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Abstract 

This paper studies the application of radial basis functions to predict nitrogen 

oxides 24 hours in advance. The forecast interval was chosen for practical 

regulatory reasons. The two study areas are in Valencia (Spain), where these 

pollutants have reached critical levels, and there has been a significant connection 

between them and several health problems. The models use nitrogen oxide 

concentrations, traffic, meteorological data, and periodic components (sine and 

cosine terms for the daily and weekly cycles) as hourly inputs. In one monitoring 

station the most accurate nitric oxide predictions were obtained when the radial 

basis function model included all these variables as inputs. In this site the forecast 

evaluation criteria gave better results for nitrogen dioxide prediction than for nitric 

oxide. In the other monitoring station, better predictions were obtained for  

nitric oxides than for nitrogen dioxide. There were differences in the forecasts 

accuracy between sites. The results are compared with the forecasts obtained with 

multilayer perceptron neural networks. Nitrogen dioxide predictions were more 

accurate with the multilayer perceptron approach at one of the sites. 

Keywords: urban air quality, nitrogen oxides, neural networks, radial basis 

functions, multilayer perceptron. 

 

1 Introduction 

Air quality is a major concern in urban areas. Local administrations manage air 

pollutants monitoring networks and analyze their information in order to prevent 

health problems. Indicators of urban air quality are ozone, nitrogen oxides, sulphur 

dioxide or atmospheric particulates [1, 2].  Pollutants levels predictions are useful 
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when evaluating the effectiveness of the plans introduced by the administration to 

reduce critical events. Tools for forecasting have to model temporal variations and 

to include complex non-linear relationships between meteorology, traffic and 

pollutants. The link between climatology and pollutions plays an important role in 

air quality variability. 

     Deterministic approaches to predict pollution levels, are not useful in coastal 

areas [3]. They are more appropriate over extensive areas such as whole regions 

and large cities. They require precise data from the emission and transportation of 

pollutants, and meteorological conditions. Statistical approaches are required 

when the complexity of a problem increases, and the theoretical understanding 

decreases due to ill-defined interactions between systems. 

     Statistical models establish relationships between input variables (predictors) 

and output variables (pollutants levels), without detailing the causes and effects in 

the formation of pollutants. Seasonality, trends and autocorrelations of pollutants 

are often analyzed using ARIMA time series models [4, 5].  These methods are 

limited by their weakness when modeling non-linear temporal variations.  

The possible presence of chaotic dynamics in pollutant concentrations allows the 

application of non-linear time series [6]. Classification and regression trees have 

also been used to study pollutants variability [7, 8]. 

     The application of neural networks has been shown to be an effective 

alternative to more traditional statistical techniques in the air quality research area 

[9, 10].  The neural network models can be trained to approximate virtually any 

smooth, measurable function [11], and they make no prior assumptions concerning 

the data distribution. They can be trained to accurately generalize when presented 

with new, unseen data and can model highly non-linear functions [12]. The neural 

network approach which has been most applied to analyze atmospheric pollutants 

variability, is the multilayer perceptron (MP) [10]. This method was used by 

Ibarra-Berastegi et al. [13] and the best performance of these models was obtained 

for the prediction of nitrogen dioxide (NO2) 1 hour ahead. Caselli et al. [14] 

showed that the multivariate regression models gave less accurate results than MP 

methods, and failed when fitting spiked high values of pollutant concentrations. 

They also applied a radial basis function (RBF) network, which could predict the 

pollutant trend but the mean relative error was higher than with a MP network. 

Compared with traditional neural networks, the RBF method can not only produce 

more accurate results, but also achieve simpler network architecture and faster 

training speed [15]. More recently, Wang et al. [16] established a RBF model to 

estimate the impact of meteorology indicators on sulfur dioxide. The proposed 

model gave satisfactory results in forecasting the data.  

