injector node up to the saturation point of the network (e.g., around 18 Mbps in
IEEE 802.11g). This model emulates the case where tens of users share the same
route to exchange data [44].

• Injection point: The fault, launched by an injector node, degrades the behavior of
all nodes that are in the same radio range during the packet emission.

• Injection trigger: The fault activation is scheduled by the evaluator. By default, it
is launched at the beginning of the experiment.

• Fault duration: The nature of a traffic peak is transient. So this fault has been
defined to affect a limited percentage (generally delimited by the evaluator) of the
experiment’s duration.

Sink hole attack

• Injection procedure: The sink hole attack is recreated through the exchange of rout-
ing packets between common and injector nodes [44]. The injector node playing
the role of the attacker must create routing packets their neighbors are able to
understand.

• Injection point: The fault is launched by an injector node. First, the injector node
(M) must dynamically locate a proper data flow to identify victim nodes (A, B and
C). Then, the injector node tries to replace the position of one legitimate node (B)
in the route. Likely, it announces itself as a suitable node so that neighbor nodes
(A and C) take it into account to establish a new route, as Figure 2 illustrates.

• Injection trigger: This attack is triggered when the injector node is in the same
radio range as the victim nodes that are forwarding a target data flow.

• Fault duration: This fault is generally transient given the mobility, connection, and
disconnection of nodes.

Figure 2: Intrusion point for sink hole attacks.

Tampering attack

10

• Injection procedure: The recreation of tampering attacks requires first the execution
of a sink hole attack [45]. Then, the target data flow between a pair of nodes is
altered.

• Injection point: The payload of incoming target applicative packets is modified
before relaying them towards their destination.

• Injection trigger: This attack is triggered as soon as the sink hole attack succeeds.

• Fault duration: This is generally a transient fault, although its duration depends on
the injector node’s ability to keep in the route as far as possible.

Replay attack

• Injection procedure: The injector node is in charge of capturing routing packets from
one zone of the network and reproducing them in a different one [44].

• Injection point: Captured routing protocol packets will be broadcasted by the injec-
tor node, thus affecting the topology map of all nodes within its radio range during
the attack.

• Injection trigger: The injector node will capture routing protocol packets during the
whole experimentation time. In parallel, such packets will be replayed after a fixed
period of time determined by the evaluator.

• Fault duration: Although active for the duration of the experiment, the particular
duration of this attack depends on the percentage of time it affects a given node.
Given the dynamic nature of ad hoc networks, it is generally considered transient.

Selective forwarding attack

• Injection procedure: This attack requires the successful execution of a sink hole
attack [45]. Then, the target data flow between a pair of nodes is dropped.

• Injection point: The injector node drops all those packets belonging to the target
data flow.

• Injection trigger: This attack is triggered as soon as the sink hole attacks succeeds.

• Fault duration: The duration of this attack depends on the injector node’s ability
to keep in the route as far as possible.

Jellyfish attack

• Injection procedure: This attack requires the successful execution of a sink hole
attack [45]. After that, the target data flow between a pair of nodes is delayed.

• Injection point: The injector node delays all those packets belonging to the target
data flow a given period of time established by the evaluator.

• Injection trigger: This attack is triggered as soon as the sink hole attack succeeds.

• Fault duration: The duration of this attack depends on the injector node’s ability
to keep in the route as far as possible.

Flooding attack

11

• Injection procedure: The injector node will send a constant burst of packets reaching
the saturation point of the network (for example, around 18 Mbps in practice for
IEEE 802.11.g) [44].

• Injection point: The fault is launched by an injector node, thus degrading the be-
havior of all nodes within its radio range during the packet emission.

• Injection trigger: The injector node will deploy the attack from the beginning of the
experiment.

• Fault duration: Although active for the duration of the experiment, the particular
duration of this attack depends on the percentage of time it affects a given node.
Given the dynamic nature of ad hoc networks, it is generally considered transient.

Neighbors saturation

• Injection procedure: This fault is emulated by a single injector node that sends a
burst of fake routing protocol packets announcing a huge amount of different links
[44]. The amount of new links announced in such burst could be statically assigned
by the evaluator, or dynamically determined by the injector node itself.

• Injection point: As far as the packets sent by the injector node are received by all
the neighbor nodes within its radio range, they will believe that each packet makes
reference to a different announcing node.

• Injection trigger: The injector node will deploy the attack from the beginning of the
experiment.

• Fault duration: The fault duration is limited by the number of bursts launched by
the injector node. The evaluator should configure this parameter.

Sequence number replay

• Injection procedure: This fault is emulated by manipulating the generation of packet
sequence numbers in a single node, in such a way that all packets are sent with the
same packet identifier [44].

• Injection point: The injector node will mainly affect those nodes within its radio
range.

• Injection trigger: The injector node will deploy the fault from the beginning of the
experiment.

• Fault duration: The fault will be deployed for the whole duration of the experiment.
However, from the network viewpoint, it can be considered transient as its practical
duration is bounded by the time it affects nodes within the radio range of the injector
node.

The degree of intrusiveness (either temporal or spatial) induced in network nodes by
the fault injection process is negligible. Conversely to other fault injection methodologies
[46], in no case the system execution is paused or forced to launch complex routines or
tasks to induce a faulty behavior in common nodes. The faulty activity is monitored by
the fault injection monitor.

12

3.3. Analysis of results

At the end of the experiments, all log files generated with information collected while
monitoring the system activity are processed to enable the analysis of results. Resilience
measures will depend on the logs generated by injector nodes. Once measurements are
processed, resulting metrics will be shown.

4. A tool to support our methodology

REFRAHN proposes emulation as a way to reduce the physical area of experimen-
tation and maintain the basic multi-hopping properties while considering fault injection
to introduce a wide variety of faults and attacks within the ad hoc network. REFRAHN
implements three different stages related to the proposed methodology: (i) the definition
of all the required parameters to specify the resilience evaluation to be performed; (ii)
the execution of the requested fault injection experiments while monitoring the system’s
execution; and (iii) the analysis of the impact of these faults into the system.

Figure 3: General architecture of REFRAHN.

As can be seen in Figure 3, the proposed architecture of REFRAHN consists of two
different networks. The first one, the wireless (data) network, is the experimental ad
hoc network used by nodes to exchange information and test real routing protocols. RE-
FRAHN nodes can play the role of either common or injector nodes. The former send and
forward traffic to other network nodes, whereas the latter are responsible for recreating
the occurrence of faults in the network. The second network, the wired (control) network,
connects all nodes with a special one, the REFRAHN core, using Ethernet technology to
avoid large latencies. This node is in charge of configuring all network nodes and control-
ling the experimentation. The use of two different interfaces is very important to reduce
the intrusiveness of the evaluation platform itself in the evaluated system. Furthermore,
the architecture is completed with a shared space, named REFRAHN repository, that can
be accessed by the core and network nodes to store components and data. The REFRAHN

13

repository has been implemented using the Network File System (NFS) technology, thus
enabling the REFRAHN core and network nodes to access files over the wired network in a
manner similar to how local storage is accessed. Maintaining the internal clocks of network
nodes synchronized is essential so that an experiment may start at the same time in all
participating nodes, avoiding significant latency effects and maximizing results accuracy.
Accordingly, nodes are synchronized through the Network Time Protocol (NTP).

