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Received: date / Accepted: date 

 
 

Abstract In this paper a new approach to design sound 

phase diffusers is presented. The acoustic properties of 

such diffusers are usually increased by using single ob- 

jective optimization methods. Here we propose the use 

of a multiobjective (MO) approach to design them in 

order to take into account several conflicting charac- 

teristic simultaneously. Three different MO problems 

are posed to consider various scenarios where funda- 

mentally the objective is to maximize the normalized 

diffusion coefficient (following the corresponding Audio 

Engineering Society standard) for the so-called medium 

frequencies. This single objective could be divided into 

other several objectives to adjust performances to de- 

signer preferences. A multi-objective evolutionary al- 

gorithm (called ev-MOGA) is used to characterize the 

Pareto front in a smart way. ev-MOGA is modified, by 

using integer codification and tuning some of its genetic 

operators, to adapt it to the new requirements. Special 

interest is posed in selecting the diffusers codification 

properly to eliminate duplicities that would produce    

a multimodal problem. Precision in the manufacturing 

process is taking into account in the diffuser codification 

causing, that the number of different diffusers are quan- 

 

tified. Robust considerations related with the precision 

manufacturing process are considered in the decision 

making process. Finally, an optimal diffuser is selected 

considering designer preferences. 

Keywords  Sound diffusers · 1-D Schroeder diffuser  · 

Multiobjective  optimization  · Evolutionary  algorithms 

 
 

1 Introduction 

 
Sound diffusers can be defined as surfaces on which   

the sound is reflected in a non-specular way, that is, 

Snell’s law is not satisfied. These devices are used to 

improve the acoustic performance of rooms, spreading 

uniformly sound waves in multiple directions and there- 

fore increasing the envelopment of the sound field and 

reducing echoes and focalizations. Schroeder first pro- 

posed these acoustic devices. The so-called Schroeder or 

Phase diffusers are formed by surfaces with series of re- 

flecting wells with the same width and different depths 

separated by thin fins. If the variation of the depth of  

the wells is only in one direction, the resultant  diffusers 
   are called 1D Schroeder diffusers. Fig. 1.a shows a  pic- 
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ture of this kind of  devices. 

It is possible to improve largely the acoustic perfor- 

mance of such devices using several optimization tech- 

niques, but in all cases, the optimization processes in 

the field of sound diffusers have been carried out usually 

with a single objective function. In 1995 Cox [3] sug- 

gested the use of iterative methods as downhill simplex 

and quasi-Newton methods as tools to optimize these 

diffusers. In this case, the objective function used was 

the ”diffusion parameter”, defined as the standard error 

of the sound pressure over the measurement positions, 

averaged over the desired working frequency range. In 

mailto:juaherdu@isa.upv.es
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order to avoid low performance for particular frequen- 

cies within that range, a penalty is introduced adding 

the standard error to the frequency averaging. In recent 

years, volumetric diffusers based on arrays of cylindri- 

cal scatterers have been developed using evolutionary 

algorithms along to a two-dimensional Fourier approx- 

imation [8]. In this case, the algorithms are used to 

minimize the standard diffusion coefficient, and the op- 

timization is carried out by removing or varying the di- 

ameter of a set of cylinders located in a periodic rectan- 

gular array, creating pseudorandom arrays with a high 

diffusion performance. 

The aim of this work is to investigate the potential 

of an optimization comprehensive method for designing 

diffusers based on the Schroeder ones, applied to a 1- 

D Schroeder diffusers formed by seven wells. However, 

unlike optimization processes used so far in which a 

single objective function is considered, we propose here 

the use of a multiobjective (MO) approach [14] that al- 

lows the obtaining of devices taking into account several 

objectives simultaneously. For instance, optimizing the 

diffusion coefficient for different ranges of frequencies 

separately. 

ev-MOGA to the particular problem. ev-MOGA char- 

acterizes the Pareto front in a smart way producing 

higher density of solutions in areas where the Pareto 

front has a major trade-off. This smart Pareto front 

helps the designer to analyze it and to choose the final 

solution since it is a small and effective representation 

of the Pareto front trade-off [11]. 

The article is organized as follows: section 2 presents 

the mathematical foundations about the theory of the 

diffusers and the multiobjective approach followed; sec- 

tion 3 shows the ev-MOGA algorithm with its new cod- 

ification and genetic operators; in section 4 three differ- 

ent MO problems are set to take into account different 

scenarios. Robustness of the Pareto solutions are ana- 

lyzed and a diffuser is selected as a final solution; finally 

some concluding remarks are provided in section 5. 

 
a) 

y w  

l(x) 
 

b) 

To do that, we will use a Generate-First Choose c) 

Later  (GFCL) approach1  [12]. In this approach we first 

obtain  the  Pareto  set  and  its  associated  front.   Each 

point of this Pareto set represents one solution to the 

MO problem that is neither better nor worse than  any 

x 
 

  
QRD MLS PRD 

of the other points in the set. These are non-dominated 

points. Obtaining the Pareto front can help the designer 

to know the trade-off between the objectives and to 

choose the final diffuser. 

To solve MO problem we propose to use Evolu- 

tionary Algorithms (MOEAs), which allow several so- 

lutions of the Pareto front will be generated simultane- 

ously thanks to the populational nature of EAs [1, 21]. 

MOEAs have capacity to handle a wide variety of prob- 

lems with different degrees of complexity, permitting to 

characterize disjoint and non-convex Pareto fronts and 

having greater ease to avoid local minima. 

In this work, the ev-MOGA algorithm2 [5, 7] has 

been softly modified to be applied in the multiobjective 

optimization of the proposed 1-D diffuser. The essen- 

tial properties of ev-MOGA are kept although an inte- 

ger codification of the search space (that avoids differ- 

ent but equivalent diffusers, that means avoiding multi- 

modality) and new genetic operators are used to adapt 

Fig. 1 (a) A scheme of 1-D Schroeder diffuser; (b) Explana- 

tion of the acoustic response of these diffusers; (c) Sectional 

views of QR, MLS and PR diffusers. l(x) represents the depth 

profile of the diffuser. w is the width of each well. 
 

 

 
 

 

 

2 Theoretical considerations 
 

2.1 Theory of the Schroeder  diffusers 

 

The underlying physics involved in the acoustic response 

of Schroeder diffusers can be explained as follows. The 

incident plane waves generated in the room penetrate 

into the wells, which have different depths, and after- 

wards are reflected from the bottom of the wells to the 

external space of the room, traveling acoustic paths of 

different length. The acoustic pressure at any point  of 
   the room is given by the interference between all the re- 

1 We do not use an aggregate objective function, to merge 

the different objectives. So we will avoid to weight the differ- 

ent objectives a priori. 
2   Available for Matlab§c    at http://www.mathworks.com/ 

matlabcentral/fileexchange/31080-ev-moga-multiobjective- 
evolutionary-algorithm. 

flected waves generated at each well. If we assume that 

there are no energy losses, all the reflected waves will 

have the same amplitude but varied phases, in such a 

way the distribution of the well depths determine the 

polar distribution of the reflected pressure obtained by 

http://www.mathworks.com/
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the whole diffuser [4]. A schematic illustration of this 

physical process can be seen in Fig. 1.b. 

