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Abstract. Intensive poultry and pig houses are major point sources of particulate matter (PM). The 13 

knowledge on the contribution of individual sources to PM in different fractions is essential to 14 

improve PM reduction from livestock houses. We developed a methodology to investigate which 15 

input data (particle chemical, morphological or combined characteristics) were best to distinguish 16 

amongst specific sources of airborne PM in livestock houses. We used a validation procedure with 17 

classification rules based on decision trees and analyzed misclassification errors. The PM from two 18 

livestock species (poultry and pigs), and in two different fractions (fine and coarse) was studied. 19 

Results showed the selection of the best input data varied with the sources, which depend on 20 

livestock species. Using only particle chemical characteristics resulted in higher overall 21 

classification accuracies (62 to 68%) than using only morphological characteristics (40 to 64%) in 22 

poultry and pigs. Particle morphological characteristics can add value when sources show 23 

distinctive and well defined morphologies or differ in size. Using combined chemical and 24 

morphological resulted in the highest overall classification accuracies (average of 69% of particles 25 

correctly assigned to their source) and lowest misclassification errors. This study provides a 26 
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methodological approach to assess input data and identifies the most effective characteristics to 27 

apportion PM in livestock houses. These data are promising to determine the contribution of 28 

different sources to PM in livestock houses and give insight in under and overestimation errors in 29 

the source apportionment. 30 

 31 

Keywords: Animal housing, Atmospheric pollution, Dust, Expert systems, Image analysis. 32 

1. Introduction 33 

Livestock production systems are major point sources of particulate matter (PM). In certain 34 

European regions such as in the Netherlands, Flanders, North Italy, or North-East Spain where 35 

background PM concentrations due to other sources (traffic and industrial activities) are already 36 

high, PM emitted from livestock houses can cause exceedance of the limits established by the 37 

European air quality regulations (Directive 1999/30/EC and Directive 2008/50/EC). 38 

To protect the environment and to ensure health and welfare of humans and animals in and around 39 

livestock houses, the concentrations and emissions of PM within such buildings must be reduced. 40 

One of the main challenges to reduce PM in livestock houses is to identify which sources to tackle. 41 

Sources of PM in livestock houses can be very variable, including: manure, feed, feathers, skin, 42 

bedding material, and micro-organisms (germs, fungi, viruses, bacteria, toxins and allergens) 43 

(Donham et al., 1986; Heber et al., 1988; Feddes et al., 1992; Qi et al., 1992; Cambra-López et al., 44 

2011a). The knowledge on the contribution of each individual source to airborne PM (source 45 

apportionment) in different fractions would be useful to improve PM reduction in this field.  46 

Additionally, information on size, morphology and chemical composition of individual particles 47 

offers the potential to specifically identify and quantify PM sources (Casuccio et al., 2004). Single-48 

particle analysis with scanning electron microscopy (SEM) can provide chemical and 49 

morphological descriptive characteristics from hundreds of individual particles which can be 50 

further used to classify particles into distinct classes which resemble sources (Kim and Hopke, 51 

1988; Willis et al., 2002; Coz et al., 2010). To do this, each source must have distinctive 52 
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morphological and/or chemical features, which can be used to discriminate amongst them. When 53 

this is not the case or very specific sources need to be apportioned and distinguished, detailed 54 

morpho-chemical source profiles are necessary. Acquiring a detailed morpho-chemical source 55 

profile, however, is both expensive and time-consuming. Therefore, adequate methods which can 56 

select the best variables to discriminate amongst sources are required to improve the selection of 57 

particle characteristics to use in source apportionment of PM.  58 

In livestock husbandry, as PM is mainly composed of primary particles of biological origin, most 59 

particles have a similar element composition, rich in nitrogen, sodium, magnesium, aluminium, 60 

silicon, chlorine, potassium, and calcium (Cambra-López et al., 2011b). However, Cambra-López 61 

et al. (2011b) reported that, although similar elements could be present in all sources, their relative 62 

element concentrations vary amongst sources and this can be used to discriminate amongst them. 63 

Furthermore, individual particles from different sources can show unique morphological features. 64 

The use of an automated system to extract such features can be useful to identify similarities and 65 

differences amongst sources. Consequently, to quantify the contribution of sources of PM in 66 

livestock houses, an assessment of input data to differentiate effectively amongst sources, and the 67 

selection of the morpho-chemical characteristics to be used in source apportionment of PM is 68 

necessary.  69 

The aim of this work was to develop a methodology to investigate which input data (particle 70 

chemical, morphological or combined characteristics) were best to distinguish amongst specific 71 

sources of airborne PM in livestock houses. The PM from two livestock species (poultry and pigs), 72 

and in two different fractions (fine PM2.5 and coarse PM10-2.5) was studied. The convenience of 73 

using each input data was analyzed using a validation procedure with classification rules based on 74 

decision trees. The overall accuracy of the classification, and the underestimation and 75 

overestimation errors were calculated for each source. Its implications for use in source 76 

apportionment studies are discussed. This study provides a methodological approach to assess input 77 

data and identifies the most effective characteristics to apportion PM in livestock houses. With this 78 
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information, individual apportionment to specific sources of PM in livestock houses will be 79 

improved, contributing to reduce this pollutant. 80 

 81 

 82 

2. Material and methods 83 

Fine (PM2.5) and coarse (PM10-2.5) PM source samples from poultry and pig houses were used in 84 

the assessment. We tested three scenarios to select the best input data to distinguish between 85 

specific sources of airborne PM in poultry and pig houses: firstly, classification using only particle 86 

chemical characteristics; secondly, classification using only particle morphological characteristics; 87 

and thirdly, the combination of both data sets.  88 

Figure 1 shows examples of apportioning of particles to certain sources, chemically or 89 

morphologically. Examples: (a) particles from manure (top) and long-thin particle from feathers 90 

(bottom) in poultry showing different elemental composition and morphology; (b) particles 91 

showing very similar elemental composition and morphology but belonging to different sources in 92 

pigs, manure (top) and feed (bottom); (c) particles showing very similar morphologies but different 93 

elemental composition, feathers (top) and wood shavings (bottom); and (d) particles showing very 94 

similar elemental compositions (rich in sodium, Na; and chlorine, Cl) but different morphology 95 

belonging to different sources in pig feed (top) and outside pig houses (bottom). 96 

