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Noise analysis in computed tomography (CT) image
reconstruction using QR-Decomposition algorithm

A. Thorra*, M. J. Rodriguez-Alvarez, A. Soriano, F. Sanchez, P. Bellido, P. Conde, E. Crespo, A. J. Gonzilez,
L. Moliner, J. P. Rigla, M. Seimetz, .. F. Vidal and J. M. Benlloch

Abstract—The noise of 3D computed tomography (CT) image
reconstruction using QR-Decomposition, is analyzed in this paper.
There are several types of image noise that can interfere with
the interpretation of an image. Here, the noise introduced by
the reconstruction process is studied. In this analysis, condition
numbers are calculated with different CT model parameters,
3D CT image reconstruction with simulated and real data are
performed, image noise analysis is performed through various
image quality parameters and the condition number of the
linear system is related with the image quality parameters.
Results show the condition number’s dependence on the CT
model. Image reconstructions with simulated data show errors
significantly below the condition number theoretical bound and
image reconstructions with real data show quality improvement
dependence on the condition number. This allows a reduction on
the number of projections without compromising image quality
and places this reconstruction method as a strong candidate for
low-dose 3D CT imaging.

Index Terms—Medical imaging, CT low dose imaging, CT
image reconstruction, CT modelling, QR decomposition, image
noise.

I. INTRODUCTION

HE QR-Decomposition algorithm is classified as a

model-based (MB) method [1]. MB reconstruction al-
gorithms allow a detailed mathematical description of the
physical processes involved in tomographic systems [2], [3].
This advantage can reduce image artifacts and noise and
leads toward dose reduction in CT. Model-based iterative
reconstruction (MBIR) method is often considered as a general
designation for all MB methods [4]. MBIR algorithms arise
a large size optimization problem as well as a careful choice
of an optimization function along with an iterative search of
the solution in which each step involves two matrix vector
products. The QR-decomposition algorithm takes advantage
of the benefits of the MB approach, but only requires a
matrix vector products and backward substitution for the image
reconstruction. It could be broadly labeled as a model-based
direct reconstruction (MBDIR). QR decomposition process
can be computed a priori and it is only necessary to compute
them once.
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MB methods describe the CT as a lingar system of equations
Az = b, therefore reconstruction problem becomes a linear
system where the right hand side (b) corresponds to a vector
containing the transmission data (projections) measured by
the detectors, and the unknowns (z) correspond to the 3D
image reconstructed, and the matrix (A) describes the CT.
A theoretical upper bound of the error that will occur in
the reconstruction can be established based on the condition
number of the linear system. This bound is defined by the
compatibility between the matrix (A) and the right hand
side (CT data, b) of the linear system. In this work we
study the relation between this error bound, the reconstructed
image quality and the parameters of the CT system. QR
decomposition can perform image reconstructions with good
quality while using a low number of projections, becoming a
candidate for low dose image reconstruction.

The paper is organized as follows. In Section 2, model based
image reconstruction is introduced. Measurements and figures
of merit are considered in Section 3. In Section 4, results of the
analysis of reconstructions are presented. The paper is ended
with some concluding remarks in Section 3.

II. MODEL BASED IMAGE RECONSTRUCTION

The matrix 4 models the CT system response in 3D. In a
system consisting of P views (projections) measured with a
flat-panel divided into D detectors and a field of view (FOV)
divided into N voxels, the CT system matrix A € R(ZD)<N,
Each element a;; € A represents the attenuation on the i-th
beam caused by the j-th voxel. The attenuation is computed
as the volume of the intersection between a beam and a voxel.
The beam ¢ corresponds with the x-ray beam from the source
o a detector Dy in a particular view F,. In addition, each
element a;; is corrected by the cone-beam factor (explained
in detail in [5], [6]).

A. QR-Decomposition algorithm

CT 3D image reconstruction using the QR-Decomposition
algorithm is done by the resolution of a linear system of
equations

Az =b (1)

using QR-Decomposition with Givens rotations [7], where
A € R™ " ig the matrix that models the CT system response
in 3D, b € R™ is the CT measurement and z ¢ R"
represents the unknown scanned object. Since system (1)



is overdetermined, the QR solution is equivalent to a least
squares problem, fitting solution of (2) [§]

min | Az — b||2 2)

where min || - || denotes the minimization of the 2 — norm of
the vector Az — b. QR-Decomposition is applied to matrix A
using Givens rotations, hence the solution of (2) is equivalent
to

min ||QRz — b||2 3)

where @ € R™*™ is orthogonal and R € R"™*" is upper
triangular. As @ is orthogonal

min [|QRz — bl = min [|Q7 QRz — Q"b||»
— min ||Rz — QTb||,

(4a)
(4b)

and z (the reconstructed image) is obtained by means of
backward substitution process.