On the other hand, the far-field scattered pressure 

by a corrugated surface can be obtained by means of 

the Fraunhofer (or Fourier) theory. In the case of a 1- 

D structure the reflected sound can be expressed using 

this theory, as [4]: 

values of the diffused field corresponding to each one of 

the individuals considered in the optimization process 

and, more importantly, give us the possibility to present 

the multiobjective optimization comprehensive method 

for designing Phase diffusers, which is the main goal of 

this paper. 

 
 

p(α) = A0 

¸ XL
 

−XL 

e−2πj{[2l(x)]/λ}e2πj{[sinα]/λ}xdx (1) 
2.2 Quantification of the performance of sound 

diffusers 

where l(x) is the local depth, x is the coordinate 
along the surface, α is the scattering angle, λ is the 

wavelength, and A0  is a constant determined by    the 
amplitude of the incident wave. Eq. (1) is applicable to 

sound waves under normal incidence, and it is assumed 

that the surface admittance varies in the x direction. 

The limits of the integral expression are defined by the 

boundaries of the sound diffuser, being 2XL the total 

width of the diffuser. This equation enables estimations 

of the far field diffusion as the Fourier Transform of the 

spatial depth profile of the diffuser surface l(x). In other 

words, if the depth profile of the diffuser surface has a 

flat Fourier transform, sound will be reflected uniformly 

in all possible directions. So, the depth profile has to 

be designed following a numerical sequence with a flat 

In order to quantify the performance we have followed 

the ISO (International Organization for Standardiza- 

tion) standard [9]. It is based on the measurement of 

the acoustic pressure of the reflected sound over a range 

of angles, between −90o  to 90o  in steps of 5o  (37 mea- 
surements in total). For  this purpose a microphone   is 

moved along a semi-circumference centered in the mid- 

dle point of the test sample, which is composed by an 

array of four diffusers (with seven wells each one), see 

Fig. 2. Appropriate windowing of the signal allows the 

elimination of the direct sound. The parameter mea- 

sured using this technique is known as the diffusion 

coefficient: 

Fourier Transform. Several numerical sequences  have ..n 2 
.2 

− 
.n .

p2 
.2 

been used since the invention of sound diffusers.  The d∗ = i=1 pij 
.n 

i=1 ij 
.2 (2) 

most extended are Maximum Length Sequences (MLS) 

[17], Quadratic Residues (QR) [18] and Primitive Root 

(n − 1) 
. 
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i=1 ij 

Sequences (PRS) [19]. Fig. 1.c illustrates an example of 

each one of the named  sequences. 

There is a range of methods to predict the sound 

pressure reflected from a diffuser, from the simplest 

but faster to the numerically exact but computation- 

ally slow. Fraunhofer theory, introduced above, is the 

simplest way to predict the sound pressure reflected  

by a surface, but as a counterpart is the less accu-  

rate. At the other extreme of prediction methods, Cox 

demonstrated that the more accurate method to predict 

the scattering from diffusers is the Boundary Element 

Methods (BEM) [2] by comparison with experimen- 

tal data. More recently it has been shown that Finite 

Element Methods (FEM) and Finite Difference Time 

Domain (FDTD) has the same ability to predict the 

sound reflected by rough surfaces [15]. The last method 

has the additional advantage that allows evaluating the 

temporal dispersion that diffusers produce. 

However, due to the excessive computational cost 

involved in the use of these numerical methods (BEM- 

FEM-FDTD), we have decided to use a less accurate 

analytical model but with a much lower computational 

cost, the Fraunhofer theory. It provides us   reasonable 

where d∗ is the diffusion coefficient for the j-th one- 

third octave band considered, pij  is the sound pressure 

of the reflected sound defined in Eq. (1) for the j-th one- 

third octave band considered at the i-th measurement 

position, and n is the number of measurement positions 

(n = 37). The value of the diffusion coefficient for each 

one-third octave band has been calculated considering 

the average of three logarithmically spaced frequencies 

within the band. We have checked that with this aver- 

aging, we obtain reliable results and, at the same time, 

the calculations are carried out with a low computa- 

tional cost. 
To normalize this diffusion coefficient from zero to 

one, d∗ is compared with a flat surface. The purpose   of 

normalization is to remove edge diffraction scattering 

effects due to the limit size of the sample under analysis. 

In doing so, normalized diffusion coefficient represents 

the uniformity of scattering from the surface topology 

only. Concave surfaces should cause negative values for 

the normalized diffusion coefficient, but typically, it will 

be in the range from zero to one. Thus, the normalized 

diffusion  coefficient,  dj ,  for  the  j-th  one-third  octave 

band considered, is defined as: 
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2.3 Multiobjective problem approach 
 

 

dj  = j  − dj,ref 
 

(3) 
The MO problem can be formulated, in a general way, 

as follows3: 1 − dj,ref 

0 ≤ dj  ≤ 1 

 
where dj,ref  is the diffusion coefficient of a flat panel 

for the j-th one-third octave band considered. dj  is equal 

to zero for flat surfaces and for all frequencies. 
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min J (θ) = min[J1(θ), J2(θ), . . . , Js(θ)] (4) 

 

subject to: 

θli  ≤ θi  ≤ θui,  (1 ≤ i ≤ L) (5) 

where Ji(θ), i ∈ B := [1 . . . s] are the objectives to 

be minimized, θ is a solution inside the L-dimensional 
solution  space  D ⊆ RL,  and  θli  and  θui  are  the  lower 

and upper constraints that define the solution searching 

space D. 

To solve the MO problem, we have to obtain the 

Pareto optimal set ΘP (J (ΘP ) denotes the Pareto front), 

which contains the solutions where none dominates any 

-90 90 of the others. Pareto dominance is defined as   follows: 
 

Fig. 2 Schematic measurement set up to obtain the diffusion 

coefficient of a sample composed by an array of four diffuser. 

Each diffuser has a width of 0.9m. Then XL in Eq. (1) is 

1.8m. The wells width is w = 0.9/7 = 0.128m. 
 
 

 

The bandwidth of a Schroeder diffuser is limited  

at high frequencies by the well width and at low   fre- 

A solution θ1 dominates another solution θ2, de- 
noted by θ1 ≺ θ2, if 

∀i ∈ B, Ji(θ1) ≤ Ji(θ2) ∧ ∃k ∈ B : Jk(θ1) < Jk(θ2). 