(a) 

  

(b) 

  
(c) (d) 
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Figure 1. Examples of scanning electron microscopy photomicrographs of particles and X-ray 97 

elemental spectra showing chemical and morphological similarities and differences amongst 98 

sources of PM from poultry and pig houses. (a) Particle from poultry manure (top) and one long-99 

thin particle from feathers (bottom); (b) particle from pig manure (top) and from pig feed (bottom); 100 

(c) particle from turkey feathers (top) and from wood shavings (bottom); and (d) particle from pig 101 

feed (top) and from outside source (bottom). Magnifications from 3000 to 3500x. Note 5 µm 102 

diameter filter pores, shown as round dark holes. 103 

Single particle chemical and morphological characteristics were obtained using scanning electron 104 

microscopy (SEM) combined with energy-dispersive X-ray analysis (EDX). Single particle 105 

chemical and morphological data were obtained from particles from homogeneous known source 106 

samples. These data were used separately to develop a set of rules. The same particle data used to 107 

develop the set of rules were then used to test them following a validation procedure. In this 108 

procedure, each particle (from a known reference source) was assigned to one of the sources 109 

applying the classification rules. The accuracy of the particle source assignment (correct particle 110 

classification) was evaluated through error matrices. A scheme showing the procedure used in this 111 

study is shown in Figure 2. 112 
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 113 

Figure 2. Flow diagram with the process used in this study. 114 

2.1. Input data: single-particle SEM-EDX analysis 115 

Known source samples, collected at 14 different farm locations for poultry (including broilers, 116 

laying hens in floor and aviary system, and turkeys) and pigs (including piglets, growing-finishing 117 

pigs, and dry-pregnant sows) were used in the assessment (Table 1). Two farms per housing system 118 

were sampled. Source samples were collected from feathers, feed, manure, skin, and wood 119 

shavings at each farm location, identified as major sources of PM in the study by Cambra-López et 120 

al. (2011a). Composite samples of potential PM sources were collected per source and farm by 121 

randomly sampling different locations in the livestock house. Skin samples were collected only 122 

from sows because it was impractical to collect such samples from younger animals (piglets and 123 

growing-finishing pigs) whose skin was not as loose as a sow's dandruff (Table 1). 124 

Each source sample per farm was dried for 12 h at 70°C and then crushed in a ball mill for 1.5 min 125 

at 250 rpm. Dried and milled samples were stored at room temperature, and then airborne PM was 126 

generated in a laboratory dust generator to collect airborne fine and coarse PM samples from each 127 

source. The dust generator consisted of a stainless steel cylinder of 20 cm diameter and 30 cm 128 

height with an airtight lid, which had a mechanical agitation system with rotary blades. A varying 129 

quantity, from 0.2 g (feathers) to 40 g (feed), of each milled source per farm was introduced in the 130 
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dust generator and agitated at 200 rpm. The generated PM was collected using a virtual cascade 131 

impactor (RespiCon, Wetzlar, Germany) which was placed inside the generator. This device 132 

sampled airborne fine and coarse PM onto separate polycarbonate filters (37 mm dia., 5 m pore 133 

size). It is a two-stage virtual impactor that follows the convention of the European Standard (CEN, 134 

1993) with a 50% cutoff at an aerodynamic diameter of 2.5 m (for fine PM) and 10 m (for 135 

coarse PM). A portable pump (Genie VSS5, Buck Inc, U.S.) was used to draw air through the 136 

impactor from the dust generator, at constant a flow of 3.11 L min
-1

. A detailed description of the 137 

dust generation process and setup can be found in Cambra-López et al.(2011b). Sampling time 138 

during dust generation varied from 1 min to 7 h, depending on the amount of particles generated, 139 

aiming at particle loads of 5 to 20 g particles cm
-2

 filter, to avoid particle agglomeration and 140 

perform individual particle SEM analysis (Willis et al., 2002). The generation procedure simulated 141 

the process by which PM can be generated in the livestock houses. According to Gill et al. (2006), 142 

generating, collecting, and measuring PM in a controlled laboratory setting are useful tools to 143 

determine emission potential per mass of source, and its physical, morphological, and chemical 144 

characteristics. The laboratory dust generation procedure used in our study worked by generating a 145 

large cloud of particles and then collecting a small amount of them. 146 

Additionally, a representative sample of ambient outdoor fine and coarse PM was collected on each 147 

sampling day, at each location at a distance of about 10 to 15 m upwind using a virtual cascade 148 

impactor, same as for laboratory generated samples. Sampling time outside varied from 30 to 60 149 

min. Table 1 summarizes the origin of the data used in the assessment and the sources used in the 150 

analysis. 151 

Table 1. Summary of sources types for each livestock species and housing system used in the 152 

assessment (n= filter samples same for fine and coarse PM). 153 

Livestock species Housing system Source types n 

Poultry 

Broilers - bedding  

Turkeys - bedding  

Laying hens - floor  

Laying hens - aviary  

Feed  8 

Feathers 8 

Manure 8 

Wood shavings 4 
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Outside 8 

Pigs 

Piglets- slatted floor 

Growing-finishing pigs - partially slatted floor 

Dry and pregnant sows - group housing 

Feed  6 

Manure 6 

Skin 2 

Outside 6 

High-resolution SEM (JEOL, JSM-5410) combined with EDX (Link Tetra Oxford Analyzer) was 154 

used to obtain single particle-by-particle chemical and morphological data. A small section 155 

(approximately 1 cm
2
) of the as-collected polycarbonate filter from fine and coarse fractions was 156 

cut and mounted on a 12 mm carbon stub with a double-sided carbon adhesive tape. Samples were 157 

then coated with carbon using a vacuum evaporator, to provide electrical conductivity and create a 158 

conductive coating for exposure to the SEM electron beam.  159 

The SEM-EDX was conducted manually, operated under the same conditions throughout the study: 160 

accelerating voltage 10 keV, working distance 15 mm, electron probe current of 3 nA, 161 

magnifications 1000x for coarse PM, and 1800x for fine PM, and X-ray acquisition time 60 s per 162 

particle. Secondary electron mode was used for particle location, measurement, analysis, and image 163 

acquisition. At least three fields of view (spots) per filter sample were analyzed. On each analyzed 164 

field, both an image (photomicrograph at 1000x or 1800x, saved in tif format 1024x768 resolution) 165 

and single particle X-ray spectra of every particle in that field were obtained and stored. Within 166 

each field, the minimum projected area diameter for the coarse particles was set at 1 m. The 167 

minimum projected area diameter for the fine particles was set at 0.1 m (Conner et al., 2001). The 168 

projected area was calculated from the two-dimensional projection of each particle. From the 169 

particle area, the projected area diameter was calculated. These size limits were set to minimize the 170 

amount of data acquired for non-particle features (e.g., filter substrate) at the magnifications used. 171 