B. The condition number

The condition number is an estimator of the sensitivity of
a system to perturbations. The definition (5) of the condition
number (x9) usually for a square matrix A

Tmax (A)

KZ(A) N Umzn(A)

can be extended to a rectangular matrix [8], [9], [10], where

Omaz(A) and o,,;,(A) are the largest and smallest singular

values of A respectively. By means of this extension, the

condition number of the CT model matrix can be computed
and the relative error of the system can be bounded by (6).
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If A has a low condition number, then low values of H‘fbﬁ“f

imply low values of “;LH; and it is said that the system is

well-conditioned. If the condition number is high, then low
values of H‘fbbuj do not imply low values of H“‘f‘t and it is said
that the system is ill-conditioned. In other words, the solution
of an ill-conditioned system is more sensitive to perturbations

in b.

III. MATERIALS AND METHODS
A. Real CT measurements

Experimental measurements have been conducted with an
Albira pCT [11]. This scanner is a trimodal PET/SPECT/CT.
The CT subsystem is a cone beam CT that uses a microfocus
x-ray source with a focal spot size of 35 pm and a CMOS
flat-panel with an active area of 120 x 120 mm? that consists
of a 2400 x 2400 pixelated array sensors.

The phantom used for measurements consists on a poly-
methylmethacrylate (PMMA) cylinder of 50 mm height and
55 mm in diameter and contains cylinders of different ma-
terials. The center of each cylinder is 16 mm off the axis
and arc 8 mm in diameter (see figure 1). Aside of the
container cylinder of PMMA, the rest of cylinders are of air,
polytetrafluorocthylene (PTFE or Teflon), polyethylene (PE)

Figure 1.
purposes, air (1), polytetrafluoroethylene (PTFE or Teflon) (2), polyethylene
(PE) (3) and polyoxymethylene (POM) (4), which model regions filled with
air inside the body, soft bone, adipose tissue, and organs tissue, respectively.

Phantom of PMMA with inserts of PMMA (*) for alignment

and polyoxymethylene (POM). This materials model regions
inside the human body: air regions inside the body, PMMA
for soft tissue, PTFE for soft bone, PE for adipose tissue and
POM for organs tissue.

Data measurement consisted of 400 projections of the previ-
ously described phantom. For measurement, configuration the
tube voltage was fixed to 40 kV and 0.5 mm aluminium filter
was used to absorb the lower-energy x-ray photons.

B. Simulated CT measurements

Using a reconstruction of the CT measurement as a geo-
metrical guide, a 3D image phantom (z) is generated with the
expected CT values (depending on the material) in each cylin-
der. The measurement is modeled as the product of the image
phantom and the system matrix. Then, the model measurement
is perturbed with several db and used for reconstruction. The
model represented by matrix A is an approximation. Certain
simplifications were assumed to model the CT system, such
as monoenergetic x-ray beams, a punctual x-ray source or the
absence of scattering. If = could be scanned with a real CT,
b = b+ 6b would be obtained. The computed reconstruction
(z) is used to compute the relative error between = and .
Since the size of “fbﬁ“f is known the relative error and the
condition number can be related.

All CT model configurations have been generated with the
geometry of the Albira pCT and therefore can be used for
reconstruction with this CT data. The FOV volume is divided
into cubic voxels and each voxel will be an element of the
reconstructed image.

In this work, we have evaluated the effect of detector
size and number of projections on the condition number of
the system matrix and the reconstructed image. Ditferent CT
model configurations have been generated with a voxel size
of 1.28 mm and varying the other parameters as follows:




» Detector size: due to computational complexity it is
unfeasible to model all hardware detectors. The modeled
detectors are a rebinning of the physical detectors. The
flat panel area is divided into modeled detectors from
60 x 60 (1.28 mm detector size) to 192 x 192 (0.4 mm
detector size) in steps of 12 x 12 detectors.

« Number of projections: the number of views of the CT
measurement along 360 degrees is set from 80 to 300 in
steps of 20 projections.

For each combination of these parameters, ten b are
randomly generated as a random gaussian distribution to form
a set of perturbed measurements. Ten sets are generated with
H‘fbﬁ“f ranging from 1% to 10% in steps of 1%. Then, the
relative error in each reconstructed image is computed and
averaged among a set to obtain its mean relative error. This
perturbation accounts for both physical processes disregarded
in the model and finite precision errors or noise in the detection

panel.