Therefore, the Pareto optimal set of solutions   ΘP 

is given by 

quencies by the maximum depth. In the present pa- 
per we are interested in the so-called medium frequency 

range which includes six one-third octave bands (f1  = 
400Hz, f2 = 500Hz, f3 = 630Hz, f4 = 800Hz, f5 = 
1000Hz and f6 = 1250Hz). To achieve significant dif- 
fusion in this frequency range we have chosen the fol- 

lowing dimensions: the maximum depth will be limited 

to 0.320m, that for a standard QR diffuser supposes   

a minimum frequency (design frequency) falling at the 

beginning of the medium frequency range selected [4]. 

On the other hand, we have considered a total width of 

0.9m, causing the maximum frequency to fall in the up- 

per part of the considered frequency range [4]. Note that 

the Fraunhofer theory is valid only when the pressure 

field in each well of the diffuser do not create transverse 

modes, in other words, when the well width is smaller 

than half the minimum wavelength. In our case, the 

upper frequency correctly simulated is 1332Hz, which 

is over the central frequency of the highest one-third oc- 

tave band considered in this work (1250Hz). Then, un- 

der these conditions, we want to obtain the depth profile 

of the wells that maximizes dj  in the medium frequency 

range (j ∈ [1, 2, . . . , 6] corresponding to [f1, f2, . . . , f6] 

ΘP  = {θ ∈ D | $  θ̃  ∈ D  :  θ̃  ≺ θ} . (6) 

 

ΘP is unique and normally includes infinite solu- 

tions. Hence a set ΘP , with a finite number of elements 

from ΘP (or at least an approximation to some of the 

Pareto set points), should be obtained4. With this set 

the designer has to decide the final solution. 

Then, in the MO problem approach the following 

steps have to be covered: 
 

1. Decision variable codification. To define the decision 

variable codification (θ codification) and the solu- 

tion  search  space (D). 

2. Objectives selection. To select the objectives to be 

minimized (J (θ)). 
3. Optimization process. To obtain a good approxima- 

tion of Θ∗ set with the optimal diffusers in a Pareto 

optimal sense. 
4. Decision making. To choose the optimal diffuser from 

the Θ∗ . 
 

3 Maximizing an objective can be transformed in a mini- 
mization problem, since max Ji  = − min(−Ji). 

frequencies above mentioned). 4  Notice that Θ∗  is not unique. 

Measurement 
Position 

n=37 

0 

0 
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θ1 

  

 
θ2 

 θ3   

 

θ4 

  

θ5 

  
θ6 

  

 
θ7 

 

  

 

 
 

  
Fig. 3 Profiled diffuser with seven wells. Well width w = 

0.9/7 = 0.128m. Maximum depth of each well 0.32m. 

possible diffusers. Of course, an exhaustive search 

to obtain the optimal diffuser is not viable. To reduce 

the searching space, we have used the fact that an im- 

portant characteristic of the diffuser design is that dif- 

ferent diffusers can be equivalents. This characteristic 

produces a multimodal problem where several points 

have the same diffusion coefficient values. For instance, 

if one diffuser is flipped horizontally, the resulting dif- 

fusers is equivalent, see Fig. 4 (θa and θb diffusers pro- 

duce the same diffusion coefficient). On the other hand, 

if we consider a diffuser θa with its deepest well θa, we 
 

2.3.1 Decision variable codification 

 

The first step should be the decision variable codifica- 

tion considered here as the depth of different-wells. We 

have assumed in this problem that each one of the wells 

can take a finite number of depth values, which depend 

on the precision available in the manufacturing process 

of the diffuser. In our case, we assume that the mini- 

mum step in the depth of a well is 2 mm. As we said 

above, the maximum depth of a well is 320mm. Each 

depth of a well can be varied from 0 to 320mm in steps 

of 2mm. We have 161 different  depths. 

Then, we define θ to characterize the diffusers to be 

designed as follows: 
 

θ = [θ1, . . . , θ7](7) 

0 ≤ θi  ≤ 160, (1 ≤ i ≤ 7) 

where θi is a integer number that indicates the depth 

in steps of each one of the seven wells that form the 

proposed Schroeder diffuser (see Fig. 3). 

Using this codification, the depth profile of the dif- 

fuser l(x) used in Eq. (1) can be defined as (taking into 

account that the sample is composed by  an array of   

four diffusers): 

 
 
θ1 if |x| ∈ [0, w[∪[7w, 8w[ 

can obtain equivalent diffusers θc  as 

 

θc = θa − γ[1, 1, 1, 1, 1, 1, 1](10) 

γ ∈ [1, . . . , θa] 

If these duplicated combinations are avoided in the 

codification procedure, a reduction of the search space 

is achieved and the problem of multimodality is re- 

duced. To eliminate these equivalent diffusers we pro- 

pose to modify our diffuser codification (Eq. (7)) in such 

a way that at least one of the seven wells of the diffuser 

is set to zero5. 

 
θ = [θ1, . . . , θ7](11) 

0 ≤ θi  ≤ 160, (1 ≤ i ≤ 7) 

∃ i : θi  = 0 

Then diffusers θa and θb are not possible with this 

new codification. Their equivalent diffusers would be θc 

and θd, respectively (see Fig.  4). 

Table 1 shows the different diffusers that can be 

obtained with this new codification for a seven wells 

diffuser (taking into account that at least one well is     

set to 0). 

In a more general approach, the number of different 

diffusers, for a L wells diffuser with a possible depths, 

could be obtained by means  of: 

 
θ2 if |x| ∈ [w, 2w[∪[8w, 9w[ 
 
θ3 if |x| ∈ [2w, 3w[∪[9w, 

10w[ 

l(x) = θ4 if |x| ∈ [3w, 4w[∪[10w, 11w[ 

 
 

(8) 

Θ(a, L) = 

L−1 
. 
 

i=0 

βi = 

L−1 
. 
 

i=0 

(a − 1)ia(L−1−i) (12) 

 θ5 if |x| ∈ [4w, 5w[∪[11w, 12w[ 
 θ6 if |x| ∈ [5w, 6w[∪[12w, 13w[ 
 
θ7  if |x| ∈ [6w 7w[∪[13w, 14w[ 

As we have search space dimension of L = 7 wells 

In our case, we  obtain Θ(161, 7)  = 1.1967 ·  1014, 

which represents 4.27% of Θ∗(161, 7). That means  a 

huge reduction of the search space. 