All x-ray spectra were processed with INCA software (Oxford Instruments, Abingdon, U.K.), 172 

confirmed manually to correct for element omission or confusion, and checked to eliminate the 173 

contribution of the filter material (carbon and oxygen).  174 

A total of 25 to 50 individual particles per sample were analyzed in each sample. Therefore, a total 175 

of 618 particles were analyzed in sources from poultry houses for PM2.5, and 805 for PM10-2.5 176 

(including feed, feathers, manure, wood shavings, and outside source). A total of 317 particles were 177 
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analyzed in sources from pigs for PM2.5, and 337 for PM10-2.5 (including feed, manure, skin, and 178 

outside source). 179 

2.1.1. Feature extraction 180 

Particle chemical characteristics: Elemental data  181 

Elements with atomic number ≥ 6 (carbon) were obtained from elemental x-ray spectra for each 182 

particle in each source. All spectra were confirmed and checked manually to correct for the 183 

contribution of the filter material (carbon and oxygen). Based on chemistry, each particle was 184 

characterized by 25 elements: nitrogen (N), sodium (Na), magnesium (Mg), aluminium (Al), 185 

silicon (Si), phosphorus (P), sulphur (S), chlorine (Cl), potassium (K), calcium (Ca), iron (Fe), 186 

nickel (Ni), copper (Cu), zinc (Zn), silver (Ag), lead (Pb), tin (Sn), chromium (Cr), cobalt (Co), 187 

barium (Ba), bromide (Br), titanium (Ti), vanadium (V), antimony (Sb), and gold (Au). All 188 

elements were introduced in the expert system at once, because the decision tree approach can take 189 

into account correlation between variables, before applying rules. 190 

Particle morphological characteristics: Spectral, texture, and shape features 191 

The stored images (SEM photomicrographs of each field of view) were analyzed using the Object 192 

Based Image Analysis (OBIA) approach (Blaschke, 2010) using FETEX 2.0 Software (Ruiz et al., 193 

2011). All images were radiometrically corrected by background values to avoid spectral 194 

differences due to acquisition conditions and to equalize the background value to compare intensity 195 

values between images. Individual particles were defined by means of segmentation using 196 

thresholding. The OBIA software extracted both image and shape based features for each detected 197 

particle (object): spectral and texture features (image based), and morphological features (shape 198 

based).  199 

Spectral features provided information about the spectral response of particles through their grey 200 

level (intensity) properties. Texture features provided information about the spatial distribution of 201 

the intensity values in the image, giving information about heterogeneity, contrast, and rugosity of 202 

particles. These features were uniquely referred to an object, extracted from the group of pixels that 203 
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constituted a particle (Balaguer et al., 2010). Histogram-based (kurtosis and skewness) features and 204 

seven of the most commonly used texture features based on the grey level co-occurrence matrix 205 

proposed by Haralick et al. (1973) were extracted: contrast, uniformity, entropy, variance, 206 

covariance or product moment, inverse difference moment, and correlation. Entropy was used as a 207 

measure of information content, defined as the randomness of intensity distribution. Finally, also as 208 

texture features, the mean and the standard deviation of the edgeness factor, representing the 209 

density of edges present in the neighborhood of each pixel (Laws, 1985) were extracted. 210 

Morphological features provided information about the complexity in the shape of the particles. 211 

Particle projected area, perimeter, and ellipse semi-axis values were extracted. Based on ratios 212 

between the area and the perimeter of the particles, compactness (C) (equation 1) (Bogaert et al., 213 

2000), shape index (SI) (equation 2), and fractal dimension (FD) (equation 3) (Krummel et al., 214 

1987; McGarigal and Marks, 1995) were calculated. Based on morphological characteristics, each 215 

particle was characterized by 23 variables, summarized in Table 2.  216 

2

4

Perimeter

Area
C




            (1) 217 

Area

Perimeter
SI




4
          (2) 218 

 Area

Perimeter

FD
log

4
log

2










           (3) 219 

where:  220 

Perimeter is the length of the outline of a particle surrounding the area. 221 

Area is the surface of the particle. 222 

The most meaningful morphological descriptive features were selected before being introduced in 223 

the expert system to avoid redundancy and obtain an efficient object description. Correlation 224 

analysis was used to group and interpret the redundancies in the information provided by the 225 

analyzed morphological variables using SAS Software (2001). Correlation between the complete 226 
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set of variables was computed and analyzed. With this information, non-explanatory variables 227 

could be removed from the analysis. 228 

Table 2. List and description of morphological particle characteristics based on spectral, texture 229 

and shape features.  230 

Morphological 

feature 

Basis and description Variables 

Spectral Grey level intensity properties 

of particles 

Mean, standard deviation, minimum, 

maximum, and range of intensity  

Texture Histogram-based characteristics Skewness and kurtosis 

Based on the grey level co-

occurrence matrix 

Contrast, uniformity, entropy, variance, 

covariance or product moment, inverse 

difference moment, and correlation 

Density of edges present in the 

neighbourhood of each pixel 

Mean and the standard deviation of the 

edgeness factor 

Shape Particle length and size Area, perimeter, and ellipse semi-axis (axis A 

and B) 