It is to note the flexibility offered by the proposed architecture. Since nodes mobil-
ity is emulated, the experimental platform may accommodate network nodes physically
close. The emulation of mobility enables experimenters to create scenarios with dynamic
topologies without physically moving the nodes. In this way, real ad hoc networks can
be easily used for experimentation, since nodes behave as if they were moving around the
designated area despite being static and receiving all the traffic generated by the rest of
nodes. Although our methodology is generic enough to support different types of emula-
tion configurations, the implementation of our testbed is based on emulation of mobility
through packet filtering. This decision limits the scalability of our approach to tens of
nodes to avoid the intrusiveness caused by an overloaded wireless medium.

Figure 4: Typical router stack configuration.

Indeed, we have performed some preliminary experiments with stacks of 20 routers
without obtaining significant deviations from reality (Figure 4 shows a typical nodes stack
configuration). The benefits in terms of cost, simplicity, and portability, clearly support
this decision. In practice, if the physical deployment area is not a problem, surely the use
of RF attenuators is more recommended from the point of view of accuracy. However,
most research laboratories typically present logistic spatial limitations. In these cases, the
alternative described in this section can be really useful. Figure 5 can assist the reader to
better understand our approach. The considered ad hoc routing protocol can be changed
to evaluate the features of different targets. Likewise, the wireless interface can also be
replaced to take into account different physical wireless technologies.

REFRAHN has been defined to support IP as the base technology for communications,
which makes our proposal independent from the technology used in the physical layer (such
as Bluetooth, Zigbee, or WiFi). The implementation of REFRAHN eases the remote
control of all devices through an intuitive application that assists the user to dynamically
manage network nodes according to the desired deployment scenario.

Experiment randomness may be affected by internal causes, when referring to inter-
nal processes within the node, e.g., changes in the operating system (OS) or the central
processing unit (CPU) load; and external ones, when considering changes in the unstable
wireless environment. To deal with the first ones, we limit the execution of background
processes to control the processing variability. Thus, the average CPU usage in network
nodes is typically underneath 15%. Additionally, we reset the experimental process after
each execution to discard residual randomness. To deal with external causes, we propose

14

Figure 5: Basic elements of REFRAHN.

to launch experiments at night, when interferences caused by the network activity are
negligible. Conversely to existing testbeds such as Emulab [25], where the platform can
be concurrently accessed, the access to REFRAHN is exclusive (non-concurrent). This
decision ambitions to reduce the interferences between experiments of different users, thus
limiting the intrusiveness these phenomena may have on other users experiments.

4.1. Experiments definition

This process is manually launched by the user to gather all the information required to
perform the desired experiments. REFRAHN’s graphical user interface (GUI) will guide
the evaluator along this process. This GUI enables the user to configure all the parameters
introduced in Section 3.

4.2. Execution of experiments

This process controls the experiment execution flow, including the configuration stage,
the execution of the workload, the observation of the system’s behavior, and the injection
of faults. As already stated, nodes can remain physically stationary (in a laboratory, for
example) while their mobility is entirely emulated via software. iptables is a generic firewall
for the definition of packet-filtering rules. Taking this into account, each node is provided
with a visibility script file, which defines the set of rules that must be used to emulate
the node’s visibility, and thus its mobility during the experiment. REFRAHN enables the
definition of different types of either real or synthetic traffic flows between pairs of nodes.
On one hand, the workload has been instrumented to send real traffic by means of actual
network traffic applications. By default, well-known open-source applications based on
VoIP (like Ekiga) and File Transfer Protocol (FTP) (FileZilla) are supported. However,
as previously stated, additional applications can be registered in REFRAHN (this is the
case, for instance, of remote control applications for drones or helicopters). On the other
hand, synthetic traffic is created by means of the well-known application iperf, an open-
source packet generator for Linux to establish CBR (Constant Bit Rate) or VBR (Variable
Bit Rate) UDP/TCP data flows between pairs of nodes. The only requirement for these

15

Figure 6: REFRAHN GUI: Forms to configure the network profile (a) and the execution profile
(b).

tools is to support command-line interaction. Thus, their remote and automatic control,
and their consequent integration within REFRAHN becomes very easy.

The fault injection procedure is executed in parallel with the workload. We rely on
well-known commercial off-the-shelf (COTS) components to ease the portability and main-
tainability of REFRAHN. Traffic monitors are suitable tools to capture and analyze net-
work traffic. It is to note that tcpdump is a good solution, among the available traffic
monitors considered nowadays, given the wide variety of filtering parameters that can be
tuned, like timestamp, IP and MAC addresses, ports and so on. To instantiate packet
generation actions, iperf and nemesis [47] have been used to encapsulate our malicious
payloads. Packet modifying and forwarding actions can be implemented through tools
such as tcprewrite and tcpreplay respectively, both included within the tcpreplay suite.
Such tools edit packets already captured and replay them at arbitrary sampling speeds
onto the network. Finally, network emulation libraries such as netem [48] are very useful
to recreate packet removing and delaying. netem emulates variable delay, loss, duplication
and re-ordering of packets in the node’s NIC, and is generally enabled by default in Linux-
based kernels. These tools can be easily controlled via command-line interfaces, which

16

eases their automatic configuration without human intervention.

Table 3: Description of the faultload considered for the evaluation.
Ref. Fault model

F1 Signal attenuation: The percentage of packet loss induced by this fault is emulated by the netem tool following a normal
distribution. By default, this percentage is set to 5% for the duration of the experiment.

F2 Ambient noise: The percentage of packet corruption induced by ambient noise is introduced by the netem tool following a normal
distribution. By default, this percentage is set to 5% for the duration of the experiment.

F3 Battery extenuation: The effects of battery extenuation are emulated by means of the netem tool by introducing a packet loss
in both receiving and sending packets. By default, packet loss is set to 100% for the duration of the experiment.

F4 Traffic peak: The massive generation of packets is emulated using the iperf tool. The effect of peaks has been recreated by default
by creating 2-second bursts of 18 Mbps every 10 seconds.

F5 Sink hole attack: The selection of the injection point to launch the intrusion depends on the sensitive information provided by
tcpdump. Once victim nodes have been identified, the route intrusion process requires knowing the syntax and semantics of the
packets exchanged by the target routing protocol. The fault injector node is in charge of providing nemesis correct payloads, in
the right order, to successfully join the target route.

F6 Tampering attack: This attack requires the successful execution of a sink hole attack. Once the injector node intrudes the
communication route, it uses the tcprewrite tool to edit the payload of the applicative packets it should forward. By default, the
original payload is changed by a string set to 0s.

F7 Replay attack: The injector node first uses tcpdump to capture routing packets exchanged in the network. Filtering those packets
by port will be useful to identify target routing protocol packets. Then, by default, captured routing packets will be replayed 30
seconds later using the tcpreplay tool for the duration of the experiment. Replaying routing packets aims at inducing topology
incoherences in the network.

