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Abstract

Let A be a rank deficient square matrix. We characterize the unique full rank
Cholesky factorization LAL

T
A of A where the factor LA is a lower echelon ma-

trix with positive leading entries. We compute an extended decomposition for
the normal matrix BTB where B is a rectangular rank deficient matrix. This
decomposition is obtained without interchange of rows and without computing
all entries of the normal matrix. Algorithms to compute both factorizations are
given.
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1. Introduction

A well-known factorization for a symmetric positive definite matrix A ∈
Rm×m is the Cholesky factorization [5]. If A is symmetric positive semidefinite,
this factorization can not be computed because there are null pivots. Neverthe-
less, if rank(A) = r, then there exists at least one lower triangular matrix L with
nonnegative diagonal entries, such that, A = LLT , and there is a permutation
matrix Π, such that, ΠTAΠ has a unique Cholesky factorization, which takes
the form

ΠTAΠ = LLT , L =

[
L11 O
L21 O

]
,

where L11 is an r× r lower triangular matrix with positive diagonal entries [7].
In this work we compute, without interchange of rows and columns, the

unique Cholesky factorization of A = LAL
T
A where LA ∈ Rm×r is a lower

echelon matrix with positive leading entries. We call this factorization the full
rank Cholesky factorization of A.
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We can use this factorization for the normal equations of a rectangular ma-
trix. Direct and iterative solution methods for linear least-squares problems
have been studied in Numerical Linear Algebra, see [1, 2, 3, 5, 6] and references
therein. Part of the difficulty is the fact that many methods solve the system
by implicitly solving the normal equations

ATAx = AT b, (1)

with A ∈ Rn×m and b ∈ Rm.
The standard methods for solving (1) are based on the Cholesky factorization

when A has full column rank [2]. In this case, ATA is a positive definite matrix
and the Cholesky factorization is unique [5]. We consider the problem when A
is a rank deficient matrix, i.e., rank(A) = r < min{n,m} and we compute the
full rank Cholesky factorization of the normal matrix ATA without doing the
complete product of ATA. This means that when the matrix A is rank deficient
then not all of the entries of ATA are computed and ATA is never stored. We
give a bound of the elements that must be computed of the product matrix
ATA.

Recall that a matrix is an upper echelon matrix if it satisfies that the first
nonzero entry in each row is called leading entry for that row, each leading entry
is to the right of the leading entry in the row above it and all zero rows are at the
bottom. If, in addition, the matrix satisfies that each leading entry is the only
nonzero entry in its column it is called upper reduced echelon matrix. A matrix
is a lower (reduced) echelon matrix if its transpose is an upper (reduced) echelon
matrix. Moreover, if each leading entry is equal to 1, we add the adjective unit
to these definitions.

The paper is organized as follows, in Section 2 we define the full rank
Cholesky factorization for square symmetric positive semidefinite matrices and
we prove the existence and the uniqueness of this decomposition and in Section
3, given a rectangular matrix A, we obtain the full rank Cholesky factorization
of ATA without doing the complete product of both matrices. The algorithms
for computing these factorizations are presented with their computational cost.

2. The full rank Cholesky factorization for rank deficient matrices

In this section we prove the existence of the full rank Cholesky factoriza-
tion for square symmetric positive semidefinite matrices that we define in the
following definition.

Definition 1. Let A ∈ Rm×m be a symmetric positive semidefinite matrix with
rank(A) = r < m. We call A = LAL

T
A the full rank Cholesky factorization of A

where LA = (lij) ∈ Rm×r is a lower echelon matrix with all the leading entries
for each column positive. The matrix LA is called the lower echelon Cholesky
factor of A.