     The objective of this study is to investigate for the first time the capability of 

the RBF approach to predict nitrogen dioxide (NO2) and nitric oxide (NO) hourly 

concentrations in Valencia (Spain). The main goal is to estimate levels 24 hours 

ahead at two different locations. Shorter time forecasts are of minimal value for 

the air quality management purposes of the local administration. NO2 and NO are 

critical air pollutants in Valencia [17]. They are a consequence of motor vehicle 

emissions [18]. Tenias et al. [19] showed a significant connection between a 10 

g/m3 increase in NO2 level and the relative risk of asthma emergency visits in 
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this city. Daily levels of NO2 in Valencia are also associated with cardiovascular 

admissions [20, 21].  NO2 is precursor of secondary pollutants that are related to 

photochemical smog and acid rain. Ambient air NO2 is in large part originated by 

the oxidation of NO. Therefore the link between climate and these pollutants plays 

an important role on their variability, and has to be taken into account when 

selecting optimal pollutant reduction strategies. Recent research [22] showed that 

MP networks performed better than multiple regression models to forecast NO2 

values. In this paper RBF models are designed and compared with MP networks, 

to establish the most efficient forecasting tool. Meteorological and traffic 

variables, pollutants concentrations, and seasonal components are used as 

predictors. 

 

2 Material and methods 

2.1 Study area and dataset 

The study is located in the urban area of Valencia (Spain). The climatology and 

structure are Mediterranean. There are around one million inhabitants. The air 

pollution monitoring network is managed by the local government since 1995. It 

measures pollution variables in the whole urban area. Mass concentrations of 

nitrogen oxides are determined using the chemiluminescence method. Pollutants 

concentrations are expressed in g/m3. The volumes are standardized at a 

temperature of 293°K and a pressure of 101.3 kPa. The traffic network of the local 

municipality obtains the number of vehicles (NV) circulating every hour at 

locations close to the pollution monitoring sites. 

     The data set are hourly observations from the air pollution and traffic networks. 

The study considers two monitoring stations (Pista Silla and Viveros), where high 

pollution episodes were registered during the period 2002–2005. The limit value 

of NO2 for the protection of human health in a calendar year was exceeded at Pista 

Silla, in 2003, 2004 and 2005. The highest annual NO2 mean was observed in 

2003. This station also measures wind speed (WS, m/s), wind direction (WD, 

degrees), temperature (T, °C), solar radiation (SR, W/m2), relative humidity 

(RH, %) and pressure (P, mbar). At Viveros, WS, WD, T and SR observations 

were provided by the National Institute of Meteorology, which manages  

a meteorological station close to the air pollution station. Pista Silla station is in a 

roadside site located a few meters from a motorway, and Viveros is in an avenue 

close to the city centre. The distance between them is 2.6 km. Traffic density is 

high at both sites. The matrix of data (hourly measurements) had 18339 entries for 

Pista Silla (years 2003–2005) and 16221 for Viveros (years 2002–2004). Table 1 

contains averages, coefficients of variation and maximum values of pollutants, 

meteorological and traffic variables. 

     The source activity (e.g. traffic) and periodic variations in nature (e.g. 

photochemical reactions in the atmosphere), mainly contribute to NO2 and NO 

concentrations. Periodic components are observed in the time series at the week 

and daily levels [22] at the two stations. 
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Table 1:  Descriptive analysis of the variables. 

Station Variable Mean CV Maximum 

Pista Silla NO2 58.8 0.51 249 

 NO 52.0 1.14 624 

 WS 1.1 0.82 8.6 

 WD 187.8 0.57 360 

 T 18.7 0.36 38.2 

 RH 60.8 0.25 92 

 P 1022.2 0.01 1044.7 

 SR 153.3 1.60 947 

 NV 2945.7 0.57 38712 

Viveros NO2 36.72 0.67 238 

 NO 19.6 1.93 596 

 WS 1.8 0.72 11.9 

 WD 168.3 0.69 360 

 T 18.9 0.34 38.2 

 SR 170 1.53 1033.3 

 NV 1088.7 0.66 13456 

2.2 Neural networks 

The neural networks are composed of three layers of neurons: the input, the hidden 

and the output layers. They are applied to eight models which have different 

number I of predictors Xi or neurons in the input layer. The predictors are 

pollutants concentrations, meteorological parameters, traffic variable or seasonal 

components (sine and cosine terms for the daily and weekly cycles). The models 

output Y is the prediction of NO2 or NO concentrations 24 hours in advance; 

therefore the number of neurons in the output layer is equal to 1. Table 2 shows 

the models that are analyzed. 