Besides, each one of these diffusers has its flipped 

copy.  Only the symmetric diffusers has not a   flipped 
and each one can have a = 161 different depths.   The    5   This  codification  is  equivalent  to  characterize  the dif- 
search space encloses: 

 
Θ∗(a, L) = aL = 1617 = 2.8040 · 1015 (9) 

fusers as a vector of 6 increments. We do not codify the 

diffusers with increments since it is more difficult to man- 

age the searching space and to implement genetic operators 

in the MOEA. 
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θ5 
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i 
i) 
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θa θb 

Θt(a, L) = 
 

= 

Θ(a, L) − Θs(a, L) 
+ Θ (a, L)(15)

 

2 
s 

Θ(a, L) + Θs(a, L) 

2 

 

 
c 

θ1  θ
c 
2   

c 
θ4  

c 
θ5  θ

c 
6  

c 
θ7 

  
 

   

θc θd 

Fig. 4 θb and θd are obtained by flipping horizontally θa and 
θb, respectively.  θc  (θd) is  obtained  by  subtracting  θa  (θb) 

In our case study Θt(161, 7) = 5.9833 · 1013, which 
is the approximately 50%6  of Θ(161, 7) and 2.13%   of 

Θ∗(161, 7). Therefore the number of possible diffusers 

has been reduced drastically but, even that reduction, 

an exhaustive search is not affordable (search space still 

remains vast and an optimization algorithm is neces- 

sary). 
Then, to avoid  flipped diffusers, the following   con- 

straints have to be satisfied: 
3 5 

from θa (θb). θa, θb, θc and θd are all equivalent  diffusers. 

 

Table   1  Diffusers   alternatives   with   seven   wells.   xj     ∈ 

[0 . . . a − 1]  and  yj   ∈  [1 . . . a − 1],  where  a  is  the  number 
of possible depths for each of the L wells. β(i) is the number 
of  different combinations. 

 

i θ1 θ2 θ3 θ4 θ5 θ6 θ7 β(i) 

0 0 

y1 

y1 

y1 

y1 

y1 

y1 

x3 

0 

y2 

y2 

y2 

y2 

y2 

x4 

x4 

0 

y3 

y3 

y3 

y3 

x4 

x4 

x4 

0 

y4 

y4 

y4 

x5 

x5 

x5 

x5 

0 

y5 

y5 

x6 

x6 

x6 

x6 

x6 

0 

y6 

x7 

x7 

x7 

x7 

x7 

x7 

0 

a6 

1 (a − 1)a5 

2 (a − 1)2a4 

3 (a − 1)3a3 

4 (a − 1)4a2 

5 (a − 1)5a 
6 (a − 1)6 

 

Table  2  Symmetric diffusers alternatives with seven  wells. 

xj  ∈ [0 . . . a − 1] and yj  ∈ [1 . . . a − 1], where a is the number 

of possible depths for each of the L wells. β(i) is the number 
of  different combinations. 

(θ1 < θ7) ∨ 

(θ1 = θ7 ∧ θ2 < θ6) ∨ (16) 

(θ1 = θ7 ∧ θ2 = θ6 ∧ θ3 ≤ θ5) 

In summary codification is guided with Eq. (11) and 

Eq. (16) to reduce the search space and to avoid mul- 

timodality. 
 

2.3.2 Objectives selection 
 

An important step in the multiobjective approach is an 

adequate selection of the objectives of the optimization 

process (the components of J (θ)). The ideal choice has 

to be closely related to the design preferences. As men- 

tioned earlier, our main objective is to maximize dj  in 

the range of the selected frequencies. 

A classical alternative is to minimize an objective 

function  that  will  be  equivalent  to  maximize  dj .  For 

instance: 

 

 
copy since it is itself. For  a L dimensional diffuser (L  

an even integer number), the number of symmetric   dif- 

   

J1(θ) = 1 − d = 1 − 
. dj (θ) 

(17)
 

6 
j=1 

fusers is obtained as (see Table 2): where d represents the mean normalized diffusion 

coefficient for the one third-octave bands   selected. 
Minimization  of  Eq.  (17)  could  produce diffusers 

L−1 
2 

L−1 
2 with good performance in average, but their frequency 

Θs(a, L) = 
. 

βs  = 
.

(a − 1)ia(
 

L−1 

2    − (13) response could present high dispersion. To reduce this 

i=0 i=0 effect another objective have to be introduced, the stan- 
dard deviation. This second objective function is   de- 

The number of non-symmetric  diffusers is: fined as: 
 

Θns(a, L) = Θ(a, L) − Θs(a, L) (14) 

 

Therefore, the total number of different diffusers can 

 
J2(θ) = 

. 

j=1(d − 

5 

dj (θ))2 
 

(18) 

be calculated as: 6  Θt(a, L) c Θ(a,L) 
when a > 10 for L = 7. 

 
a 

θ1  θ
a 
2  

a 
θ3 

a 
θ4  

a 
θ5  θ 

a 
6  

a 
θ7 

 
  

 
  

 

 θb 
1  θb 

2  θb 
3  θb 

4  θb 
5  θb 

6  θb 
7 

 
  

 
  

 

 θd 
1  θd 

2  θd 
3  θd 

4   
d 

θ6  θd 
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i θ1 θ2 θ3 θ4 θ5 θ6 θ7 βs(i) 

0 0 x2 x3 x4 x3 x2 0 a3 

1 y1 0 x3 x4 x3 0 y1 (a − 1)a2 

2 y1 y2 0 x4 0 y2 y1 (a − 1)2a 
3 y1 y2 y3 0 y3 y2 y1 (a − 1)3 
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Table  3  Preferences ranges in  GPP. 
 

 Desirable Tolerable Undesirable 

J1(θ) 

J2(θ) 

[J0, J1[ 
1 1 

[J0, J1[ 
2 2 

[J1, J2[ 
1 1 

[J1, J2[ 
2 2 

[J2, J3[ 
1 1 

[J2, J3[ 
2 2 

 

 

Both objectives could be in conflict and can be treated 

with a multiobjective approach instead of merging them 

in an single aggregate objective (a common way to solve 

a multiobjective problem). 
Variations changing the selected frequencies in Eq. 

(17) could be used as alternative or additional objec- 

tives. 

 
2.3.3 Optimization process 

 

For our optimization problem, we will use an elitist 

multi-objective evolutionary algorithm, based on the 

concept of s-dominance [10], named ev-MOGA [5, 6]. ev- 

MOGA uses a real codification for the searching space, 

so that we need to modify ev-MOGA to implement 

the diffusers codification presented above. Besides some 

modifications are required in the genetic operators of 

ev-MOGA to avoid different equivalent diffusers in the 

evolution process. These issues will be treated in section 

3. 

 
2.3.4 Decision making 

 

The final step is the analysis of the Pareto approxi- 

It is important to remark that these ranges are in 

physical units of the objectives, being understandable 

by the DM. 
 