Theorem 1 proves the existence of the full rank Cholesky factorization of
A ∈ Rm×m using the quasi-Gauss elimination process with no pivoting [4].
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We can suppose, without lost of generality, that A has no zero rows or columns.
Otherwise, if the zero rows of A, and the zero columns by symmetry, are indexed
by {i1, i2, . . . , is} ⊆ {1, 2, . . . ,m}, using the matrix denoted by I{i1,i2,...,is} ∈
R(m−s)×m and obtained from the m ×m identity matrix without the rows in-
dexed by i1, i2, . . . , is, we construct the matrix Ā with no zero rows and columns,

Ā = I{i1,i2,...,is}A
(
I{i1,i2,...,is}

)T ∈ R(m−s)×(m−s). Now, if Ā = LĀL
T
Ā

is full
rank Cholesky factorization of Ā, then the full rank Cholesky factorization of A

is given by A = LAL
T
A with LA =

(
I{i1,i2,...,is}

)T
LĀ.

Theorem 1. Let A ∈ Rm×m be a symmetric positive semidefinite matrix, with-
out zero rows and columns and with rank(A) = r < m. Then, there is a unique
lower echelon matrix LA = (lij) ∈ Rm×r with all the leading entries for each
column positive and such that A = LAL

T
A.

Proof. Since A is symmetric positive semidefinite, the Gaussian elimination
pivots pi are nonnegative, i = 1, 2, . . . ,m. Since rank(A) = r, then there are
r positive pivots. Suppose that we can apply the Gaussian elimination process
with no pivoting until the k-iteration and the (k+1)-pivot is zero, then we have

Mk . . .M1A = A(k) =

p1 a
(k)
1,2 . . . a

(k)
1,k a

(k)
1,k+1 a

(k)
1,k+2 . . . a

(k)
1,m

p2 . . . a
(k)
2,k a

(k)
2,k+1 a

(k)
2,k+2 . . . a

(k)
2,m

. . .
...

...
...

...

pk a
(k)
k,k+1 a

(k)
k,k+2 . . . a

(k)
k,m

0 a
(k)
k+1,k+2 . . . a

(k)
k+1,m

a
(k)
k+1,k+2 a

(k)
k+2,k+2 . . . a

(k)
k+2,m

...
...

...

a
(k)
k+1,m a

(k)
k+2,m . . . a

(k)
m,m


,

where Mj is the Gauss transformation, for j ∈ {1, . . . , k} [5]. Since the element

a
(k)
k+1,k+1 = 0, by [5, Theorem 4.2.6] the entries a

(k)
k+1,j = 0 for j = k + 2, k + 3,

. . . ,m. Then, we construct the matrix A(k+1) = I{k+1}A(k) ∈ R(m−1)×m, that
is,

A(k+1) = I{k+1}A(k) = I{k+1}Mk . . .M1A =

p1 a
(k+1)
1,2 . . . a

(k+1)
1,k a

(k+1)
1,k+1 a

(k+1)
1,k+2 . . . a

(k+1)
1,m

p2 . . . a
(k+1)
2,k a

(k+1)
2,k+1 a

(k+1)
2,k+2 . . . a

(k+1)
2,m

. . .
...

...
...

...

pk a
(k+1)
k,k+1 a

(k+1)
k,k+2 . . . a

(k+1)
k,m

0 a
(k+1)
k+2,k+2 . . . a

(k+1)
k+2,m

...
...

...

0 a
(k+1)
k+2,m . . . a

(k+1)
m,m


∈ R(m−1)×m
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Now, we continue with this process to obtain the upper echelon matrix
A(m) ∈ Rr×m such that

A = (A(m))TA(m) = LAL
T
A

Uniqueness follows from the quasi-Gauss elimination process with no pivoting
(see [4]). �

This result allow us to present an algorithm for computing the lower echelon
Cholesky factor LA of a symmetric positive semidefinite matrix A. If A has
full rank, this algorithm computes the Cholesky factorization associated with a
symmetric definite positive matrix.