Ratios between the area and the 

perimeter of the particles 

Compactness, shape index, and fractal 

dimension 

2.2. Expert system: User-defined classification rules 231 

We used a rule-generator expert system to create classification rules based on decision trees from 232 

the single-particle data from homogeneous known source samples. An expert system is software 233 

that simulates the judgment and behaviour of a human with expert knowledge and experience in a 234 

particular field (Jensen, 2005). For each livestock species (poultry and pigs) and in each scenario, 235 

chemical, morphological or combined characteristics were introduced in the system to generate 236 

rules.  237 

2.2.1. Rule generation based on decision trees 238 

The process of building a set of rules in the form of a decision tree worked by dividing data using 239 

mutually exclusive conditions until the newly generated subgroups were homogeneous, i.e. all the 240 

elements in a subgroup belonged to the same source or a stopping condition was fulfilled. Decision 241 

trees used a hierarchical structure to develop the set of rules for each particle belonging to a known 242 

reference source, using organized conditions such as greater than, less than, equal to, addition, and 243 

subtraction to search the variables and conditions for which it could best separate particles from 244 

one source from the others with the given input data. Decision trees were built using See 5 245 
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Software, using the C5.0 classification algorithm. The C5.0 algorithm manages several data types, 246 

such as continuous or discrete, thus it is the most widely used to deduce decision trees for 247 

classifying images (Zhang and Liu, 2004). To improve accuracy, the boosting multi-classifier 248 

method was used, where the final classification rule results from the weighed average of ten 249 

decision trees, where the next decision tree corrects from the errors of the previous one (Freund, 250 

1995).  251 

Classification rules based on decision trees were generated for each group of sources in a given 252 

livestock species (see sources in Table 1). Classification rules were generated separately for the 253 

different input data in each scenario, separately for poultry and pig sources, and separately for fine 254 

and coarse PM. Figure 3 shows an example of a decision tree. It is the first decision tree generated 255 

using chemical and morphological particle characteristics in pig sources for fine PM, using See 5 256 

Software.  257 

See5 [Release 2.03]  -------------------

Options:

Test requires 2 branches with >= 4 cases

Read 317 cases 

Decision tree:

P > 2.44:

:...Mg > 0.35: Manure (120/6)

:   Mg <= 0.35:

:   :...Si <= 1.98: Manure (4)

:       Si > 1.98: Feed (4)

P <= 2.44:

:...Al > 61.59: Outside (39/4)

Al <= 61.59:

:...MAX INTENSITY > 251:

:...MIN INTENSITY <= 70: Skin (11/4)

:   MIN INTENSITY > 70: Outside (17/3)

MAX INTENSITY <= 251:

:...CORRELATION > 0.96: Skin (12/3)

CORRELATION <= 0.96:

:...MEAN INTENSITY <= 137.85:

:...Ca <= 96.78: Feed (19/3)

:   Ca > 96.78:

:   :...ELLIPSE B <= 0.21: Feed (5)

:       ELLIPSE B > 0.21: Manure (5)

MEAN INTENSITY > 137.85:

:...N > 30.27: Manure (6/2)

N <= 30.27:

:...ENTROPY > 2.45: Feed (27/1)

ENTROPY <= 2.45:

:...S > 39.72: Outside (5/2)

S <= 39.72:

:...INVERSE DIFFERENCE MOMENT <= 0.29: Outside (5/1)

INVERSE DIFFERENCE MOMENT > 0.29: Feed (38/5)
 258 

Figure 3. Example of a set of rules in the form of a decision tree generated using chemical and 259 

morphological particle characteristics in pig sources for fine PM. Chemical and morphological 260 

variables are indicated on the left, whereas classes are indicated on the right. Each line represents a 261 
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condition (greater than, less than or equal to) within a rule. Each rule includes the conditions to be 262 

fulfilled by each class (i.e. manure, feed, outside, or skin). Numbers in parentheses next to each 263 

class (m/n) represent: m, the number of cases that fulfil the conditions within each rule; n (where 264 

indicated) the number of cases that do not fulfil the conditions within the rule.  265 

2.2.2. Validation of classification rules against known reference sources 266 

We used the jackknifing procedure (a form of leave-one-out-cross validation statistical method) to 267 

assess the accuracy of the classification rules and validate them against reference source data in 268 

each scenario. This method involves re-sampling data, by repeatedly applying the generated rules 269 

to the same sampled set of data used to create them. The jackkniffing procedure worked by leaving 270 

out a single observation at a time (one particle), generating rules for the rest of the particles, and 271 

then validating those rules against the left out particle observation. This was done for all 272 

observations. As a result from this validation, the accuracy of the classification and the degree of 273 

misclassification among sources was analyzed using error matrices or contingency tables (Aronoff, 274 

1982; Story and Congalton, 1986; Congalton, 1991).  275 

The error matrix was built by comparing the source assigned to each particle observation after the 276 

validation process with its reference source; and it presented the number of times a correct particle 277 

source assignment was made. These steps were essential to assess how well the classification rules 278 

fitted to the reference source data. Error matrices were also used to analyze the degree and 279 

direction of the most frequent misclassifications and to understand better and predict how the future 280 

classification of airborne on-farm samples would work when applying these classification rules to a 281 

mixture of unknown particles.  282 

As an example, the construction of the error matrix in a given scenario, for a given number of 283 

particles (N observations) from two sources (source 1 and 2), worked by classifying each 284 

observation into one of the sources, corresponding to one of the four cells in the error matrix (Table 285 

3). The classification rules would assign each particle observation into source 1 or 2 depending on 286 

its characteristics (input data), which vary depending on the scenario. In the example below, a, b, c, 287 

and d are the observed particle frequencies of source 1 and 2. They add up to the sample size (N). 288 



 14 

The sum of reference particles, the row total (nx), equals the frequency (total number of particles) 289 

actually belonging to each source. The sum of all classified particles, the column total (mx), equals 290 

the frequency (total number of particles) classified into each source after validation process. On the 291 

one hand, „a‟ equals the number of times a particle belonging to source 1 was correctly classified 292 

into source 1; „b‟ equals the number of times a particle from source 1 was misclassified into source 293 

2; analogously, „c‟ equals the number of times a particle belonging to source 2 was misclassified 294 

into source 1; and finally „d‟ equals the number of times a particle belonging to source 2 was 295 

correctly classified into source 2. In other words, the number of particles „b‟ should have been 296 

assigned to source 1; and the number of particles „c‟ should have been assigned to source 2. Cell 297 

„b‟ and „c‟ are related in the way that „b‟ represents the underestimation of source 1, as the number 298 

of particles omitted from source 1 and incorrectly assigned to source 2. Cell „c‟ represents the 299 

overestimation of source 1, as the number of particles from source 2 incorrectly assigned to source 300 