 
3 ev-MOGA for diffusers optimization 

 

ev-MOGA uses three populations (Pt with fixed size 

nP , At with size nA and ttt with fixed size nG) in the 

optimization process (t is the algorithm iteration). At 

promotes convergence of the solutions toward Pareto 

front J (ΘP ) in a smart distributed way. At is an archive, 
where the solution of the optimization problem Θ∗  is 

stored. Its size can change but its maximum size is 

bounded; Pt is the main population, it explores the 

searching space and converges to the Pareto front. Dur- 

ing the evolutionary process this population is updated 

only with dominance considerations. ttt is an auxiliary 

population which maintain temporary solutions created 

by means of genetic operators. Solutions in ttt are used 

to update Pt  and  At. 
To achieve an smart distributed Pareto front J (Θ∗ ) 

only solutions with significant trade-off are kept in At. 
To do that, s−dominance is used and the  objective 

space is split into a fixed number of boxes n box. This 

grid preserves the diversity of J (Θ∗ ) since each     box 

can only be occupied by one solution. When in the up- 

date process of At, two solutions are in the same box, 

the solution that prevails will be the one that is closest 

to the center of the box. 

mation obtained to select the preferred solution. Sev- 

eral graphical tools can be used [20], specially when 

more than three-objective problems are treated. In our 

Figure 5 shows how J (ΘP ) could be obtained by 
applying s-dominance concept for an example with two 

objectives, when n box = 10 is used. The values s1     and 
case, different bi-objective problems will be     proposed s2  depend on the limits of the front  J min

 min max 

 and scatter plots will be used. This graphical represen- and J max
 1 , J2 , J1 

 

tation of the Pareto front help the designers to better 
adjust their preferences and to choose the final solution. 

An intuitive way to introduce preferences into the 
decision process is the Physical Programming (GPP) 

[16]. The designers have to introduce their preferences 
by means of a table with preferred ranges of perfor- 

mances. Each one of these ranges could be labeled to 
facilitate the interpretability. The GPP  combines  all 

this information to produce  a  value  that  could  rank 
the solutions of the Pareto front. The GPP is based on 
weighting equally each range for all the objectives and 

applying ”One vs. Others Criteria Rule (OVO-rule)” 
[13] (minimizing the worst value, so a [T, T ] solution is 

preferred over  [D, U ] one). 
For a two objectives MOP (J1(θ), J2(θ)) and three 

interval ranges of preferences, labeled as ”Desirable” 
(D), ”Tolerable” (T) and ”Undesirable” (U), the   de- 

signer has to fulfill the Table 3. 

2 , which are adjusted dynamically in each al- 
gorithm iteration. 

The distribution of solutions along the Pareto front 

depends on the selected grid. 
 
 

1. t := 0; 

2. At := ∅; 

3. Pt := ini random(D); 

4. eval(Pt); 

5. At  := store(Pt, At); 

while t < tmax do 

6. ttt  := create(Pt, At); 

7. eval(ttt) 

8. At+1  := store(ttt, At); 

9. Pt+1 := update(ttt, Pt); 

10. t := t + 1; 

end 

Algorithm  1: Pseudocode of ev-MOGA. 
 
 

Algorithm 1 shows the pseudocode of  ev-MOGA. 
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Gre y ar ea i s 

ε-d omi nate d by θi 

J(θi
 ) 

 

   

P 

P 

P 

G 

J2
max n_box=10 

 
J(ΘP) 

5. Crossover and mutation operators have been mod- 

ified to avoid duplicities (satisfying Eq. (11) and 

Eq. (16)). 
This procedure is repeated NindG/2 times until ttt 

is filled. 

ε2 
Line 10.Each diffuser   θ   in ttt is compared with a ran- 

domly selected diffusers θP  in Pt. If θG   dominates 
θP , θG replaces θP  in Pt. 

At the end, diffusers in At  compose Θ∗ , the smart 

 
J(Θ*) 

 
J2

min 

 

 

 

 

J1
min 

ε
 

 

 

 

 

J1
max 

approximation to the Pareto front. 
 

4 Multiobjective design of proftled diffusers. 

Approaches 
 

Three different multiobjective problems will be pro- 

posed in order to obtain diffusers with different charac- 
Fig. 5 The concept of s-dominance in a bi-objective prob- 
lem.  J (Θ∗ )  is  the  smart  characterization  of  the   Pareto 
front J (ΘP ). Jmin, Jmin, Jmax, Jmax, Pareto front limits; 

teristics. 

–  MOP1: in which the mean normalized diffusion  co- 
1 2 1 

s1  = (Jmax − Jmin 2 max  
 min 

1 1 )/n box, s2 = (J2 − J2 )/n box box efficient d for the bands of frequencies   [f1, f2, · · · f6] 
widths; and n box, number of boxes for each    dimension. 

 
 

 

 
 

Line 3. P0 is initialized with nP diffusers that are ran- 
domly generated from diffusers alternatives of Ta- 
ble  1  (with  the  same  probability).  If  one diffuser 

does not fulfill Eq. (16) the diffusers is horizontally 

flipped. 

Lines 4 and 7.Function eval calculates  the  objective 

vector J (θ) for each diffuser θ in Pt  (line 4) or in   

ttt  (line  7). 

is maximized (Eq. (17)) and its standard desviation 
is minimized (Eq.  (18)). 

– MOP2: where d is maximized for two different bands 
of frequencies, low [f1, f2, f3] and high [f4, f5, f6] fre- 
quencies.  These  objectives  are  obtained  from  Eq. 
(17) for each range of  frequencies. 

– MOP3: where d is maximized for [f1, f2, · · · f6] fre- 

quencies (Eq. (17)) and for the f1 frequency in par- 
ticular. 

In MOP1, MOP2 and MOP3, the same ev-MOGA 

configuration has been tuned. The ev-MOGA parame- 

ters are set as: 
Line 5.Function store checks individuals in Pt (line 5) 

or ttt  (line 8) that might be included in the archive 
At. 

1. Non-dominated   Pt ∪ At  (line 5) or ttt ∪ At (line 

8) diffusers are detected, ΘND. 

–  nP  = 30000, nG = 8. 
–  n box = 40. 

– Pc/m = 0.5. σini = 10% and σfin = 1% [5]. 

– tmax = 50000. 

2. Pareto front limits  J max and J min are calculated i i 

from J(θ), ∀θ ∈ ΘND. 
3. Individuals in ΘND are analyzed and those that 

are not s-dominated by individuals in A(t), will 
be included in A(t). 

Line 6.With each iteration, the function create cre- 

ates ttt as follows: 
1. Two individuals are randomly selected, θP from 

Pt and θA from At. 

2.A random number   u ∈ [0 . . . 1] is generated. 
3. If u > Pc/m (probability of crossover/mutation), 

θP and θA are crossed over by means of the one- 
point recombination technique. 

4. If   u ≤ Pc/m, θP  and θA  are mutated using  ran- 

To  reduce the random effect of the MOEA    algo- 

rithms, the ev-MOGA algorithm is run 10 times and 

all the resulting Pareto fronts are merged and resam- 

pled with the grid used in ev-MOGA. 