F8 Selective forwarding attack: This attack can only take place after a successful sink hole attack. After that, the injector node
configures the netem tool to drop all applicative packets belonging to the target data flow.

F9 Jellyfish attack: This attack requires a successful sink hole attack. After that, the injector node delays all data packets using the
netem tool. By default, this delay has been configured to 2 seconds since it is time enough for its effects to show.

F10 Flooding attack: In this attack, the injector node must generate a heavy network traffic. Conversely to the effects of traffic peak,
this attack generates a continuous broadcast data flow using iperf. This data flow is configured by default to send a rate of 18
Mbps for the duration of the experiment.

F11 Neighbors saturation: Injector nodes emulate this fault using nemesis to randomly forge fake routing packets. By default, such
routing packets are sent in a burst announcing 400 new fake links between nodes.

F12 Sequence number replay: Injector nodes use the nemesis tool to forge routing packets with exactly the same sequence number.
By default, the duration of the fault was set to that of the experiment.

The fault injector configures previously presented tools to orchestrate the faulty activ-
ity deployed by injector nodes. The proposed faultload takes into account a non-exhaustive
but sufficient set of well-known threats that affect the behavior of routing protocols. Some
of them such as signal attenuation [43], ambient noise [43], battery extenuation [43], and
traffic peak [44] are protocol-independent faults, while some others depend on the particu-
lar nature of each routing protocol, like sink hole attack [44], replay attack [44], tampering
attack [45], selective forwarding attack [45], jellyfish attack [49], flooding attack [44], neigh-
bors saturation [44], and sequence number replay [44]. The particular parameterization
used in REFRAHN for each threat is illustrated in Table 3.

The faultload implemented in this paper is, to the best of our knowledge, one of the
widest sets in the literature of evaluation frameworks for ad hoc routing protocols. How-
ever, although we are aware that this set faults and attacks is far from being complete, we
claim that it can become an adequate resilience benchmark for ad hoc routing protocols
given the heterogeneous origin of considered threats. Indeed, this faultload can be adapted
to the evaluator needs by configuring their injection procedure, injection point, injection
trigger, and injection duration. Furthermore, our faultload presents threats from an acci-
dental and malicious nature, that can affect different characteristics of routing protocols.

4.3. Analysis of results

The analysis of results is automatically launched after the execution of the experiments.
Monitoring probes are executed in parallel with the workload and faultload. Consequently,
different logs are generated by nodes while monitoring the behavior of the ad hoc network
during the experiments. Typically, these logs are obtained from both the output of work-
load and faultload generators and additional monitoring tools (e.g., the ping utility). In

17

Table 4: Selected metrics.
Performance Description Formula Interpretation

Packet delivery ratio (%) % of packets that arrived from source to destination
in a communication route.

#received packets
#generated packets

· 100 The higher the better

Packet loss (%) % of packets that were lost in a communication route.
#lost packets

#generated packets
· 100 The lower the better

Delay (ms) Mean time required by a packet to get from source
to destination.

delay of received packets
#received packets

The lower the better

Resources consumption Description Formula Interpretation

Energy consumption (J) Energy consumed by the NIC of a node that takes
part in a communication route.

E = ESending + EOverhearing + EReceiving The lower the better

Resilience Description Formula Interpretation

Route availability (%) % of time the target route was ready to be used. time the route worked
experiment duration

· 100 The higher the better

Packet integrity (%) % of packets received at destination whose content
(or payload) was not illegitimately altered.

#non-altered received packets
#received packets

· 100 The higher the better

Threat exposure (%) % of time the communication route was exposed to
any fault.

time the fault was activated
experiment duration

· 100 The lower the better

Fault effectiveness (%) % of the threat exposure time the fault actually im-
pacted the network behavior.

time the fault was activated
time the fault was launched

· 100 The lower the better

order to ease the integration of new COTS in REFRAHN, an interface must be imple-
mented for each one of these tools so that results can be parsed to an equivalent format.
Figure 3 illustrates this principle. After being automatically formatted, the whole set of
data stored in these logs must be processed, correlated, and analyzed to extract those
values needed to estimate desired metrics. Table 4 summarizes the purpose, formula, and
interpretation of the different metrics considered in our case.

Generic performance metrics, typically taken into account in current literature such
as the packet delivery ratio, packet loss, and delay, have been selected. The resources
consumption is computed throughout the energy consumption. Finally, this subset of
metrics is completed with some resilience metrics: route availability, packet integrity, threat
exposure time, and fault effectiveness.

The common node log is useful to compute performance- and resources-consumption-
related metrics. The other two logs, the ping log and injector node logs, are required to
estimate resilience-related metrics. The rest of this section details how defined metrics
for performance, resources consumption, and resilience can be deduced from all these
experimental measurements.

4.3.1. Performance metrics computation
Each node must collect all the information related to the workload activity (comprising

the application traffic sent or received) using common node logs. Such logs will be used
to compute the packet delivery ratio, packet loss, and delay. Tools, like tcpdump, are
good candidates to generate these logs given their flexibility (e.g., -vv option in tcpdump
prints a wide variety of useful information, like the Time To Live (TTL), ID, or the total
length of packets). Regarding the intrusiveness, tcpdump is a light process running through
command line, which monitors all the network activity with a low CPU and memory usage.

As previously indicated in Table 4, the packet delivery ratio is computed as the rela-
tionship between the amount of packets delivered to the destination node and the total
amount of packets sent by the source node. The amount of packets sent can be com-
puted from the source node’s log whereas the set of packets received is estimated from the
destination node’s log with respect to the same data flow.

Packet loss is computed as the relationship between the amount of packets not delivered
to the destination node and the total amount of packets sent by the source node (see Table
4). The amount of packets not delivered can be computed as the difference between the
set of packets sent (from the source node’s log) and the set of packets received (from
the destination node’s log) with respect to the same data flow. It can be alternatively
estimated as 100-packet delivery ratio.

18

The traffic log of source and destination nodes is required to compute the average delay
of data flows (see Table 4) as the difference between the timestamps of packets sent and
received.

4.3.2. Resources consumption metrics computation
The energy consumption is the measure considered to estimate the resources consump-

tion. It is computed as the energy required by common nodes’ NIC to send, receive, and
overhear packets (see Table 4). To estimate this measure, it is necessary to compute the
amount of packets sent, received, and overheard by a node from its neighborhood (includ-
ing both applicative and routing packets). The notion of overheard traffic makes reference
to those packets listened by a node even when it is not their addressee. Accordingly, it is
necessary to filter from the traffic log of each node (i) those packets sent by the node, (ii)
those packets addressed to the node itself, and (iii) those which are not. Then, those values
are multiplied by the energy required to send, receive, and overhear a packet, respectively.
To improve accuracy, we obtained this value directly from the wireless NIC using hardware
probes.