Table 2:  Models analyzed. 

Model Output variable Input variables 

1 (NO2)t+24 Meteorologyt, traffict, (NO2)t 

2 (NO2)t+24 
Meteorologyt, traffict, 

Seasonalityt+24,(NO2)t 

3 (NO2)t+24 
Meteorologyt, traffict, 

(NO2)t, NOt 

4 (NO2)t+24 
Meteorologyt, traffict, 

Seasonalityt+24,(NO2)t, NOt 

5 NOt+24 Meteorologyt, traffict, NOt 

6 NOt+24 
Meteorologyt, traffict, 

Seasonalityt+24,NOt 

7 NOt+24 
Meteorologyt, traffict, 

NOt, (NO2)t 

8 NOt+24 
Meteorologyt, traffict, 

Seasonalityt+24, NOt, (NO2)t 
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     The number of neurons H in the hidden layer of the MP method, is determined 

by experimentation, training the neural networks with values of H from 5 to 30. 

Greater values of H do not give a better performance. The MP networks are trained 

with two backpropagation algorithms: the scaled conjugate gradient algorithm 

(SCG) and the Levenberg–Marquard algorithm (LM). The output Y can be 

expressed as follows: 
 

                        (1) 
 

where o denotes the elements of the output layer and h indicates the elements of 

the hidden layer.  is the weight that connects the neuron j of the hidden layer 

with the neuron of the output layer, and  is the weight that connects the neuron 

i of the input layer with the neuron j of the hidden layer. bo is the bias of the  

neuron of the output layer, and  is the bias of neuron j of the hidden layer. fo is 

the transfer function of the neuron of the output layer. In this work the linear 

transfer function has been applied for fo.  is the transfer function of neuron j of 

the hidden layer. The most widely used  are the hyperbolic transfer function 

(tansig) and the logarithmic sigmoid function (logsig): 
 

                                             (2) 

                                               (3) 
 

     RBF networks may require more neurons than standard feed-forward 

backpropagation networks, but often they can be designed in a fraction of the time 

it takes to train standard feed-forward networks. They work best when many 

training vectors are available. Each neuron in the hidden layer of the RBF method 

calculates the Euclidean distance of the input vector X to its own centre . The 

calculated distance is transformed via a transfer function . The result of this 

operation in each neuron of the hidden layer is multiplied by a weighting factor 

 and summed with the other neurons weighted results, to give the predicted 

output value Y. The final output Y can be expressed: 
 

                                  (4) 
 

 denotes the Euclidean distance. The Gaussian function is widely used as 

a non-linear transfer function.  is the bandwidth of this function. In the training 

process, the steepest gradient descent learning process is used to adjust the 

appropriate settings of the parameters (e.g. weights, centers, and bandwidths). 

     Overtraining occurs when the neural networks memorize the patterns 

introduced to it and it is not capable of identifying new situations. The early 

stopping technique can be used to avoid this problem [23]. In this method the data 

set is separated into three subsets: the training set, the validation set and the test 

set. The training set is used to update the network weights and biases. During the 

training, the validation set is used to guarantee the generalization capability of  

the model, and training should stop before the error on the validation set begins to 

rise. The test set is a new set used to check the generalization of the MP. In this 

Air Pollution XXIII  45

 

 www.witpress.com, ISSN 1743-3541 (on-line) 

WIT Transactions on Ecology and The Environment, Vol 198, © 2015 WIT Press



work, the models are trained on data from the first year. Data from the second year 

are used as the validation set, and observations from the third year are the test data 

set. The computations are performed with the Neural Network Toolbox of 

MATLAB. 