 
4.1 MOP1 

 

In this MOP the objective function vector is the follow- 

ing: 

 
J (θ) = [J1(θ), J2(θ)] 

where 
. 

dom mutation with Gaussian distribution [5] and    .6 
j=1 (d − dj (θ))2 

then included in ttt. J1(θ) = 1 − d, J2(θ) =
 5

 

1 
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Fig. 6  (a) Pareto front and (b-d) Pareto set for MOP1. Fig.  7  Frequency Response of diffusers   of Θ∗ . Solid lines: Optimization range. Dashed lines: Out of 
the optimiza- 

tion range. Notice that frequencies over 1332Hz are over the 

limit of validity of the Fraunhofer theory. 
 

d = 
. dj (θ) 

6 
j=1 

 

Fig. 6.a shows the Pareto front approximation 

 
 

This sensitivity induces the designer to add some 

new desired performances related to the robustness of 

the diffusers in the manufacturing process. This   new 
∗ 
MOP 1 ) obtained in the optimization process.  The performance could be included in the design process as 

trivial solution θ = [0, 0, 0, 0, 0, 0, 0] produces J (θ) = 
[1, 0]. To avoid this undesired solution J1 is modified 
saturating every value  J1(θ) < 0.001 to zero. The    re- 
sulting Pareto front approximation is disjoint and  non 

convex. This type of fronts is not attainable with a 

classical multiobjective technique based on solving the 

single-objective problem that results from a weighted 

aggregation of both objectives. 

Analyzing the result, the Pareto front is in the ranges   
of J1 ∈ [0.291 . . . 0.335] and J2 ∈ [0 . . . 0.06]. It is easy 

additional objectives requiring the definition of a new 

expression to evaluate it and to redo the optimization 

process. In order to avoid more complex fronts (three- 

objective problem), the robustness requirement is in- 

troduced in the decision making step. 

The way to evaluate the robustness is through the 

degradation of the performances when the solution   is 
subjected to a slight variation. For each θ∗ ∈ ΘMOP 1,  

a set ΘR(θ∗) with 63 = 216 diffusers is generated. 
ΘR(θ∗) contains  small  variations  of  θ∗  produced by 

to see that the Pareto set has only three different types 
of solutions. Θ∗        has been divided in three subsets 
of similar diffusers (see Fig. 6.b, Fig.6.c and Fig.6.d). 

Fig. 4.1 shows the frequency response of the normal- 

ized diffusion coefficient for each diffuser in Pareto   set 

MOP 1. It is possible to find diffusers that present high 
values for d (low J1) but with major dispersion (J2). By 
contrast diffusers with low dispersion produce low   val- 

 
 

ues for d (high J1). It is noteworthy the performances 
obtained  by  the  subset  of  diffusers  of  Fig.  6.b. This 
subset (blue point in the Pareto front) presents similar 
diffusers but produces very different performance since 
they cover the extremes of the Pareto front and one of 

them is equally balance between J1  and J2  (centered 
in the Pareto front). That means a slight variation    of 
this configuration produces quite different performance 

changing the depth of its well (adding and subtracting 
one step) except for the well whose value is zero. The 

value for each one of these variations J (ΘR) is calcu- 

lated and its envelop represented in  Fig.  4.1  next  to 

the Pareto front. So it is possible to see the degrada-  

tion in the performance of each diffuser belonging to  

the  Pareto  Front. 

We note that diffusers belonging to subset of Fig.6.b 

(blue one) are less robust than diffusers of the subset     

in Fig.6.c (black) due to the areas of the envelopes are 

higher. Then it seems reasonable to select the final dif- 

fuser from the black ones. To  select the final solution  

we will use the GPP methodology. The ranges of pref- 

erences chosen 7  are shown in Table  4. 

By applying these ranges (see Fig. 4.1) we get three 

diffusers as [T, U ], five as [T, T ], two as [U, T ] and four 

as [U, D]. Among the five [T, T ] diffusers we choose the 
showing how sensitive the design of the diffusers is   for    

J1  and  J2 objectives. 
7   Based in the analyses of the Pareto front of Fig.  6.a. 

f 
1 

f 
2 

f 
3 

f 
4 

f 
5 

f 
6 

J (Θ 

J
 2

 
W

e
ll
s
 d

e
p

th
(m

m
) 

W
e
ll
s
 d

e
p

th
(m

m
) 

d
(

) 



10 
 

U 

T 


MOP1 

D 

D T U 

M 

M 

∗ 

MOP 2 

   j  j     

MOP 2 

W
e

ll
s
 d

e
p

th
(m

m
) 

J
 4
 

 

 
0.07 

0.5 

 

(a) 

 

 

0.45 

0.06 

0.4 

 

 

0.05 0.35 

 

0.3 

 
0.04 

0.25 

 

 

0.2 

0.03 
0.2 0.25 0.3 0.35 0.4 0.45 0.5 

J 
3 

 
 

0.02 0 

 

(b) 

 

(c) 

0 
 

80 

 

0.01 
160

 

240 

 

80 

 

160 
 

240 
 

 
0 
0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 

J 
1 

 

Fig. 8 Pareto Front for MOP1 with the preferences ranges 

and the selected diffuser θMOP 1. Analysis of performance 

degradation. 
 

 
Table  4  Preference ranges for MOP1. 

 

 Desirable Tolerable Undesirable 

J1(θ) 

J2(θ) 

[0, 0.25[ 
[0, 0.02[ 

[0.25, 0.3[ 
[0.02, 0.04[ 

[0.3, ∞[ 

[0.04, ∞[ 
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J = [0.25, 0.02]. Then we get: 

 

θMOP 1 = [100, 0, 184, 272, 80, 292, 220]mm (19) 

[J1(θMOP 1), J2(θMOP 1)] = [0.2961, 0.0275] (20) 

Remark that θMOP 1  (remarked in Fig. 4.1) is in      
a non convex part of the Pareto front, so it couldn’t   
be found by a classical aggregation method based on 

weighting. 
 

4.2 MOP2 
 

In order to evaluate other possibilities, different objec- 

tives are set. This second problem tries to find solutions 

based on optimizing average diffusion coefficient in two 

frequency bands. In this MOP the new objective vector 

is: 

Fig. 9  (a) Pareto front and (b-g) Pareto set for MOP2. 
 

 
 

[0.24 . . . 0.48]. J3 includes f1, f2 and f3 frequencies and 
J4 includes f4, f5 and f6 ones. J3 values are lower than 
J4 ones, it is easier to obtain diffusers with better per- 
formance for low frequencies (J3) than for high  (J4). 