C. Figures of merit

Considering simulated CT measurements, the image quality
of the reconstructed image has been cvaluated using the
relative error (RE).

r — 2y

o @
[l2[]

Considering real CT measurements, the image quality has
been evaluated over five volume of interest (VOI) defined by
each phantom insert and the PMMA cylinder. For each VOI,
a CT number (p,) is computed as the averaged pixel value
among the VOI pixels according to the equation (8) and a
standard deviation (o,) as the standard deviation of the pixel
values among the VOI pixels according to the equation (9).

1
fo = F;x ®)
1 X
— L 2
Oy N, —1 ;(wl Nv) )]

where N, is the number of pixels in the VOI and z; is the
value of each pixel.
The following image quality indicators have been used:
« Coefficient of variation (CV): is a measure of the differ-
ences between pixel values in a VOI. CV is divided by
14y in order to obtain a dimensionless measure.

cv =22 100

Ho

(10)

« Contrast recovery coefficient (CRC): is a measure of
contrast between a VOI and the PMMA background.

By
CRC = L
MY

2

100

(11D

where 14, represents the CT number of PMMA back-
ground, pf and pf represents the CT numbers of the

materials in the insert and PMMA background, obtained
from [12].

« Contrast to noise ratio (CNR): is a measure of the relation
between contrast and noise of a VOI and the PMMA
background.

2 |phy —
Oy + 0
where pp and o, represent the CT number and the
standard deviation of PMMA background respectively.

(12)

IV. RESULTS

This paper shows the impact of the number of projections,
and the size of the detectors on the condition number of system
matrix of the model and therefore in the noise of reconstructed
CT images using the QR-Decomposition method. The optimal
values of these two parameters in order to produce well-
conditioned models have a linear dependence with the modeled
voxel size. The voxel size used in the reconstructions of this
work has been 1.28 mm. Similar results were obtained with
voxel sizes from 2.13 mm to 0.91 mm.

A. Model configuration influence on the condition number

The number of projections, and the size of the detectors
for the CT model have a strong influence on the condition
number of the resulting system matrix. Figure 2 shows that
increasing the number of projections from 100 to 400 with
detectors of 0.8 mm produces a condition number comparable
to that obtained with the reduction of the detector size from
0.8 mm to 0.4 mm with 100 projections.

Increasing the number of projections and decreasing the
detector size produce a growth on the number of equations
of the model. As the number of equations grows the condition
number tends to stabilize. In this case (with a voxel size of
1.28 mm) the condition number stabilizes around s (A) ~ 13
(see figures 2 and 3). Although, the condition number is
reduced by the number of projections and the detector size, it
decreases faster to its limit when the detector size parameter
improves.

B. Simulated CT measurements

The relation between the condition number and the RE of
the system is shown in equation (6). Figure 2 shows evolution
of the condition number while the number of projections
increases. These two curves can be identified in figure 4
for detector sizes of 0.8 mm and 0.4 mm respectively. The
REs measured tend to the perturbation size H‘fbﬁ“f, although
equation (6) and figures 2 and 3 suggest higher RE values.
Similar results were found in all generated db.

For a perturbation size of H‘fbﬁ“f = 5% and a RE HH(?H[Z <
10%, simulated reconstructions with detector sizes below
0.53 mm and 100 projections or more have obtained lower RE.
In fact, simulated reconstruction sets obtained a RE smaller
than 2“\\5;\\“22 with detector sizes below 0.53 mm and 100
projections or more. This suggests that detector sizes below
0.53 mm and 100 projections can produce images affected by
a relatively low degree of eI“I'OI"‘ 5vvaith0ut the need of increasing

2

the number of projections as ol increases.
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Figure 2. Variation of the condition number of the system matrix as a function
of the number of projections. System models have been configured with voxels
of 1.28 mm and with modeled detectors of 0.8 mm and 0.4 mm.
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Figure 3. Variation of the condition number of the system matrix as a function
of the modeled detector size. System models have been configured with voxels
of 1.28 mm and with 100, 200 and 300 projections.

C. Real CT measurements

Data measured with Albira CT of a phantom which models
human tissues have been rebined by grouping real detector
measurements into modeled detectors of sizes 0.8 mm and
0.4 mm. The same phantom has been measured along 360
degrees considering 400, 200 and 100 projections. There
are 6 compatible model configurations used in the simulated
reconstruction compatibles with this data. Transversal slices of
3D reconstructions of these 6 models are shown in figure 6.

Image quality measurements were performed in phantom
VOIs. Results show different levels of relation with the con-
dition number of models.