A generic expression to estimate the energy consumed (in Joules) to send a packet
p from a wireless NIC is Es(p) = Ps(p) ∗ ts(p), where Ps(p) is the power consumed to
send a packet and ts(p) is the time required to transmit it. Ps(p) can be computed as

Ps(p) = Vin
vs(p)
R

[50], where Vin is the input voltage (e.g., about 3.3 V for current laptops),
vs(p) is the voltage required to send a packet, and R is a test resistance (1 Ω is generally

enough). Accordingly, we get Es(p) = 3.3 vs(p)
1

ts(p) Joules for our example, where ts(p)
depends on the packet size (the larger the packet, the longer the time to send it). Finally,
the total energy consumed by a wireless card to send packets during experimentation can be
approximated as Es = Es(p)∗Ns, where Ns is the total amount of packets sent. Similarly,
we can also compute the energy consumed by receiving (Er) and overhearing (Eo) packets,
to estimate the total energy consumed by a wireless card as E = Es + Er + Eo.

This model applies to single stream NICs. Our future work will extend this approach
to include multi-streams (MIMO) Wi-Fi nodes.

4.3.3. Resilience metrics computation
The route availability metric represents the average probability of a packet to be deliv-

ered from source to destination nodes (see Table 4). In order to estimate this probability
it is necessary to deploy some mechanism in the ad hoc network to determine if the com-
munication between source and destination nodes is possible at any given time. Since the
network workload may not ensure that applicative packets are continuously exchanged be-
tween nodes, ICMP ECHO REQUEST (ping) messages are continuously sent from source
to destination. This activity is reported by ping logs.

The rest of resilience metrics (packet integrity, threat exposure, and fault effectiveness),
can be derived from the information provided by the injector node. As shown in Table 5,
the injector node log lists all the events the injector node induces on the network. The first
element of each log’s line is a timestamp stating when an event occurred. This is followed
by the event identifier and description. In the particular case of the injector log reported
in Table 5, the reader can see the log of a selective forwarding attack. Event E1 notifies
the detection of a target data flow, whereas Events E2 and E3 notify the execution of
the sink hole attack and its successful intrusion, respectively. Finally, Event E4 confirms
the packet dropping of the target data flow. In this case, the injector node only disrupts
packets (i.e. data flows) sent from node 192.168.2.56 to node 192.168.2.55 in a port range
between 5000 and 5099.

Using this log, the packet integrity of a data flow (see Table 4) is computed as the
ratio between (i) the time the data flow is not affected by attacks that alter the content
of packets and (ii) the duration of the experiment.

19

Table 5: Sample injector node log for a selective packet dropping attack.

timestamp event notification

1233226824.839366 E1 DETECTION data flow between 192.168.2.56 and 192.168.2.55
1233226836.093937 E3 OFF INTRUSION data flow between 192.168.2.56 and 192.168.2.55
1233226836.116471 E2 GENERATING malicious routing packets between 192.168.2.56 and 192.168.2.55
... ...
1233226858.660319 E3 ON INTRUSION data flow between 192.168.2.56 and 192.168.2.55
1233226858.684511 E2 GENERATING malicious routing packets between 192.168.2.56 and 192.168.2.55
1233226859.797914 E4 ON DATA FLOW DISRUPTION between ports 5000 and 5099

The threat exposure can be computed by analyzing the intervals of time when common
nodes are in the radio range of injector nodes, i.e., when they are susceptible to suffer the
fault effects (see Table 4). This information can be easily extracted from injector node’s
logs. It is calculated as the ratio between the time the fault is activated and the duration
of the experiment. In the example of Table 5, the time the fault is activated refers to the
difference between Event E1 (the injector node detects the data flow) and Event E3 ON
(the intrusion has been successfully completed).

Finally, fault effectiveness is computed as the ratio between the time the fault is acti-
vated and the time spent by the injector node to successfully activate the fault (see Table
4). In the example of Table 5, the time required by the injector node to activate the
fault is computed as the difference between Event E2 (the injector node starts generating
fake packets addressed to the routing protocol) and Event E3 ON (the intrusion has been
successfully completed).

5. Case study

This section illustrates the feasibility of REFRAHN through a simple case study. All
fault models implemented by REFRAHN have been injected in different experiment cam-
paigns to determine whether our approach can be effectively used for the resilience eval-
uation of ad hoc routing protocols. For the sake of representativeness, the experimental
target routing protocol considered in this case study is well-known by the ad hoc networks
community and extensively used for experimentation: the Optimized Link-State Routing
(OLSR) protocol. OLSR [51] is a proactive protocol which maintains routing information
within network nodes to ease the quick establishment of routes. Network nodes contin-
uously disseminate HELLO messages to announce their presence to their neighborhood,
and Topology Control (TC) packets to disseminate such information to the rest of the
network. So as to ensure that every single node shares the same vision of the network
topology, all this information is distributed by following an optimized flooding procedure.
This study will consider different versions of an OLSR implementation called olsrd (from
www.olsr.org), which instruments a Link Quality extension to compute the minimum path
between two nodes. Versions v.0.4.10 (released in 2006), v.0.5.6 (released in 2008), and
v.0.6.0 (released in 2010) have been considered. Moreover, an additional version im-
plementing a MD5 encryption-based mechanism has been included in the case study to
evaluate its effectiveness versus default versions. The proposed mechanism consists of a
plugin added to olsrd v.0.6.0 (from now on v.0.6.0+md5) in charge of establishing a 3-way
handshake between every pair of neighbor nodes. To verify the exchange of routing pack-
ets, a signature (or hash) is included at the end of any routing packet. The signature is
computed by cyphering the content of the outgoing routing packet with a timestamp and
a 128-bits symmetric key. This symmetric key should be known by all legitimate network
nodes. As far as the signature of each incoming routing packet is checked, the routing

20

Figure 7: Topology evolution in considered scenarios.

integrity is protected against malicious outsiders. It is worth noting that although legit-
imate users would still be able to deploy attacks in the system, the interest of selecting
this mechanism is to show the severe impact that accidental faults or attacks launched
by intruders may have on the network behavior. Since none of the attacks provided by
REFRAHN focuses on secret key exploitation, we assume a default secret key is provided
by the network administrator. In no case the study of securely secret key sharing is in the
scope of this paper.

5.1. Experimental testbed

Figure 7 depicts the nodes deployment for two different scenarios. The considered
experimental testbed consisted of 7 HP 530 laptops (regular devices) and 10 Linksys
WRT54GL routers (tiny devices). These nodes were equipped with both a wired Eth-
ernet and a wireless IEEE 802.11b/g interface. The controller used to orchestrate the
interactions between network nodes was a mainstream desktop PC.

21

The goal is showing the flexibility of REFRAHN to recreate both static (Network A)
and mobile (Network B) scenarios. The topology and mobility of the considered scenarios
have been configured accordingly and represent, as close as possible, the behavior of real
ad hoc networks. For instance, the topology specified for Network A has been defined so
that nodes A and F are 3 hops distant. As Network B represents a scenario addressed to
people, speeds ranging from 0 to 3 m/s have been considered adequate for nodes mobility.
The topology evolves dynamically (1 to 4 hops) as depicted in Figure 7. For the sake of
simplicity, a snapshot of this evolution is shown every 120 seconds. In Network B the
number of hops along the route formed by nodes A and F ranges from 1 to 4 hops. This
decision has been taken considering that, in practice, real routes rarely expand beyond
4 hops [52]. Furthermore, it is to note that precomputed topology changes cause nodes
involved in traffic forwarding to move away from the route, whereas new nodes appear as
suitable candidates for routing. As far as these nodes are not identified yet by their new
neighbors, the routing protocol requires some time to form a route again. This is the worst
case a communication route may face and, by following this approach, routing protocols
may be assessed under extreme conditions.