1.  301 

Table 3. Example of error matrix or contingency table for N observation and two sources. 302 

 Classified as  

Reference Source 1 Source 2 Row total (nx) 

Source 1 a b n1 

Source 2 c d n2 

Column total (mx) m1 m2 N=(a+b+c+d) 

Overall measure of accuracy was obtained by dividing the total correct validations in each source 303 

(diagonal cells in Table 3) by the total number of classified particles (N) (equation 4). 304 

Misclassifications were calculated as measures of underestimate and overestimate error, as the 305 

complementary function of accuracies. One minus the sum of the number of particles that have 306 

been incorrectly assigned to the reference source divided by the row total represented the 307 

underestimate error for each source the row represented (equation 5 and 6). One minus the sum of 308 

the number of particles that have been incorrectly assigned to the classified source divided by the 309 

column total represented the overestimate error for each source the column represented (equation 7 310 

and 8). To compare results and analyze under and over estimations, error matrices were 311 

standardized by the reference number of particles in each source (nx). This means that after 312 
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standardization n2 equals n1. The prediction accuracy of source apportionment was finally 313 

calculated dividing the column total (mx) by the row total (nx) for each source (equation 9 and 10). 314 

N
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)( 
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We also estimated error matrices and overall accuracies based on particle mass instead of particle 322 

numbers (frequency). We calculated the particle mass in each source, in each livestock species and 323 

PM fraction using the particle-by-particle masses. The overall accuracy was then obtained by 324 

dividing the mass from each correct validation in each source by the total mass of all classified 325 

particles. Misclassification errors (underestimate and overestimate) were also calculated in the 326 

same way as for particle numbers. The mass for each particle was calculated from the area and 327 

diameter provided by the SEM images, assuming a value for particle density. Density values of 1.2 328 

g cm
-3

 (feathers), 2.6 g cm
-3

 (feed), 1.5 g cm
-3

 (manure and wood shavings), 1.4 g cm
-3

 (skin), and 329 

2.1 g cm
-3

 (outside) were used (McCrone, 1992). Calculations in numbers and in mass were 330 

performed because as particles from each source can have different sizes and consequently 331 

different masses, the effect of correct classifications and misclassifications could differ. 332 

 333 
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 334 

 335 

3. Results  336 

3.1. Scenario 1: Particle classification based only on chemical composition 337 

Overall accuracies of the generated rules using particle chemical characteristics were slightly 338 

higher in pigs compared with poultry. Overall accuracies varied from 57 to 62% in poultry and 339 

from 64 to 68% in pigs, for PM2.5 and PM10-2.5.  340 

In poultry (Table 4), average misclassification errors ranged from 38 to 55%. In number of 341 

particles, manure source showed the lowest misclassification errors, being underestimate errors 342 

(from 9 to 15%) lower than overestimate errors (from 27 to 30%). Wood shavings source showed 343 

the highest misclassification errors, being underestimate errors (from 63 to 77%) higher than 344 

overestimate errors (from 37 to 44%). This means that 63 to 77% of particles from wood shavings 345 

were omitted from its reference source (underestimate error) and incorrectly assigned to other 346 

sources, but only 37 to 44% of particles from other sources were incorrectly assigned to wood 347 

shavings (overestimate error). The other sources presented similar underestimate and overestimate 348 

errors. Overall, misclassification errors were comparable in PM2.5 and PM10-2.5. Expressed in 349 

particle mass, outside source presented much higher underestimate and overestimate errors 350 

(ranging from 65 to 95%) than when expressed in number of particles, especially in PM10-2.5. In 351 

feed, overestimate errors also increased when expressed in mass, whereas in wood shavings, 352 

overestimate errors sharply decreased, especially in PM10-2.5. The rest of sources presented 353 

relatively similar figures when expressed in numbers compared with mass, showing a similar 354 

distribution between over and underestimate errors.  355 

In pigs (Table 5), average misclassification errors ranged from 24 to 51%. In particle numbers, all 356 

sources showed lower misclassification errors (ranging from 9 to 50%) compared with poultry, 357 

except for outside source in PM10-2.5 which presented a high underestimate error (83%). Manure 358 

showed the lowest misclassification errors. Both feed and manure sources showed higher 359 
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overestimate than underestimate errors; whereas skin and outside sources showed higher 360 

underestimate than overestimate errors for PM2.5 and PM10-2.5. Expressed in particle mass, 361 

manure presented no difference in over and underestimate errors. The other sources, however, 362 

presented differences in the distribution between over and underestimate errors, especially between 363 

PM2.5 and PM10-2.5. This is the case of feed, which presented higher over and underestimate 364 

errors in particle mass compared with particle numbers only in PM10-2.5; and also the case of skin, 365 

which presented higher overestimate errors when expressed in mass in PM10-2.5; and outside 366 

source which presented lower overestimate errors in both fractions when expressed in particle mass 367 

compared with particle numbers. 368 

Table 4. Underestimate error (UE) and overestimate error (OE) per source and average, in 369 

percentage (%) per particle number and mass, for poultry, for PM2.5 and PM10-2.5, using only 370 

particle chemical composition. 371 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

UE OE UE OE UE OE UE OE 

Feathers 30.8 54.6 23.7 48.8 25.7 42.3 29.4 32.0 

Feed 55.3 41.3 77.1 74.4 45.1 45.7 49.2 67.0 

Manure 14.7 29.9 8.2 38.7 8.6 26.6 6.0 40.7 

Wood shavings 76.6 44.0 86.5 48.9 62.8 37.1 52.3 12.1 

Outside 37.7 42.4 70.3 65.2 45.8 37.4 95.0 83.2 

Average 43.0 42.4 53.2 55.2 37.6 37.8 46.4 47.0 

Table 5. Underestimate error (UE) and overestimate error (OE) per source and average, in 372 

percentage (%) per particle number and mass, for pigs, for PM2.5 and PM10-2.5, using only 373 

particle chemical composition. 374 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