Algorithm 1. (Full rank Cholesky factorization for a symmetric positive semide-
finite square matrix (by rows)). Let A = (aij) ∈ Rm×m be a symmetric positive
semidefinite matrix. This algorithm computes the full rank Cholesky factoriza-
tion of A = LAL

T
A with LA = (lij), the rank of A and the row vector c = (cj)

with the indices of the linearly independent columns of A.

Input: A ∈ Rm×m

(LINE 1) l1,1 :=
√
a1,1; r := 1; counter := 0; c := [1];

(LINE 2) for i = 2, 3, . . . ,m
(LINE 3) for j = 1, 2, . . . , i− counter − 1

(LINE 4) li,j :=
ai,cj

−
∑j−1

t=1 lcj,tli,t

lcj,j
;

(LINE 5) endfor

(LINE 6) var :=
√
ai,i −

∑i−counter−1
t=1 l2i,t;

(LINE 7) if var = 0 then
(LINE 8) counter := counter + 1
(LINE 9) elseif
(LINE 10) li,i−counter := var;
(LINE 11) c := [c i];
(LINE 12) r := r + 1;
(LINE 13) endif
(LINE 14) endfor

Output: LA ∈ Rm×r, r = rank(A) and c

We put attention to line 7 of this algorithm because if it is worked with
finite precision the comparative with zero will produce instability in the process.
Therefore, the comparative in this line should be made with a certain tolerance
in order to define an stopping criterion.

The computational cost of Algorithm 1 is given in the following proposition,
where we use the notation O of Landau; the notation O(n) denotes a quantity
γ such that |γ| ≤ Cn for some constant C > 0.

Proposition 1. Let A ∈ Rm×m with rank(A) = r < m. Algorithm 1 computes
the elements of the lower echelon matrix LA ∈ Rm×r such that r is equal to the
rank of A and the computational cost is O(mr2 − 2

3r
3).
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Proof. The computational cost of Algorithm 1 is analyzed to compute the
maximum floating point operations that could been made in the worst case,
that is, when the first r columns of A are linearly independent. In this case, the
pivots are in positions (i, i), for i = 1, 2, . . . , r, and the factor LA can be written
as follows:

LA =



l1,1 0 · · · 0 0
l2,1 l2,2 · · · 0 0
...

...
. . .

...
...

lr−1,1 lr−1,2 · · · lr−1,r−1 0
lr,1 lr,2 · · · lr,r−1 lr,r
...

...
...

...
lm,1 lm,2 · · · lm,r−1 lm,r


.

The following table gives all the floating point operations,

Elements + × ÷ √
Total

l1,1 0 0 0 1 1

li,1 for i = {2, . . . ,m} 0 0 1 0 m− 1

li,j for i = {3, 4, . . . , r} j − 1 j − 1 1 0
r3

3
− r2

2
− 5r

6
+ 1

and j = {2, . . . , i− 1}

li,j for i = {r + 1, . . . ,m} j − 1 j − 1 1 0 (m− r)(r2 − 1)
and j = {2, . . . , r}

li,i for i = {2, 3, . . . , r} i− 1 i− 1 0 1 r2 − 1

li,i for i = {r + 1, . . . ,m} r r 0 1 (m− r)(2r + 1)

Comparations m− 1

Table 1: Maximum floating point operations for computing LA by Algorithm 1

Then, the total computational cost T (m, r) can be described as follows,

T (m, r) = mr2 + 2mr + 2m− 2

3
r3 − 3

2
r2 − 5

6
r − 1.

Hence, the Algorithm 1 has order O(mr2 − 2
3r

3). �
Remark 1. The order of Algorithm 1 is equal to the classic Cholesky facto-
rization for a symmetric positive definite matrix A ∈ Rm×m. Nevertheless, if
r ≪ m, that is, if r is much smaller than m, then the total computational cost
is significantly reduced.
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3. The full rank Cholesky factorization for the normal matrix

Now we consider the rectangular case, that is, let A ∈ Rn×m be a rank
deficient matrix without zero rows and columns with rank(A) = r < min{n,m}.
In this case, ATA ∈ Rm×m is a symmetric positive semidefinite matrix and by
Theorem 1 we can obtain the full rank Cholesky factorization of ATA with no
pivoting, that is, ATA = LATAL

T
ATA with LATA ∈ Rm×r lower echelon matrix

with all the leading entries for each column positive. Frow now on and for
simplicity we denote by L = LATA.