5.2. Execution profile configuration

Network A recreates the case of a Wireless Mesh Network (WMN) that provides low-
cost Internet access to a residential district. The application traffic was defined in terms
of synthetic UDP constant bit rate data flows of 200 Kbps, which is similar to the rates ob-
served in real daily scenarios (http://dashboard.open-mesh.com/overview2.php?id=Hillsdale).
Network B recreates a rapid Mobile Ad Hoc Network (MANET) deployment to assist the
victims of a natural disaster. The workload defined for Network B consisted of synthetic
UDP constant bit rate data flows of 2 Mbps, which was specially conceived to exchange a
huge amount of information (e.g., real-time video streaming). Three different data flows
are established for each experiment. Nevertheless, measurements are collected only from
the data flow established between laptop nodes labeled A to F (see Figure 7), where the
intrusiveness of monitoring probes is lower than in routers. The rest of data flows are
exchanged between router nodes which are 1-hop neighbors of nodes A to F. This intends
to emulate the real conditions of a wireless network, where the transmission, reception,
and overhearing of packets are influenced by the traffic conditions imposed by nodes in the
same radio range. All the faults implemented by REFRAHN have been used as faultload
for this case study. In total, a set of 11 representative faults in the domain of ad hoc
routing protocols has been introduced in the system: signal attenuation, ambient noise,
battery extenuation, traffic peak, olsrd tampering attack, olsrd replay attack, olsrd selective
forwarding attack, olsrd jellyfish attack, flooding attack, olsrd neighbors saturation and olsrd
sequence number replay. It is worth noting that the sink hole attack was not injected alone
but as a prerequisite to launch intrusion-based attacks. In our case, node M from Figure
7 will play the role of the injector node for all faults but signal attenuation and ambient
noise. These particular faults are executed by every single node because they typically
affect wider zones of the network. It is worth mentioning that routing protocol-dependent
faults have been instantiated to olsrd, our target routing protocol in this case study.

5.3. Number and duration of experiments

Results were obtained from 1440 experiments, considering 2 network types × (1 Golden
run + 11 fault models) × 4 target routing protocols (v.0.4.10, v.0.5.6, v.0.6.0, and
v.0.6.0+md5), resulting in a total of 96 different experiments configurations which were
executed 15 times to increase the statistical representativeness of results. Experiments
lasted 9 minutes each, with 1 minute (empirically established) devoted to the warm up
of the protocols, and 8 minutes for running the workload and collect the measurements.
Table 6 summarizes the main parameters of the experimentation.

22

Table 6: Parameters considered in the experimentation.

Parameter Value

Routing protocol olsrd v.0.4.10 / v.0.5.6 / v.0.6.0 / v.0.6.0+md5
Network mobility WMN (no mobility) / MANET (0-3 m/s)
of nodes 17 (10 routers + 7 laptops)
Workload WMN (200 Kbps UDP flows) / MANET (2 Mbps UDP flows)
Faultload signal attenuation / ambient noise / battery extenuation / traffic peak / olsrd tampering attack /

olsrd replay attack / olsrd selective forwarding attack / olsrd jellyfish attack / flooding attack /
olsrd neighbors saturation / olsrd sequence number replay.

of experiments 1440

5.4. Analysis of results

Figure 8 depicts the results of experiments. To enrich results, the percentage of packet
loss has been categorized. We distinguish whether packets were lost due to the mobility of
nodes or other causes, being then classified as short service interruptions (< 15s), and long
service interruptions (> 15s). The same applies to delay. Although it is measured in ms,
it is characterized according to its duration, i.e., percentage of normal delays (< 400ms),
long delays (400− 1200ms) and very long delays (> 1200ms).

5.4.1. Mobility analysis
When considering the effect of mobility in both scenarios, an immediate conclusion

from the viewpoint of performance is that, regardless the olsrd version used, results ob-
tained in (static) Network A are generally better than those obtained in (mobile) Network
B. Nodes in Network B must rebuild network routes several times, which greatly affects
those olsrd versions requiring more time to establish routes. According to the golden run
phase (fault-free execution of the experiment), v.0.4.10, v.0.5.6, and v.0.6.0 required an
average time of 22.71s, 37.40s, and 40.71s, respectively, to establish a 3-hops route. How-
ever, these two last versions may be considered as equivalent, as their standard deviation
overlaps. Finally, v.0.6.0+md5 needed 59.40s to establish a route, mainly due to the un-
derlying handshake mechanism. The time devoted to establish a route has a significant
impact on the service delivered. The longer it is, the lower the performance exhibited by
the ad hoc network.

From the viewpoint of resilience, this study reflects that the mobility in Network B
may result either beneficial or harmful depending on the considered routing protocol ver-
sion. In general, results are very similar for those threats that affect the whole network,
e.g. ambient faults like signal attenuation and ambient noise. In most cases, mobility
assists routing protocols in leaving the area of influence of nodes originating the fault.
For example, the resilience of non-secure protocol versions in presence of intrusion-based
attacks improves as the attacker (node M) leaves the radio range of victim nodes. Conse-
quently, despite the waste of time devoted to establishing new routes, the threat exposure
rate decreased from 20 to 50 percentage points (which is proportional to the time node
M was in the vicinity of the route). Then, the threat exposure gap between non-secure
and secure protocol versions is reduced in presence of mobility for intrusion-based attacks
(i.e., selective forwarding attack, tampering attack, and tampering attack). Regarding the
fault effectiveness, it can be seen that threat exposure rates are not directly related to the
impact caused on the network behavior. For example, in the case of neighbors saturation,
the threat exposure time was only of 10s, but the effects of the fault persisted in the
route even when the threat was not longer active (3857.1% of the threat exposure rate for
Network A and 1904.1% for Network B). Furthermore, v.0.6.0+md5 presents the lowest
fault effectiveness for all the considered threats, but for battery extenuation and traffic
peak, due to its lower adaptiveness to establish new routes. If we focus on the effectiveness

23

Figure 8: Metrics obtained during experimentation.

of the secure mechanism, it can be seen that intrusion-based attacks like jellyfish, selec-
tive forwarding, and tampering attacks were useless against v.0.6.0+md5. This is specially
perceptible in the delay, packet loss, and integrity of Network A, which are a 90% worse
than that of the golden run phase for non-secure protocol versions. Nevertheless, we can
highlight that, although faults provoking long service interruptions in terms of packet loss
and delay (flooding attack, traffic peak, battery extenuation, ambient noise, and signal at-
tenuation) impact all the considered olsrd versions, v.0.6.0+md5 is, curiously, the most
affected one. This result shows that despite protecting routing with cryptography, it is
not exempt of performance problems, which are in some cases, paradoxically more severe
than for non-secure versions.