2.3 Evaluation criteria 

Four evaluation criteria are obtained to compare the performance of the MP and 

RBF methods with the eight models, to forecast the test data set. The correlation 

coefficient r between the forecasted values Yf and the observations Y quantifies 

the global description of the model. The root mean square error (RMSE): 
 

                                       (4) 

 

where n is the number of observations in the test data set.  The mean absolute error 

(MAE)  
 

                                            (5) 

 

     An expression of accuracy of predictions as a percentage can be computed with 

the mean absolute percentage error (MAPE): 
 

                                       (6) 

3 Results and discussion 

Table 3 contains the predictions results at Pista Silla with the MP networks that 

had the best performance. In all cases the most accurate forecasts were obtained 

with the Levenberg–Marquard backpropagation algorithm. 

Table 3:  MP predictions at Pista Silla. 

Model Output 
Transfer 

function 
nh r RMSE MAE MAPE 

1 NO2 tansig 14 0.59 20.30 16.49 0.51 

2 NO2 tansig 14 0.63 19.35 15.38 0.45 

3 NO2 logsig 30 0.56 20.48 16.32 0.48 

4 NO2 logsig 10 0.65 20.49 16.55 0.50 

5 NO logsig 10 0.61 45.12 27.80 1.31 

6 NO tansig 12 0.65 43.27 26.98 1.19 

7 NO logsig 10 0.59 45.26 28.39 1.42 

8 NO tansig 12 0.65 43.05 26.56 1.19 
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     NO2 predictions at time t+24 are better with model 2 in terms of the RMSE, 

MAE and MAPE values. This model includes as predictors the meteorological 

indicators, the traffic volume, the seasonal components and the NO2 concentration 

at time t. The best value of the correlation coefficient between observations and 

predictions, is obtained with the model that also includes NO concentration at time 

t. The prediction of NO at time t+24 is more accurate with the model 8, which 

includes all the predictors. The forecast errors are greater for NO than for NO2. 

Table 4 shows the best RBF network predictions at Pista Silla for the eight models. 

Table 4:  RBF predictions at Pista Silla. 

Model Output bandwidth r RMSE MAE MAPE 

1 NO2 1 0.55 21.4 16.60 0.39 

2 NO2 2.25 0.66 19.8 15.34 0.34 

3 NO2 1 0.55 21.5 16.61 0.38 

4 NO2 2.25 0.66 19.7 15.31 0.35 

5 NO 2.25 0.56 47.1 27.60 1.19 

6 NO 2.25 0.65 43.2 26.30 1.15 

7 NO 2.25 0.54 47.6 29.40 1.45 

8 NO 2 0.65 43.1 26.80 1.20 

 

     With this neural networks models, the best NO2 predictions for time t+24, were 

obtained with model 4 in terms of r, RMSE and MAE. This model includes all the 

predictors as inputs. With model 2 the MAPE is slightly smaller; in this case  

the model does not use NO concentration at time t as predictors. The comparison 

of values in Tables 3 and 4, indicates that the RBF forecasts are better for NO2 

than the MP ones, when considering the r, MAE and MAPE values, The RMSE is 

smaller with MP network and model 2. 

     The best NO prediction at time t+24, is attained with the RBF network when 

applied to model 6, in terms of r, MAE and MAPE. With model 8 the RMSE is 

smaller. In both cases seasonal components are included. This pollutant forecast 

is worse than NO2 forecast when considering the RMSE, MAE and MAPE values. 

The comparison with the Table 3, shows that the NO prediction is better with the 

MP applied to model 8, than any of the models with the RBF network. 