The main problem to construct the full rank Cholesky factorization of ATA
consists of doing the product of both matrices. Therefore, our main goal is to
obtain the full rank Cholesky factorization of ATA without the need to compute
all elements of the matrix ATA explicitly. First, we consider that A has full
column rank and then we extend this result to rank deficient matrices.

Theorem 2. Let A ∈ Rn×m be a full column rank matrix, then the elements of
the lower triangular Cholesky factor L = (li,j) ∈ Rm×m of ATA can be obtained
as follows:

• l21,1 = ∥A1∥2

• For i = 2, . . . ,m

li,j =
⟨Ai, Aj⟩ −

∑j−1
k=1 lj,kli,k

lj,j
for j = 1, 2, . . . , i− 1

l2i,i = ∥Ai∥2 −
i−1∑
k=1

l2i,k

where Ai denotes the i-th column of A, i = 1, 2, . . . ,m, and the norm ∥ · ∥ is the
Euclidean norm associated with the inner product ⟨·, ·⟩.

Proof. Since A ∈ Rn×m has full column rank, then ATA ∈ Rm×m is a sym-
metric positive definite matrix and it admits a unique Cholesky factorization:

ATA = LLT , L ∈ Rm×m,

where L is a lower triangular matrix with positive diagonal entries. Then,

∥Aei∥2 = eTi A
TAei = eTi LL

T ei = ∥LT ei∥2

with ei the i-th canonical vector of Rm, i = 1, 2, . . . ,m. That is,

∥Ai∥2 =

i∑
t=1

l2i,t

and therefore

l2i,i = ∥Ai∥2 −
i−1∑
t=1

l2i,t.
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Using the fact that ⟨Ai, Aj⟩ = ⟨Ltei, L
tej⟩ =

∑j−1
k=1 lj,kli,k + lj,jli,j for i = 2,

. . . ,m, j = 1, 2, . . . , i− 1, then the elements li,j can be written as follows,

li,j =
∥Ai +Aj∥2 − ∥Ai∥2 − 2

∑j−1
k=1 lj,kli,k − ∥Aj∥2

2lj,j
=

⟨Ai, Aj⟩ −
∑j−1

k=1 lj,kli,k
lj,j

.

�

Proposition 2. Let A ∈ Rn×m with rank(A) = r < min{n,m}. Then, the
unique lower echelon matrix with positive leading entries and full column rank
L ∈ Rm×r, such that, ATA = LLT can be obtained without directly computing

the complete product of ATA, i.e., only in the worst case (2m−r)(r+1)
2 elements

of the matrix ATA are computed.

Proof. Since A ∈ Rn×m does not have full column rank, then ATA ∈ Rm×m

is a symmetric positive semidefinite matrix and by Theorem 1 admits a unique
lower echelon matrix L = (li,j) ∈ Rm×r with all the leading entries for each
column positive, such that, ATA = LLT .

Now, we apply Theorem 2 to obtain the elements of L. Since A does not
have full column rank, there exists k, 1 < k ≤ m, such that, lk,k = 0. By
Proposition 1, the entries lj,k = 0, for j = k+1, . . . ,m and this column will not
belong to L. In fact, there are m− r indices {k1, . . . , km−r} ⊂ {1, . . . ,m} such
that lki,ki = 0 given the echelon form of L. When the first r columns of the
matrix A are linear independent, it is the case when it is necessary to compute
more elements of the matrix ATA. In this case, the quantity of inner products

⟨Ai, Aj⟩ is m+ (m− 1) + · · ·+ (m− r + 1) = (2m−r)(r+1)
2 . �

The last results allow us to describe an algorithm for computing the full rank
Cholesky factorization for the normal matrix ATA, without doing the complete
product of the two matrices, for any rectangular matrix A with no zero rows
and columns.