The Pareto set Θ∗ 
OP 2 could be clustered by simi- 

larity in different groups of diffusers. The Θ∗ 
OP 2 has 

been divided in several subsets of similar diffusers8  (see 
Fig. 9.b, Fig.9.c, Fig. 9.d, Fig. 9.e, Fig. 9.f and Fig. 9.g). 

In Fig. 4.2 the frequency response of the normal-  
ized diffusion coefficient d for the diffusers in Pareto set 

ΘMOP 2  is presented. We  can see the trade-off  between 
the different diffusers since the diffusers with high val- 

ues of d for low frequencies present minor values d for 

low frequencies and vice versa. 

The decision making process is assisted by the anal- 

ysis of the robustness of the diffusers in Θ∗ . The 

J (θ) = [J3(θ), J4(θ)] (21) 

where 

same study presented in MOP1 subsection is repeated 

here. Fig. 4.2 shows that solutions in the Pareto set are 

quite robust since the loss of performance is small and 
3   

d (θ) 
6   

d (θ) much lower than in MOP1. 
J3(θ) = 1 − 

. 
, J4(θ) = 1 − 

.
 

3 
j=1 

3 
j=4 

8 The subsets corresponding to the extreme of the Pareto 

front (represented by blue ’x’ in Fig. 9.a) are not represented 
Fig. 9.a shows the Pareto front   J (Θ∗ ). The in Fig. 9 since they are less interesting for the decision mak- 

Pareto front covers ranges J3 ∈ [0.21 . . . 0.46] and J4 ∈ ing. 
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Fig.  10  Frequency  Response for MOP2. Solid lines:  Opti- 
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mization range. Dashed lines: Out of the optimization range. 

Notice that frequencies over 1332Hz are over the limit of va- 

lidity of the Fraunhofer theory. 
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Fig. 12  (a) Pareto front and (b-f) Pareto set for MOP3. 
 

 

 
 

 

θMOP 2 = [174, 76, 0, 144, 240, 70, 270]mm (22) 

[J1(θMOP 2), J5(θMOP 2)] = [0.2934, 0.2955] (23) 

 
4.3 MOP3 

 

In this MOP, the objective vector is built with J1 of 
MOP1 (related to average diffusion coefficient) and an 
indicator of the diffusion coefficient at frequency f1: 
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Fig. 11 Pareto Front for MOP2 with the preferences ranges 

and the selected diffuser θMOP 2. Analysis of performance 

degradation. 

J (θ) = [J1(θ), J5(θ)] (24) 

where J1(θ) is the same as in MOP1  and 

J5(θ) = 1 − d1(θ) 

where d1(θ) is the normalized diffusion coefficient for 
the low frequency considered,  f1. 

Fig. 4.3.a represents the Pareto front    J (Θ∗ ) 

Table  5  Preference ranges for MOP2. 
 

 Desirable Tolerable Undesirable 

J3(θ) 

J4(θ) 

[0, 0.25[ 
[0, 0.25[ 

[0.25, 0.3[ 
[0.25, 0.3[ 

[0.3, ∞[ 

[0.3, ∞[ 
 

 
To select the final solution, by means of GPP method- 

ology, we keep the range of preferences chosen for J1 in 
MOP 1. Then we use the preferences shown in Table  5. 

which  covers  ranges  J1   ∈  [0.291 . . . 0.334]  and  J5  ∈ 
[0.127 . . . 0.373]. As expected, we see that it is easier to 

obtain diffusers with better performance for only one 
frequency (J5) than for a range of frequencies (J1) due 

to the values of J5  are lower than J1. As in MOP2,  the 

MOP 3 has been divided in several subsets according 
to its similarity9  (see Fig. 4.3.b, Fig.4.3.c, Fig. 4.3.d , 

Fig. 4.3.e and Fig. 4.3.f). 

Fig. 4.3 shows the frequency response for the dif- 
By  applying  these  ranges  we  get  six  diffusers as 

[D, U ], two as [U, D], seven as [T, U ], six as [U, T ] and 
fusers in Pareto set   Θ∗

 

robustness of such diffusers. 
and Fig. 4.3 analyses the 

only one as [T, T ]. Then we get the latter one which 
belongs to the subset represented in Fig. 9.b. Fig. 11 

remaks θMOP 2 in the Pareto front. 

 
 

9 The subsets corresponding to the extreme of the Pareto 

front (represented by blue ’x’ in Fig. 4.3.a) are not repre- 

sented. 
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MOP 1 

MOP 1 
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0.9 

Table  6  Preference ranges for MOP3. 

 
 

0.8 

 

0.7 

 
 

0.6 

 

 
0.5 

 

 
0.4 

 

 
0.3 

 

 
0.2 

only one as [T, T ]. This diffuser belongs to the subset 

represented  in  Fig. 4.3.d. 
 

θMOP 3 = [100, 0, 192, 282, 86, 300, 228]mm (25) 
 

[J1(θMOP 3), J5(θMOP 3)] = [0.2998, 0.2971] (26) 
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Fig. 13 Frequency Response for MOP3. Solid lines: Opti- 

mization range. Dashed lines: Out of the optimization range. 

Notice that frequencies over 1332Hz are over the limit of va- 

lidity of the Fraunhofer theory. 
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4.4 Decision Making 
 

As it is shown above, depending on the objectives of the 

problem the set of solutions could be different and this 

fact requires a final decision based on designer prefer- 

ences. In the previous section a decision making process 

has been performed for each problem separately even 

taking in to account the particular robustness charac- 

teristics. For this final decision process all the previous 

results will be considered to obtain a solution more re- 

liable according to the designer   preferences. 
In order to select a final diffuser, the performances of 

the Pareto sets Θ∗ 
∗ 
MOP 2 

∗ 
MOP 3 

are com- 
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0.15 

pared among them and against a classical QR diffuser 

sequence [0, 1, 4, 2, 2, 4, 1] (see Fig. 1) designed using our 

maximum depth and width for each well, which we will 

appoint as θQR  (see Eq.  (27)). 
 
 

θQR = [0, 80, 320, 160, 160, 320, 80]mm (27) 
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Fig. 14 Pareto Front for MOP3. Analysis of performance 

degradation. 
 

 
 

We notice that we can find diffusers with good per- 
formance in J5 (values near 0.1) but in contrast they 
produce very bad performance (undesirable if we con- 

sider the range presented in MOP2) in J1. So we know 
that it is possible to improve considerably the normal- 
ized diffusion coefficient d for one frequency but produc- 
ing a degradation of the response at other frequencies. 

Besides diffusers with good performance in J5  are   less 
robust that the other (see Fig. 4.3, the envelopes  have 
a higher area). 