UE OE UE OE UE OE UE OE 

Feed 31.0 48.4 37.2 43.5 20.6 50.4 81.4 80.8 

Manure 8.9 20.6 9.8 30.7 9.6 30.2 8.6 41.6 

Skin 47.4 12.1 36.5 2.7 32.3 20.0 43.0 51.2 

Outside 39.7 34.1 24.5 19.1 83.0 34.0 72.0 6.5 

Average 31.7 28.8 27.0 24.0 36.3 33.6 51.3 45.0 
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3.2. Scenario 2: Particle classification based only on morphological characteristics  375 

Overall accuracies of the generated rules using particle morphological characteristics were higher 376 

in pigs compared with poultry, and lower than in scenario 1, especially in poultry. Overall 377 

accuracies varied from 40 to 59% in poultry and from 63 to 64% in pigs, for PM2.5 and PM10-2.5. 378 

In poultry (Table 6), average misclassification errors ranged from 37 to 61%. In number of 379 

particles, all sources showed similarly high errors, which were only remarkably lower for manure 380 

in PM10-2.5 (only underestimate error), and for wood shavings and outside source also in PM10-381 

2.5 (overestimate errors). Feed showed higher misclassification errors in PM2.5 (from 72 to 86%) 382 

than in PM10-2.5. Expressed in particle mass, outside source showed higher underestimate errors 383 

than in number of particles. Particle mass from feed and outside sources showed especially high 384 

underestimate errors in PM2.5 (86 to 93%), but also high overestimate error (96%) in outside 385 

source in PM10-25.  386 

In pigs (Table 7), average misclassification errors ranged from 33 to 57%. In number of particles in 387 

PM2.5 and PM10-2.5, misclassification errors were lower than in poultry. Manure source showed 388 

the lowest underestimate errors (from 13 to 15%) but presented high overestimate errors (from 42 389 

to 48%), consequently showing more particles from other sources incorrectly assigned to manure 390 

source. On the contrary, skin source showed the lowest overestimate errors (2 to 5%). Overall, feed 391 

and outside sources showed the highest misclassification errors. In particle mass, feed and outside 392 

source showed generally higher misclassification errors than in number of particles. Underestimate 393 

errors of feed and outside were much higher (from 77 to 97%) compared with overestimate errors 394 

(from 20 to 61%), being these remarkably high (82%) in outside source in PM10-2.5. Skin source 395 

showed totally different results in mass compared with numbers, showing higher overestimate (37 396 

to 46%) than underestimate errors (0.5 to 2%) in mass.  397 

Table 6. Underestimate error (UE) and overestimate error (OE) per source and average, in 398 

percentage (%) per particle number and mass, for poultry, for PM2.5 and PM10-2.5, using only 399 

morphological characteristics.  400 
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Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

UE OE UE OE UE OE UE OE 

Feathers 53.5 67.4 35.6 68.0 34.9 54.5 12.9 50.5 

Feed 85.9 72.3 85.8 30.3 47.4 36.5 54.5 65.3 

Manure 36.5 56.9 36.8 58.5 15.6 43.4 16.3 36.6 

Wood shavings 68.8 43.5 53.9 58.6 59.0 23.0 61.5 31.0 

Outside 54.4 56.0 92.6 50.4 48.6 28.1 96.3 28.6 

Average 59.8 59.2 60.9 53.1 41.1 37.1 48.3 42.4 

Table 7. Underestimate error (UE) and overestimate error (OE) per source and average, in 401 

percentage (%) per particle number and mass, for pigs, for PM2.5 and PM10-2.5, using only 402 

morphological characteristics. 403 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

UE OE UE OE UE OE UE OE 

Feed 46.0 48.0 87.1 60.9 41.2 43.9 85.8 56.4 

Manure 14.8 41.9 16.8 46.3 13.4 48.2 9.9 53.6 

Skin 21.1 5.4 1.6 46.4 19.4 2.4 0.5 36.8 

Outside 63.5 44.6 77.3 20.3 72.3 39.2 97.1 81.6 

Average 36.3 35.0 45.7 43.5 36.6 33.4 48.3 57.1 

3.3. Scenario 3: Particle classification using combined data set (both chemical and 404 

morphological characteristics) 405 

Overall accuracies of the generated rules using both chemical and morphological characteristics 406 

were higher in pigs compared with poultry, and higher than in scenario 2. Overall accuracies varied 407 

from 58 to 68% in poultry and from 72 to 78% in pigs, for PM2.5 and PM10-2.5.  408 

In poultry (Table 8), average misclassification errors ranged from 30 to 42%. In number of 409 

particles, most sources showed misclassification errors varying from 25 to 60% in PM2.5 and 410 

PM10-2.5, except for manure source. Manure source showed the lowest misclassifications, and 411 

presented higher overestimation errors (from 23 to 26%) than underestimate errors (from 6 to 412 

15%). Wood shavings source showed the highest misclassification errors showing much higher 413 

underestimate errors (from 60 to 77%) than overestimate errors (from 18 to 44%). In particle mass, 414 

misclassification errors for wood shavings source in PM10-2.5 were lower compared with number 415 

of particles. In particle mass, outside source presented very high underestimate error (96%) in 416 

PM10-2.5. For the rest of sources, misclassifications results were generally comparable in particle 417 

mass and in number. 418 
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In pigs (Table 9), average misclassification errors ranged from 21 to 30%. In number of particles, 419 

all sources except for outside source in PM10-2.5 showed low misclassifications expressed as low 420 

underestimate and overestimate errors (ranging from 7 to 45%) in PM2.5 and PM10-2.5. In particle 421 

mass, skin source showed much higher overestimate errors (from 23 to 31%) than underestimate 422 

errors (1%). Mass of skin followed the same trend as in scenario 2, presenting opposite results in 423 

number of particles compared with mass as regards over and underestimation. For other sources, 424 

results were generally comparable in particle mass and in number. 425 

Table 8. Underestimate error (UE) and overestimate error (OE) per source and average, in 426 

percentage (%) per particle number and mass, for poultry, for PM2.5 and PM10-2.5, using 427 

combined chemical and morphological characteristics.  428 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