Algorithm 2. (The full rank Cholesky factorization for the normal matrix (by
rows)). Let A = [A1, . . . , Am] ∈ Rn×m. This algorithm computes the full rank
Cholesky factorization of ATA = LLT with L = (li,j), the rank of A and the
row vector c = (cj) with the indices of the linearly independent columns of A.

Input: A ∈ Rn×m

(LINE 1) l1,1 :=
√
⟨A1, A1⟩; r := 1; counter := 0; c := [1];

(LINE 2) for i = 2, 3, . . . ,m
(LINE 3) for j = 1, 2, . . . , i− counter − 1

(LINE 4) li,j :=
⟨Ai,Acj

⟩−
∑j−1

t=1 lcj,t·li,t
lcj,j

;

(LINE 5) endfor

(LINE 6) var :=
√
⟨Ai, Ai⟩ −

∑i−counter−1
t=1 l2i,t;

(LINE 7) if var = 0 then
(LINE 8) counter := counter + 1;
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(LINE 9) elseif
(LINE 10) li,i−counter := var;
(LINE 11) c := [c i];
(LINE 12) r := r + 1;
(LINE 13) endif
(LINE 14) endfor

Output: L ∈ Rm×r, r = rank(A) and c

Remark 2. Analogously to the Algorithm 1 the comparative in line 7 should be
made with a certain tolerance in order to define an stopping criterion.
The Algorithm 2 computes the elements of L by rows, other algorithm could be
proposed for computing the elements of L by columns, being the computational
cost similar to the Algorithm 2. The two algorithms can be stopped after the
computation of some rows (or columns) of the factor L and the algorithm by
columns has the advantage that the entries can be obtained by parallel processing.

The following table shows the maximum number of floating point operations
for computing the factor L by Algorithm 2,

Elements + × ÷ √
Total

l1,1 n− 1 n 0 1 2n

li,1 for i = {2, . . . ,m} n− 1 n 1 0 2n(m− 1)

li,j for i = {3, 4, . . . , r} n+ j − 2 n+ j − 1 1 0
r3

3
− r2 − 2r

3
+

and j = {2, . . . , i− 1} n(r2 − 3r + 2)

li,j for i = {r + 1, . . . ,m} n+ j − 2 n+ j − 1 1 0 −r3 + (m+ 1− 2n)r2+
and j = {2, . . . , r} (2mn+ 2n−m)r − 2mn

li,i for i = {2, 3, . . . , r} n+ i− 2 n+ i− 1 0 1 r2 + 2nr − r − 2n

li,i for i = {r + 1, . . . ,m} n+ r − 1 n+ r 0 1 −2r2 + (2m− 2n)r+
2mn

Comparations m− 1

Table 2: Maximum floating point operations for computing L by Algorithm 2

Using the Table 2 we obtain the computational cost T (n,m, r) of Algo-
rithm 2 in the worst case, that is, when the first r columns of A are the linearly
independent columns of A, as follows,

T (n,m, r) = 2mnr +mr2 − nr2 − 2

3
r3 + 2mn+mr − nr − r2 − 5

3
r +m− 1
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In this way, following a similar argument as in the proof of Proposition 1,
we have the following result,

Proposition 3. Let A ∈ Rn×m with rank(A) = r ≤ min{n,m}. Algorithm 2
computes the elements of the lower echelon matrix L ∈ Rm×r such that r is
equal to the rank of A (equivalently, the rank of ATA) and the computational

cost is O(2mnr +mr2 − nr2 − 2r3

3 ).

Remark 3. If m = n, then the cost of the Algorithm 2 is O(2m2r − 2r3

3 ). In
addition if r ≪ m, the total computational cost is significantly reduced.
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