If we use the same range of preferences presented in 

MOP2 for the objectives in MOP3 (see Table  6), there  

is no diffusers as [D, D], [D, T ] or [T, D]; and there is 

tions in MOP1 context (J1 versus J2), Fig. 16 in MOP2 
(J3 versus J4) and Fig. 4.4 in MOP3 (J1 versus J5). 
Besides, in these figures, the preference ranges for  each 

objective and the performance of the θMOP 1, θMOP 2, 
θMOP 3 and θQR diffusers are pointed. In Fig. 4.4 the 
different frequency response of the selected diffusers   is 

shown. 
If we compare these  four  solutions  (see  Table  7) 

we realize that, except the θQR, all of them present a 
balanced set of performances. As expected, the perfor- 
mance of θQR is worse and highlight the need for an op- 
timization process to get better performance Schroeder 

diffusers. θMOP 2 has good values for J1, J3 and J4 but 
worse for J2 and J5. θMOP 1 and θMOP 3 are more bal- 
ance than θMOP 2, specially for J2, as  expected. 

Comparing the selected diffusers, it seems that θMOP 1 

and θMOP 3 have the same structure, belonging to black 
subsets (Fig. 6.d and Fig. 4.3.d, respectively). It is not 
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Fig. 15  Performance comparative for  MOP1. 
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Fig.   18  Frequency  response  comparative  for   θMOP 1, 

MOP 2. Solid lines: Optimiza- 

tion range. Dashed lines: Out of the optimization range. No- 
tice that frequencies over 1332Hz are over the limit of validity 

of the Fraunhofer theory. 
 

 
Table 7 Performance of θMOP 1, θMOP 2, θMOP 3 and θQR. 
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Fig. 16  Performance comparative for  MOP2. 

tion with a similar structure to θMOP 1 and θMOP 3 (in 
subset represented in Fig. 9.c) and its performance ap- 

proaches to θMOP 2 one (see Table 7). This solution is: 
 

MOP 2 = [100, 0, 182, 278, 96, 298, 216]mm (28) 
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Fig. 17  Performance comparative for  MOP3. 

θMOP 1 and θMOP 3 is a balanced solution for all the 
studied context, then a reasonable selection has to be 
done with this kind of structure. Among them we select 

θMOP 3 (also θMOP 1 could be a good alternative) since 
presents tolerable performance for J1, J2, J3 and J5 and 
it is only undesirable for  J4. 

Finally, we would like to check that the use of   the 

Fraunhofer theory is appropriate. As commented above, 

this theory is the simplest and the less accurate one. For 

comparison, we have obtained the reflection directivity 

sonogram using the Fraunhofer theory and FDTD [15]. 

Fig. 4.4 shows the diagram where the reflected acous- 

tic pressure is represented as a function of both the 
angle and the frequency for θMOP 3, calculated using 
FDTD and the Fraunhofer theory.  One can see    that, 
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θMOP 1 0.296,T 0.027,T 0.308,U 0.284,T 0.316,U 
θMOP 2 0.294,T 0.062,U 0.293,T 0.295,T 0.373,U 
θMOP 3 0.299,T 0.028,T 0.307,U 0.292,T 0.297,T 
θQR 0.423,U 0.105,U 0.504,U 0.342,U 0.525,U 

θ∗ 
MOP 2 0.301,U 0.053,U 0.280,T 0.322,U 0.324,U 
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Fig. 19 Diagrams showing the reflected acoustic pressure 

field (Sound Pressure Level - SPL) of the θMOP 3 individual 

as a function of the angle and the frequency calculated using 

both FDTD (above) and Fraunhofer theory (below). Vertical 

white lines delimit the frequency range in which diffusers have 

been optimized in this work. 
 

 

 

although the results are not equal, they follow the same 

trend, supporting the use of the Fraunhofer theory in 

this work. 
 

 
5 Conclusions 

 
Along this paper a multiobjective optimization approach 

has been presented to design 1-D seven wells Schroeder 

sound diffuser, although  this process could be applied   

to any kind of these diffusers. As far as we know only 

single-objective has been traditionally used for diffusers 

design. The multiobjective approach gives the designer 

the possibility to consider several properties simulta- 

neously. When several objectives have to be optimized 

some of them are probably in conflict. That means there 

exists a set of possible solutions where the designers  

have to choose one according to their preferences. This 

kind of design requires a higher implication of the de- 

signer in the selection process. Multiobjective tools give 

the possibility to explore different sets of solutions and 

help to show the trade-off between them. Then the final 

solution is obtained through a process that gives more 

confidence or reliability to the   designer. 

The presented work uses an ”a posteriori” MO ap- 

proach where first the Pareto front is characterized and 

after a decision making process is performed based on a 

set of preferences. This procedure avoids to merge ob- 

jectives in a single aggregated objective (the traditional 

”a priori” MO approach) and consequently avoids the 

problems associated with the construction of these kind 

of aggregated functions. Additionally ”a posteriori” MO 

approach helps the designer to better understand the 

limitation of the design because it shows the complete 

trade-off  among objectives. 

As a particular improvement in the diffuser design 

procedure, we can find different diffusers that are equiv- 

alent. This fact produces multimodal optimization prob- 

lems that is very important to avoid. For this purpose   

a specific codification of the diffusers is presented, forc- 

ing that one well is set to zero, avoiding flipped dif- 

fusers and considering the precision of manufacturing 

process. With this in mind, the number of possible dif- 

fusers with the codification proposed has been calcu- 

lated and shows an important reduction of the search 

space. This reduction simplifies the optimization prob- 

lem and increases the possibility to find a good approxi- 

mation of the Pareto set. The ev-MOGA algorithm has 

been adequately modified to incorporate the codifica- 

tion presented in this paper. 

Three bi-objective problems (MOP1, MOP2 and MOP3) 

have been set corresponding to different designer point 

of view. All the scenarios are based on the optimiza-  

tion of the normalized coefficient diffusion, but differ- 

ent points of view have been introduced changing the 

target ranges of  frequencies. 

The Pareto diffusers of MOP1, MOP2 and MOP3  

and their Pareto fronts have been analysed. We would 

highlight that similar diffusers can produce quite differ- 

ent performance showing an important sensitivity. Due 

to the value of variation of the depth of the wells has 

been fixed in 2mm, the robustness analysis done (vari- 

ations of plus/minus one step around the values of the 

Pareto front) shows in some cases an important loss of 

performances. 

For some of the MOPs, the Pareto fronts obtained 

are disjoint and non convex justifying the use of a global 

multiobjective optimizer (for instance ev-MOGA). Ad- 

ditionally some of the selected solutions based on pref- 
erences (i.e. θMOP 1) were in non convex areas of the 
Pareto front. These solutions would be very difficult to 
localize with some traditional MO techniques. 

The final diffuser selected (θMOP 3) is optimal in the 
Pareto sense and present a good trade-off among the ob- 

jectives proposed. Finally we have obtained robust so- 

lutions since the acoustic performance of the proposed 
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devices is hardly affected if little mistakes are produced 

in the manufacturing process of the diffuser. 
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