5.4.2. Limited resources analysis
The energy consumption is clearly related to the number of packets sent, received,

and overheard by nodes, and the amount of information they contain. As including a

24

Table 7: Average energy consumption for NICs when nodes in Network B execute olsrd v.0.4.10
in the golden run

Category Energy (J) Percentage
Es (Sending energy) 13,13 35%
Er (Receiving energy) 9,80 26%

Eo (Overhearing energy) 11,60 31%
Protocol overhead 3,28 9%

Total 37,79 100%

128-bits signature, routing protocol packets for v.0.6.0+md5 are larger that for the rest
of versions. Furthermore, the execution of the 3-way handshake increases the amount of
packets exchanged between nodes. As a consequence, the energy consumed by the routing
protocol traffic increases a 20%.

Table 7 shows an example of how the total energy consumption is computed in a golden
run experiment. When estimating the average energy consumption of each routing proto-
col in both networks, the routing protocol traffic (also referred to as protocol overhead)
represents less than 10% of the total energy consumed. However, this amount is impor-
tant enough to pose a serious problem for nodes lifetime in Wireless Sensor Networks, thus
compromising the availability of the network.

Regarding the application traffic, it must be noted that the energy consumed by nodes
along the target route increased just by overhearing traffic from other data flows. Accord-
ing to our topology configuration in Figure 7, nodes in our target route are subjected to the
overhearing effect of 2 additional data flows. In particular, 31% of the energy consumed
is devoted to overhearing in the example of Table 7. However, this value increases up to
42% when computing the average for all the protocols.

It is also worth noting the higher energy consumed by Network B, obviously motivated
by its heavier workload. As the best possible scenario is that where nodes consume the
least, readers may misunderstand the results when analyzing them just from a strict energy
viewpoint. For instance, some faults (like ambient noise or battery extenuation), decrease
the energy consumed by nodes with respect to that consumed by the golden run phase.
However, this energy saving is related to packet loss as can be deduced from correlating
this information with availability (if packets are not flowing along the route, nodes do not
consume any energy). Hence, although faults may benefit nodes by reducing their energy
consumption, this cannot be really considered a benefit for the network, as faults affect
the final service provided to the user. On the other hand, flooding attack and traffic peak
are the only faults increasing the energy consumed by nodes. This increase is specially
important for flooding attack (around 50%), thus highlighting again the importance of the
overheard traffic.

5.4.3. Software bugs analysis
Results from Section 5.4 showed a significant packet loss in the network when subjecting

olsrd v.0.4.10 to the presence of a replay attack (around 20% higher with respect to the
golden run phase). Nevertheless, the surprising result is that the rest of protocol versions
were not affected at all. After studying the source code of the different versions in more
detail, we found that v.0.4.10 was the only one that does not implement a mechanism to
reject packets whose sequence number has been already received and, thus, takes them
into account to establish a (probably fake) route. v.0.5.6 and v.0.6.0 (as expected) reject
packets with duplicated identifiers emitted by the injector node M, thus relying on other
nodes to establish the target route and increasing the delay. Paradoxically, olsrd v.0.4.10

25

benefits from this vulnerability when the network is subjected to the presence of a sequence
number replay fault. As the rest of the content of replayed packets is legitimate, olsrd
v.0.4.10 processes a wider amount of information with respect to the other protocol versions
(that directly reject those packets), which involves an important improvement in the overall
network behavior (see this effect on Figure 8).

The analysis of results obtained from Section 5.4 showed another interesting result.
Surprisingly, the oldest version of olsrd (v.0.4.10) required the shortest time to establish
a 3-hops route (22.71s), which represents from 15 to 18 seconds less than recent versions
(v.0.5.6 and v.0.6.0, respectively). Although this result improves the performance of olsrd
v.0.4.10, the protocol is less robust against the occurrence of intrusion attacks. To study
more in detail this phenomenon, Figure 9 presents the instantiation of the sink hole attack
for olsrd. The injector node (node M) induces a propitious network topology to intrude
the target route. To reach that goal, the injector node induces a possible routing link
between target victim nodes (nodes A and C) by faking HELLO and Topology Control
(TC) olsrd messages. Such messages enable nodes to determine optimal routes for their
communications. Thus, the injector node forces its intrusion in the route by (maliciously)
misusing the aforementioned messages. It starts injecting in the network HELLO messages
declaring victim nodes as its neighbors. To obtain a symmetric link, the injector node
needs victim nodes to generate TC messages acknowledging reciprocal links. To fake the
generation of these messages at the victims side, the injector node forges fake TC messages
announcing such links.

Figure 9: OLSR route intrusion procedure.

Experiments showed that, in all considered cases, omitting one of these basic actions
prevented the malicious node from intruding the route but in one particular case: when
acknowledgment from intrusion target was not broadcasted. Table 8 shows which was the
content of routing tables of the nodes selected as the intrusion point (A and C) for olsrd
v.0.5.6 and olsrd v.0.6.0 when omitting the acknowledgment from intrusion targets. It
must be noted that the best possible value for the field link quality is 1.00, whereas INF
(infinity) states that there is not a link between these nodes. In this case, although each
common node creates a link with the malicious one, they are not aware of the link created
by the other node. This is the behavior defined in the protocol specification.

Nevertheless, routing tables of target nodes for olsrd v.0.4.10 (see Table 9) show very
different results: the route A↔ B↔ C has been dismissed in favor of a new route A↔ M
↔ C, since these new links present the best possible link quality. This procedure reveals
a possible vulnerability, according to the protocol specification, in the implementation of
this version.

In other words, olsrd version v.0.4.10 is not fully OLSR compliant, while olsrd v.0.5.6

26

Table 8: Routing tables for olsrd v.0.5.6 and olsrd v.0.6.0.

Node A Node C
DST Next LQ DST Next LQ

A M 1.00 C M 1.00
C M INF A M INF

DST = destination node, LQ = link quality

Table 9: Routing tables for olsrd v.0.4.10.

Nodes A and C
Before intrusion After intrusion
DST Next LQ DST Next LQ

A B 2.34 A M 1.00
B A 1.68 M A 1.00
B C 1.57 M C 1.00
C B 1.52 C M 1.00

DST = destination node, LQ = link quality

and olsrd v.0.6.0 are. This can be considered as a vulnerability in protocol version v.0.4.10
that can be exploited by attackers to intrude a route more easily (with a reduced set of
actions). Yet, the side effect seems to be a reduction in the time required to create new
communication links, which explains the better packet delivery ratio of this version with
respect to the rest of considered versions (see Figure 8).

5.5. Discussion

The type of results obtained in this section has shown that, beyond the scale of the
network deployment considered, there are certain conclusions that can be generalized.
Thanks to REFRAHN, we have seen the impact that mobility may have on network
deployments, the importance of resources consumed by network nodes, or the effect of
software bugs in the expected behavior of routing protocols. In summary, we have shown
the feasibility of REFRAHN to enable researchers and practitioners to gain knowledge
about the characteristics of ad hoc routing protocol through realistic resilience evaluation.