UE OE UE OE UE OE UE OE 

Feathers 29.1 53.2 18.0 58.7 24.8 44.5 11.2 32.1 

Feed 49.4 39.3 49.2 13.1 27.1 34.7 43.4 60.1 

Manure 15.3 26.0 10.9 23.5 5.9 23.4 5.3 22.3 

Wood shavings 76.6 43.7 71.3 40.5 60.3 17.9 23.7 20.7 

Outside 38.6 43.7 30.4 11.2 43.0 30.1 95.7 53.4 

Average 41.8 41.2 36.0 29.4 32.2 30.1 35.9 37.7 

Table 9. Underestimate error (UE) and overestimate error (OE) per source and average, in 429 

percentage (%) per particle number and mass, for pigs, for PM2.5 and PM10-2.5, using combined 430 

chemical and morphological characteristics. 431 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

UE OE UE OE UE OE UE OE 

Feed 25.0 35.4 45.3 32.6 10.8 45.3 65.8 49.2 

Manure 8.9 19.0 11.1 34.1 7.0 18.5 6.4 13.4 

Skin 21.1 6.5 0.5 22.9 22.6 6.9 0.5 30.7 

Outside 33.3 23.3 52.6 13.7 70.2 24.7 39.0 24.8 

Average 22.1 21.1 27.4 25.8 27.7 23.9 27.9 29.5 

4. Discussion 432 

Our results showed that overall accuracies ranged from 40% to 79%. Overall accuracies were 433 

higher when using only particle chemical characteristics (scenario 1) compared with scenario 2 434 

(morphological characteristics); whereas the highest accuracies were obtained using scenario 3 435 

(combined chemical and morphological characteristics). This indicates that PM from livestock 436 
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houses comprises a wide range of particle types not only between but also within sources, which 437 

makes it difficult to find a single feature (based on chemical or morphological characteristics only) 438 

that can distinguish one source from the rest as a rule of thumb. Results in scenario 3 showed 439 

higher overall accuracies and lower misclassification errors compared with the other scenarios. In 440 

this scenario, the classification rules could search for the best criteria for classification from a wider 441 

range of options, using chemical characteristics when sources were more similar morphologically, 442 

and morphological characteristics when sources were more similar chemically. Therefore, the 443 

selection of the best input data can vary depending on the sources, which depend on livestock 444 

species. Our results showed each scenario performed differently in poultry compared with pigs, 445 

suggesting livestock species can be a variation factor in the selection of particle characteristics. In 446 

our study, only feed, manure, and outside source were common in poultry and pig tests.  447 

In poultry, higher accuracy and lower misclassifications were observed in scenario 1 compared 448 

with scenario 2, while in pigs scenario 1 and 2 performed more similarly. These results indicate 449 

that most sources in poultry houses are best differentiated by their chemical composition instead of 450 

by their morphological characteristics. This could be influenced by the strong presence of P and K 451 

in particles from manure in poultry compared with other sources (Schneider et al., 2001; Cambra-452 

López et al., 2011b). This results in a more homogeneous element composition of manure from 453 

poultry, compared with its diverse and complex morphology. The higher misclassification errors in 454 

scenario 2 compared with scenario 1 for the manure source in poultry, could be explained by the 455 

existence of two types of manure particles from poultry‟s excreta. Feddes et al. (1992) reported the 456 

presence of these two morphological types of particles in poultry excreta: rounded spheres from 3 457 

to 8 µm in diameter, and other less rounded and more irregular fecal particles in turkeys.  458 

Furthermore, particle size could also explain the high misclassification errors in scenario 2 in 459 

poultry compared with scenario 1. Cambra-López et al. (2011b) reported a smaller range for 460 

particle size (expressed as projected area diameter) in particles from poultry sources than from pig 461 

sources. For instance, average particle‟s diameter of feathers, feed, manure, wood shavings, and 462 

outside was shown to vary between 2.1 and 5.9 µm; whereas particles from skin and hair (only 463 
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present in pigs) can show diameters two-fold to three-fold higher. This could also be the reason 464 

why feed and outside sources generally presented higher misclassification errors in scenario 2 465 

compared with scenario 1 (especially in poultry), and higher in PM2.5 than in PM10-2.5. These 466 

two sources have been reported to show irregular and angular morphologies and similar size and 467 

size distributions (Cambra-López et al., 2011b). Moreover, our results show that size-only is not a 468 

recommendable variable to distinguish amongst most sources in livestock houses, because particles 469 

from different sources can be found in the same size ranges. Size can only be useful to distinguish 470 

amongst sources when one source with large particles (e.g. skin) with distinctive and well defined 471 

individual particle morphology, wants to be distinguished from the rest. Nevertheless, the accuracy 472 

of sizing particles using SEM can be reduced, as particles deviate from spheres (Willis et al., 2002). 473 

In our study, most particles showed irregular shapes, particles would impact on the filter in their 474 

most stable orientation, generally exposing the largest dimension on the filter plane. Moreover, the 475 

projected area diameter calculated from the particle area in this study, could be influenced by the 476 

projected area diameter being the diameter in the two-dimensional view, parallel to the plane of the 477 

filter; and the differences between geometric diameter and aerodynamic diameter.  478 

Despite these limitations, the observed differences in misclassification errors between particle 479 

numbers and particle mass indicate two facts: (i) in sources showing small particles (e.g. feed and 480 

outside), large particles are more frequently misclassified into other sources than small particles; 481 

and (ii) in sources showing large particles (e.g. skin), small particles are more frequently 482 

misclassified into other sources than large particles. This could be seen in the higher underestimate 483 

errors in mass compared with numbers for sources showing generally small particles (feed and 484 

outside). Furthermore, our results indicate that these misclassified particles (from feed and outside) 485 

were incorrectly assigned to sources showing large particles (such as skin), suggested by the higher 486 

overestimate errors in mass compared with numbers for skin source. Sources showing large particle 487 

masses (such as feathers and wood shavings in poultry, and especially skin in pigs) presented 488 

higher overestimate than underestimate errors in mass compared with numbers suggesting it was 489 

probably small particles which had little influence on the mass which were misclassified. In mass, 490 
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the effect of one single misclassification of a large particle could have more effect than a 491 

misclassification of a small particle, expressed in number. Nevertheless, to improve the 492 

understanding of misclassification and their influence in particle mass, the selection of particles 493 

should have been focused on coarse particles, and not on the whole size range as in this study.  494 

The main objective of this study was to develop a methodology to investigate which input data 495 