Regarding CV, the best results have been obtained with
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Figure 4. Average REs of image reconstructions of the CT system response
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Figure 5. Average REs of image reconstructions for different size of modeled

detectors with % = 5%.

the smallest detector sizes. It must be highlighted here that
the behavior of the CV with the increase in the number of
projections. There is a notable improvement increasing the
number of projections from 100 to 200 and a stabilization from
200 to 400 (see figure 7). In the case of air (see figures 8 and 2)
the CV and the condition number have similar behavior regard-
less of the number of projections. The small improvement in
CV results from 200 to 400 projections is due to the small
improvement on the condition number. Although, the notable
improvement in CV results from 100 to 200 projections is
due to the incompleteness of the CT model. As showed
in [13], with lower projections, the image CV caused by
system modeling error increases and becomes the main source
of CV. With 200 projections or more the image CV caused
by system modeling error is small compared to other errors
such as accumulated round-off error (caused by intermediate
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Figure 6. Transversal slice of 3D reconstructions of the measurement
performed with Albira pCT. Reconstructions of the 6 compatible model
configurations are shown. The same gray scale is used for all images. To avoid
printing issues, white represents low image values, and black represents high
image values.

calculations with floating point precision), numerical stability
errors during the system matrix decomposition or noise in CT
flat panel measurement.

Furthermore, special mention should be made of the CV of
air (see figure 8). CV values of air are ten times larger than
the rest of VOIs. This is caused by low values of pi44,-, which
are around 0.05. Although, values of o, are between 0.02
and 0.008, which are similar to the other VOIs as PMMA.

As for CRC, the best results have been obtained with the
smallest detector sizes. However, differences between models
are lower than 1%, regardless of the CT number of VOIs (see
figure 9). With such varying conditions, as from 100 to 400
projections or detector sizes from 0.8 mm to 0.4 mm, QR-
Decomposition reconstruction produces images with stable
contrast relations.
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Figure 7. Coefficient of variation of Teflon and PMMA in the reconstructed
images with Albira ;CT data as number of projection increases. Systems with
modeled detector sizes of 0.8 mm and 0.4 mm are shown.
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Figure 8. Coefficient of variation of air in reconstructed images with

Albira ¢CT data as number of projection increases. Systems with modeled
detector sizes of 0.8 mm and 0.4 mm are shown.

Regarding CNR, the best results have been obtained with the
improvement of both number of projections and detector size.
Although this parameter obtains the highest improvements
as the number of projections increases (around 15%) also
improves with the decreasing of the detector size (between
2% and 8%, see figure 10). The same reason as in CV,
incompleteness of the CT model relates this parameter with
the number of projections.

V. CONCLUSIONS

In this work a MBDIR algorithm is used to reconstruct
CT images. The parameters of the CT model influence the
condition number of the matrix used to reconstruct 3D images.
The parameter which influences the condition number the
most is the detector size. The reconstruction of simulated data
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Figure 9. Contrast recovery coefficient of Teflon and air in reconstructed
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with modeled detector sizes of 0.8 mm and 0.4 mm are shown.
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Figure 10. Contrast to noise ratio of Teflon and air in reconstructed images
with Albira pCT data as number of projection increases. Systems with
modeled detector sizes of 0.8 mm and 0.4 mm are shown.

showed that the improvement of the condition number of the
system has an impact on the RE of the reconstructed images
beyond the theoretical bound of equation (6).

Image quality measurements of reconstructed images using
the same CT models with data from Albira CT showed that:

« CRC of VOIs remains constant (around 1% of variation)
regardless of the parameters chosen (size of modeled
detectors between 0.8 mm and 0.4 mm and number of
projections between 100 an 400).

+ CV of VOIs improves mainly with the number of projec-
tions from 100 to 200 and for more than 200 projections,
major improvement is related to detector size.

« CNR of VOIs improves with the combination of number
of projections and the size of the detectors. The relation

between the CNR and the number of projections is due
to the incompleteness of the CT model.

CRC stability and CV improvement as detector size de-
creases, enables a potential reduction on the number of pro-
jections used for the image reconstruction. This reduction on
the number of projections implies the reduction of radiation
dose received by the patient.

The reason of grouping physical detectors in larger modeled
detectors and disregard physical processes in the CT model
is the ease of computational complexity. Improvements on
the decomposition of the system matrix will allow to model
smaller detectors that will imply better condition numbers and
produce reconstructed images with better quality parameters
without the need of a large number of projections. For these
reasons we propose the 3D image reconstruction using QR-
Decomposition as a promising candidate for CT low-dose
imaging.
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