6. Conclusions

This paper has explored existing gaps in the practical evaluation of ad hoc routing
protocols, which are the most sensitive elements of ad hoc networks. In such a way, if
the routing protocol fails, communications will be rarely possible beyond one hop. The
research developed around these problems has led us to propose a novel experimental
framework. Such framework, named REFRAHN (Resilience Evaluation FRamework for
Ad Hoc Networks), defines a methodology and implements a tool to carry out the resilience
evaluation of ad hoc routing protocols, while addressing essential issues such as (i) the def-
inition of experiments that emphasize the need for recreating the dynamic characteristics
of real ad hoc networks deployments, specially the mobility of nodes and the occurrence
of faults; (ii) the execution of experiments, considering the use of real devices executing
real (non-simulated) routing protocols; and (iii) the ulterior analysis of measurements to
deduce a complete set of performance, resilience, and resources consumption metrics.

REFRAHN pays special attention to the practical aspects of the evaluation. With
respect to controllability, REFRAHN is able to define and manage experiments campaigns

27

manipulating all type of parameters concerning nodes configuration, such as their spa-
tial location, mobility pattern, the considered target routing protocol, the workload, and
faultload, among other parameters. Furthermore, the execution of experiments is totally
automated and can be remotely controlled. The degree of control achieved through the
mobility emulation and the accurate fault injection, enables REFRAHN to execute re-
peatable experiments. This feature makes REFRAHN an interesting testbed to conduct
reproducible fault injection experiments for ad hoc routing protocols in the domain of ad
hoc networks. REFRAHN also provides a good level of observability. Our tool uses meth-
ods based on the analysis of experiments to collect packet traces from different types of
nodes (both common and injector nodes), at different levels (software and hardware). Tak-
ing scalability issues into account, REFRAHN is able to deploy network topologies formed
by tens of nodes in a reduced space. Furthermore, REFRAHN is (i) flexible enough to
enable the injection of the most representative faults in the domain of ad hoc routing pro-
tocols, such as ambient noise, flooding attacks, or intrusion-based attacks, among others,
and (ii) scalable enough to consider and include new types of faults in the future. This is a
good balance between the need for scaling network deployments and the space limitations
of most research laboratories. Finally, the low intrusiveness of REFRAHN is guaranteed
not only because management operations between the core and network nodes use a dif-
ferent control network, but also because the tools installed in network nodes deploy light
processes, which in no case saturate the nodes capacity.

On the one hand, REFRAHN enables the characterization of ad hoc routing protocols
according to a number of performance and resilience attributes. This information could
be used by developers to improve their protocol implementation and correct any vulner-
abilities attackers may benefit from (as already seen in this paper), but also by network
administrators to fine tune routing protocol parameters to meet their network require-
ments, or security solutions testers to evaluate the goodness of their proposals in presence
of real faults to improve false positives and false negatives ratios. On the other hand,
this initial evaluation process will enable the comparison, with selection purposes, of these
routing protocols. This performance and resilience benchmarking procedure should define
precise guidelines for interpreting obtained metrics in order to determine which is the most
suitable routing protocol, implementation version, and configuration for a particular ad
hoc network. In addition, obtaining concrete information about attacks is of great interest
for designing new, and improving existing, intrusion detection and tolerance mechanisms
for ad hoc networks. The validation of these mechanisms could also be performed by
following the proposed approach. Finally, results obtained by this approach could also be
used to animate ad hoc network models, and to enrich existing simulators, with actual
data collected from experimentation.

Approaches aimed at experimentally balancing resilience, performance, and cost will
gain in importance as ambient intelligence-based solutions, and thus ad hoc networks,
become more common in our everyday lives.

Acknowledgements

This work was supported in part by the Spanish Project ARENES under Grant
TIN2012-38308-C02-01 and in part by the Programa de Ayudas de Investigacin y De-
sarrollo through the Universitat Politcnica de Valncia, Valencia, Spain.

References

[1] Global Technological and Societal Trends, online: http://www.internet-of-things-
research.eu/documents.htm, 2014.

28

[2] K. R. Chowdhury, I. F. Akyildiz, Crp: A routing protocol for cognitive radio ad hoc networks,
IEEE Journal on Selected Areas in Communications 29 (2011) 794–804.

[3] A. Boukerche, B. Turgut, N. Aydin, M. Z. Ahmad, L. Bölöni, D. Turgut, Routing protocols in ad
hoc networks: A survey, Computer Networks 55 (2011) 3032–3080.

[4] A. H. Mohsin, K. A. Bakar, A. Adekiigbe, K. Z. Ghafoor, A survey of energy-aware routing
protocols in mobile ad-hoc networks: trends and challenges, Network Protocols and Algorithms 4
(2012) 82–107.

[5] J.-C. Laprie, Resilience for the scalability of dependability, in: Proceedings of the Fourth IEEE
International Symposium on Network Computing and Applications, NCA ’05, 2005, pp. 5–6.

[6] Y.-C. Hu, D. B. Johnson, A. Perrig, Sead: Secure efficient distance vector routing for mobile
wireless ad hoc networks, Ad Hoc Networks 1 (2003) 175–192.

[7] C. Adjih, T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, D. Raffo, Securing the olsr protocol,
in: Proceedings of Med-Hoc-Net, 2003, pp. 25–27.

[8] M. G. Zapata, Secure ad hoc on-demand distance vector routing, ACM SIGMOBILE Mobile
Computing and Communications Review 6 (2002) 106–107.

[9] S. Buchegger, J.-Y. Le Boudec, Performance analysis of the confidant protocol, in: Proceedings
of the 3rd ACM international symposium on Mobile ad hoc networking & computing, ACM, 2002,
pp. 226–236.

[10] S. Kurkowski, T. Camp, M. Colagrosso, Manet simulation studies: the incredibles, SIGMOBILE
Mob. Comput. Commun. Rev. 9 (2005) 50–61.

[11] A. Jabbar, H. Narra, J. P. Sterbenz, An approach to quantifying resilience in mobile ad hoc net-
works, in: Design of Reliable Communication Networks (DRCN), 2011 8th International Workshop
on the, IEEE, 2011, pp. 140–147.

[12] Network Simulator, [Online]. Available: http://www.nsnam.org/, 2014.

[13] OPNET Simulator, [Online]. Available: http://www.opnet.com, 2014.

[14] GloMoSim, [Online]. Available: http://pcl.cs.ucla.edu/projects/glo-mosim/, 2014.

[15] S. Bouckaert, W. Vandenberghe, B. Jooris, I. Moerman, P. Demeester, The w-ilab.t testbed, in:
Testbeds and Research Infrastructures. Development of Networks and Communities, Springer, 2011,
pp. 145–154.

[16] Roofnet testbed, [Online]. Available: http://pdos.csail.mit.edu/roofnet, 2014.

[17] Floornet testbed, Floornet: A Wireless Multihop Testbed, [Online]. Available:
http://http://floornet.org/, 2014.

[18] E. Nordstrom, P. Gunningberg, H. Lundgren, A testbed and methodology for experimental eval-
uation of wireless mobile ad hoc networks, in: Testbeds and Research Infrastructures for the
Development of Networks and Communities, Italy, 2005, pp. 100–109.