(particle chemical, morphological or combined characteristics) were more appropriate to 496 

distinguish amongst specific sources of airborne PM in livestock houses. This can help to improve 497 

the knowledge on the most cost-effective input data to use. Our results suggest that this can depend 498 

on which source to apportion. When identification and quantification of the contribution of all 499 

individual sources to PM concentrations and emissions in livestock houses is the objective, a 500 

combination of chemical and morphological characteristics give high accuracies. However, 501 

obtaining complete particle characterization is time consuming and manual SEM-EDX single-502 

particle analysis is laborious and expensive. Our results suggest that when only few sources want to 503 

be distinguished from the rest, the use of particle chemical or morphological particle characteristics 504 

as separate input data could yield acceptable results. However, this can only be applied in specific 505 

cases. For instance, if particles from manure want to be distinguished from the rest of sources, the 506 

use of only chemical particle characteristics would result in 70 to 91% of manure particles being 507 

correctly classified. If skin wants to be distinguished from the rest of sources as in pig houses, then 508 

the use of only morphological particle characteristics would result in 79 to 98% of skin particles 509 

being correctly classified. To distinguish feed from the rest of sources, which might be of interest 510 

when evaluating the effect of certain reduction techniques which focus on “low-dust” feeding 511 

systems (Dawson, 1990; Nannen et al., 2005; Costa et al., 2007), according to our results, either 512 

using particle chemical characteristics or combined combination of particle chemical and 513 

morphological characteristics would result in 45 to 89% of particles from feed being correctly 514 

classified. To make a general recommendation for future studies, Table 10 presents a list of the 515 

sources analyzed in this study and the recommended scenario (lowest misclassification errors) 516 

according to our results. When misclassification errors differ between scenarios, recommendations 517 
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are straightforward. However, when misclassification errors are similar (less than 5% difference) 518 

amongst scenarios for a given source (for instance in feathers, manure or skin source), more than 519 

one scenario can be recommended.  520 

Nevertheless, based on our results, to apportion all individual sources to PM concentrations and 521 

emissions in livestock houses, we would recommend the use of combined chemical and 522 

morphological particle characteristics (scenario 3). In this scenario, an average overall accuracy of 523 

69% (standard deviation of 6%) for particle number and mass in PM2.5 and PM10-2.5 was 524 

obtained. In other words, on average 69% of particles belonging to a mixture of sources were 525 

correctly assigned to their reference source based on their chemical and morphological 526 

characteristics. This accuracy can be considered reasonable because it implies that only about 30% 527 

of the particles would be misclassified and incorrectly apportioned. The implications for source 528 

apportionment in livestock houses of this misclassification value are low, because the main aim of 529 

source apportionment in livestock houses is to provide knowledge on most important sources 530 

which can be used to develop new PM reduction techniques and optimize the existing ones. 531 

Therefore, this level of accuracy would be sufficiently high and would allow obtaining the overall 532 

picture of the major or dominant sources of PM in livestock houses. 533 

Table 10. Check list of recommended scenario for particle identification from different sources.  534 

Source 

Scenario 1 

Particle chemical 

characteristics 

Scenario 2 

Particle 

morphological 

characteristics  

Scenario 3 

Combined chemical and 

morphological particle 

characteristics 

Feathers X  X 

Feed   X 

Manure X  X 

Skin  X  X 

Wood shavings   X 

Outside   X 

Error matrices in this study were used to analyze the degree and direction of the most frequent 535 

misclassifications. Our results indicate that when applying classification rules to airborne on-farm 536 

samples, certain sources could be systematically under or overestimated. Table 11 and Table 12 537 

summarize the estimated under or overestimation for each source in poultry and pigs for the 538 

recommended scenario 3, derived from Table 8 and Table 9. Although errors are inherent to all 539 



 25 

calculations, the results presented in this study can be used in such a way that under and 540 

overestimation errors can be better understood and corrected using these figures, taking into 541 

account, that in real conditions, the final under or over estimation will depend on the contribution 542 

of each source to the airborne PM sample. 543 

Table 11. Prediction accuracy of source apportionment for poultry based on underestimate and 544 

overestimate errors when using scenario 3. 545 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

Feathers 1.5 2.0 1.4 1.3 

Feed 0.8 0.6 1.1 1.4 

Manure 1.1 1.2 1.2 1.2 

Wood shavings 0.4 0.5 0.5 1.0 

Outside 1.1 0.8 0.8 0.1 

Table 12. Prediction accuracy of source apportionment for pigs based on underestimate and 546 

overestimate errors when using scenario 3.  547 

Reference source PM2.5 PM10-2.5 

Number Mass Number Mass 

Feed 1.2 0.8 1.6 0.7 

Manure 1.1 1.4 1.1 1.1 

Skin 0.8 1.3 0.8 1.4 

Outside 0.9 0.6 0.4 0.8 

5. Conclusions 548 

From our work using feathers, feed, manure, wood shavings, and outside PM sources in poultry, 549 

and feed, manure, skin, and outside PM sources in pigs, we can conclude that: 550 

 The selection of the most appropriate particle characteristics (chemical, morphological or 551 

combined morpho-chemical characteristics) to distinguish amongst particles from different 552 

sources in livestock houses depends on the sources, which depend on livestock species. 553 

 Using only particle chemical characteristics results in overall classification accuracies 554 

varying from 57 to 62% in poultry and from 64 to 68% in pigs; it can be useful to 555 

apportion specific sources such as manure from the rest. In this case, the use of only 556 

chemical particle characteristics would result in 70 to 91% of manure particles being 557 

correctly classified.  558 
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 Using only particle morphological characteristics results in overall accuracies varying from 559 

40 to 59% in poultry and from 63 to 64% in pigs; it can add value to using only chemical 560 

characteristics when sources show distinctive and well defined individual particle 561 

morphology or differ in size.  562 

 Using combined chemical and morphological particle characteristics results in overall 563 

accuracies varying from 58 to 68% in poultry and from 72 to 78% in pigs (average 69%); it 564 

is the recommended approach to apportion all individual sources to PM concentrations and 565 

emissions in livestock houses.  566 

 This study provides a methodological approach to assess input data and identifies the most 567 

effective characteristics to apportion PM in livestock houses. These data are promising to 568 

determine the contribution of different sources to PM in livestock houses. Results in this 569 

study also give insight in under and overestimation errors in the source apportionment. 570 
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