     The best NO2 and NO prediction results at Viveros are given in Tables 5 and 

6. Table 5 corresponds with the MP networks computations. 

     With models 1, 5, 6, 7 and 8, the MP performance was better with the 

Levenberg–Marquard backpropagation algorithm. Models 2, 3 and 4 worked more 

accurately with the scaled conjugate gradient learning method. At this site, the r 

values of NO2 predictions are very small. Model 1 (predictors are meteorology, 

traffic and NO2 observations) has the best r, MAE and MAPE. The inclusion of 

seasonality (model 2) only improves the RMSE indicator. However, the NO 

predictions perform better when the models incorporate seasonal cycles. When the 

inputs are these cycles, meteorology, traffic and NO levels, the results have smaller 

MAE and MAPE. If the model also considers NO2 levels as inputs, r and RMSE 
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Table 5:  MP predictions at Viveros. 

Model Output 
Transfer 

function 
nh r RMSE MAE MAPE 

1 NO2 tansig 7 0.12 23.39 18.30 0.93 

2 NO2 tansig 10 0.07 23.05 18.31 0.98 

3 NO2 tansig 7 0.05 23.38 18.57 0.97 

4 NO2 logsig 7 0.01 23.40 18.77 0.97 

5 NO logsig 5 0.49 33.78 19.86 3.52 

6 NO logsig 16 0.52 33.19 19.03 3.16 

7 NO tansig 10 0.49 33.94 19.26 3.20 

8 NO tansig 10 0.65 33.10 19.10 3.32 

 

indicators are better. NO predictions have higher r values than NO2 predictions, 

but the latter have smaller values of the other three indicators. In Pista Silla site, 

MP networks (Table 3) have more accurate predictions for NO2 and NO than at 

Viveros site.  

     Table 6 shows the forecasts results with the RBF networks at Viveros, for the 

two pollutants and the eight models. 

Table 6:  RBF predictions at Viveros. 

Model Output bandwidth r RMSE MAE MAPE 

1 NO2 1 0.55 18.6 14.6 0.67 

2 NO2 1.75 0.62 17.6 13.7 0.62 

3 NO2 2.25 0.55 18.6 14.6 0.67 

4 NO2 1.75 0.61 17.5 13.7 0.62 

5 NO 1.75 0.49 33.9 18.5 2.8 

6 NO 2 0.53 33.2 18.3 2.9 

7 NO 1 0.50 33.6 18.1 2.6 

8 NO 2 0.53 33.2 18.1 2.7 

 

     NO2 predictions are much better with this method than with MP networks, as 

the four criteria indicate. Models 2 and 4, which include daily and weekly 

seasonality, have higher r coefficients, and smaller RMSE, MAE and MAPE 

values. NO forecast are more accurate with RBF method than with MP networks, 

when considering MAE and MAPE results, but r coefficients and RMSE 

parameters are  quite similar with the two procedures. Including seasonality 

(models 6 and 8) improves r and RMSE statistics, being slightly better model 8 

with all the predictors. The comparison with Pista Silla site shows that RBF 

networks had lower MAPE indicators at Viveros for NO2 predictions. Moreover, 

RMSE and MAE of NO forecast at Viveros were better than at Pista Silla with 

RBF networks, but r and MAPE values were worse at the second station. 
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4 Conclusions 

In this work, a comparison of multilayer perceptron and radial basis functions 

networks is made. The aim is to predict hourly levels of two pollutants, 24 hours 

in advance at two locations of an urban area. Different models are studied, 

depending on the number of inputs they consider. The inclusion of daily and 

weekly seasonality improves the quality of predictions. In the first site, the RBF 

method performs better when meteorology, traffic, seasonal cycles, and NO2 and 

NO levels are included. At the second site, however, the best NO2 prediction is 

attained when NO levels are not included as inputs. In this site RMSE and MAE 

of NO2 forecasts are smaller than at the first site, where r and MAPE values are 

better.  

     The MP networks only performed better tan RBF networks when predicting 

NO2 at the second station, and NO concentration was not considered as predictor. 

In all the other cases RBF methods resulted more accurate than MP networks. 
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