[19] C. Mitchell, V. Munishwar, S. Singh, X. Wang, K. Gopalan, N. Abu-Ghazaleh, Testbed design
and localization in mint-2: A miniaturized robotic platform for wireless protocol development and
emulation, in: First International Communication Systems and Networks and Workshops (COM-
SNETS), 2009, pp. 1 –10.

[20] H. Lundgren, D. Lundberg, J. Nielsen, E. Nordström, C. Tschudin, A large-scale testbed for
reproducible ad hoc protocol evaluations, in: WCNC’02: Proceedings of the IEEE Wireless Com-
munications and Networking Conference, 2002, pp. 412–418.

[21] ORBIT project, The ORBIT radio grid emulator (ORBIT), [Online]. Available: http://www.orbit-
lab.org/, 2014.

[22] The Carnegie Mellon University Wireless Emulator, [Online]. Available:
http://www.cs.cmu.edu/ emulator/, 2014.

29

[23] J. Hortelano, M. Ncher, J.-C. Cano, C. Calafate, P. Manzoni, Castadiva: A Test-Bed Architecture
for Mobile AD HOC Networks, in: IEEE Symposium on Personal, Indoor and Mobile Radio
Communications, 2007, pp. 1–5.

[24] Mobility Emulator (MobiEmu), [Online]. Available: http://mobiemu.sourceforge.net/, 2014.

[25] Emulab - Network Emulation Testbed, [Online]. Available: http://www.emulab.net/, 2014.

[26] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, R. K. Iyer, Nftape: a framework for assessing
dependability in distributed systems with lightweight fault injectors, in: Computer Performance
and Dependability Symposium, 2000. IPDS 2000. Proceedings. IEEE International, IEEE, 2000,
pp. 91–100.

[27] J. Carreira, H. Madeira, J. G. Silva, Xception: Software fault injection and monitoring in processor
functional units, Dependable Computing and Fault Tolerant Systems 10 (1998) 245–266.

[28] J. H. Barton, E. W. Czeck, Z. Z. Segall, D. P. Siewiorek, Fault injection experiments using fiat,
Computers, IEEE Transactions on 39 (1990) 575–582.

[29] M. Cinque, D. Cotroneo, C. Di Martino, S. Russo, A. Testa, Avr-inject: A tool for injecting faults
in wireless sensor nodes, in: IEEE International Symposium on Parallel Distributed Processing
(IPDPS) 2009, 2009, pp. 1–8.

[30] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable
and secure computing, IEEE Transactions on Dependable and Secure Computing 1 (2004) 11–33.

[31] Network Simulator 3, [Online]. Available: http://www.nsnam.org/, 2014.

[32] J. Friginal, D. de Andrés, J.-C. Ruiz, P. Gil, Towards benchmarking routing protocols in wireless
mesh networks, Ad hoc networks 9 (2011) 1374?1388.

[33] J. Friginal, D. de Andrés, J.-C. Ruiz, P. Gil, Using performance, energy consumption, and resilience
experimental measures to evaluate routing protocols for ad hoc networks, in: Network Computing
and Applications (NCA), 2011 10th IEEE International Symposium on, IEEE, 2011, pp. 139–146.

[34] J. Friginal, D. de Andrés, J.-C. Ruiz, P. Gil, Resilience-driven parameterisation of ad hoc routing
protocols: Olsrd as a case study, in: Reliable Distributed Systems (SRDS), 2011 30th IEEE
Symposium on, IEEE, 2011, pp. 85–90.

[35] J.-K. Chen, C. Chen, R.-H. Jan, H.-H. Li, Expected link life time analysis in manet under man-
hattan grid mobility model, in: Proceedings of the 11th international symposium on Modeling,
analysis and simulation of wireless and mobile systems, MSWiM ’08, 2008, pp. 162–168.

[36] C. Bettstetter, H. Hartenstein, X. Pérez-Costa, Stochastic properties of the random waypoint
mobility model, Wirel. Netw. 10 (2004) 555–567.

[37] M. McNett, G. M. Voelker, Access and mobility of wireless pda users, SIGMOBILE Mob. Comput.
Commun. Rev. 9 (2005) 40–55.

[38] R. Natella, D. Cotroneo, J. A. Duraes, H. S. Madeira, On fault representativeness of software fault
injection, IEEE Transactions on Software Engineering 99 (2011).

[39] P. Ning, K. Sun, How to Misuse AODV: A Case Study of Insider Attacks Against Mobile Ad-Hoc
Routing Protocols, in: IEEE Information Assurance Workshop, 2003, pp. 60–67.

[40] A. Morais, A. Cavalli, E. Martins, A model-based attack injection approach for security validation,
in: Proceedings of the 4th international conference on Security of information and networks, SIN
’11, 2011, pp. 103–110.

[41] Y. an Huang, W. Lee, Attack analysis and detection for ad hoc routing protocols, in: In Proceedings
of the 7th International Symposium on Recent Advances in Intrusion Detection (RAID, 2004, pp.
125–145.

[42] J.-S. Yeom, N. Wisitponghan, S. Panichpapiboon, O. K. Tonguz, A testbed emulator for cross-layer
studies in mobile ad hoc wireless networks, in: International Conference on Testbeds and Research
Infrastructure for the Development of Networks and Communities (TridentCom), 2007, p. 10.

30

[43] D. Macedo, L. Correia, A. dos Santos, A. Loureiro, J. Nogueira, Evaluating fault tolerance as-
pects in routing protocols for wireless sensor networks, in: Fourth Annual Mediterranean Ad Hoc
Networking Workshop, 2005, pp. 285–294.

[44] B. Wu, jianmin Chen, J. Wu, M. Cardei, A survey on attacks and countermeasures in mobile ad
hoc networks, in: Wireless/Mobile networks security, Springer-Verlag, 2006, pp. 103–135.

[45] A. Wood, J. Stankovic, A taxonomy for denial-of-service attacks in wireless sensor networks, Chap-
ter 32. CRC Press LLC, 2005.

[46] M.-C. Hsueh, T. K. Tsai, R. K. Iyer, Fault injection techniques and tools, IEEE Computer 30
(1997) 75–82.

[47] Nemesis tool, [Online]. Available: http://sourceforge.net/projects/nemesis/, 2014.

[48] Network Emulator (Netem), [Online]. Available: http://www.linuxfoundation.org, 2014.

[49] I. Aad, Impact of denial of service attacks on ad hoc networks, IEEE/ACM Trans. Netw. 16 (2008)
791–802.

[50] L. M. Feeney, An energy consumption model for performance analysis of routing protocols for
mobile ad hoc networks, Mob. Netw. Appl. 6 (2001) 239–249.

[51] T. Clausen and P. Jacquet, Optimized Link State Routing Protocol(OLSR), RFC 3626 (2003).

[52] Y. Sun, I. Sheriff, E. M. Belding-Royer, K. C. Almeroth, An experimental study of multimedia
traffic performance in mesh networks, in: Workshop on Wireless traffic measurements and modeling
(WiTMeMo), 2005, pp. 25–30.

31

