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Abstract

DRAM technology requires refresh operations to be performed in order to avoid

data loss due to capacitance leakage. Refresh operations consume a significant

amount of dynamic energy, which increases with the storage capacity. To reduce

this amount of energy, prior work has focused on reducing refreshes in off-chip

memories. However, this problem also appears in on-chip eDRAM memories

implemented in current low-level caches. The refresh energy can dominate the

dynamic consumption when a high percentage of the chip area is devoted to

eDRAM cache structures.

Replacement algorithms for high-associativity low-level caches select the vic-

tim block avoiding blocks more likely to be reused soon. This paper combines

the state-of-the-art MRUT replacement algorithm with a novel refresh policy.

Refresh operations are performed based on information produced by the re-

placement algorithm. The proposed refresh policy is implemented on top of an

energy-aware eDRAM cache architecture, which implements bank-prediction

and swap operations to save energy.

Experimental results show that, compared to a conventional eDRAM design,
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the proposed energy-aware cache can achieve by 72% refresh energy savings.

Considering the entire on-chip memory hierarchy consumption, the overall en-

ergy savings are 30%. These benefits come with minimal impact on performance

(by 1.2%) and area overhead (by 0.4%).

Keywords: On-chip caches, Reuse information, Selective refresh

1. Introduction

Capacitors in Dynamic Random-Access Memory (DRAM) cells store data

as different levels of charge, and this charge leaks out over time. The elapsed

time since the capacitor was last charged until data contents are lost is referred

to as the retention time. To avoid data loss due to capacitive discharge, DRAM5

cell contents are periodically read out and written back in a process known as

refresh. Refresh operations consume a significant amount of dynamic energy and

can negatively impact performance, since refresh requests compete for memory

with regular processor read and write requests. This overhead associated with

refresh is expected to grow larger in future technologies given their growing10

memory densities. For instance, refresh energy consumption is expected to

reach nearly half the total consumption of future 64Gb DRAM devices [1].

Prior work has concentrated on reducing refresh energy by avoiding issuing

unnecessary refresh accesses in off-chip DRAM devices. Regular memory ac-

cesses implicitly trigger a refresh operation since DRAM contents are written15

back after they are read. Prior work [2] has shown we can exploit this behavior

by delaying periodic refreshes of frequently requested data. Related work con-

sidered inter-cell variation in retention time in order to adapt the refresh period

to each memory row [1, 3, 4]. Finally, Error Correcting Codes (ECC) have been

also used to recover data lost due to extended refresh periods [5].20

Fairly recently, DRAM cells started to be embedded in CMOS technology [6].

These logic-based cells are referred to as embedded DRAM or simply eDRAM

cells. Compared to 6T cells implemented with Static RAM (SRAM) technology,

eDRAM cells are slower, but they provide much higher density and minimal
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Figure 1: Dynamic energy split into expenses due to refresh and non-refresh operations in

eDRAM technology, varying the aggregate L2 capacity.

leakage energy. These features can be better exploited in low-level caches, which25

represent a massive amount of storage in current and future high-end multicore

processors. For example, the aggregated data capacity of second-level (L2)

caches in the IBM Power8 [7] is around 6MB. This value is expected to grow

larger beyond 16MB in Intel’s Knights Landing prototype [8].

Similar to off-chip DRAM devices, refresh operations in eDRAM technol-30

ogy represent an important fraction of the total dynamic energy, as shown in

Figure 11. As observed, refresh energy increases with the growth in aggregated

cache capacity implemented with eDRAM and grows by up to 67% for an overall

capacity of 16MB. Considering all the L2 processor caches, more lines have to

be refreshed during the same retention time, which in eDRAM caches is typi-35

cally thousand times shorter than in off-chip DRAM memories [9]. Nevertheless,

eDRAM refresh consumption continues to be significant in embedded single-core

processors such as the Samsung S5L8900 used in Apple’s iPhone devices [10],

or even in devices with relatively lower eDRAM capacities (i.e., 2MB), such as

1Results have been obtained with the machine parameters and methodology described in

Section 5.
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the Sony’s PlayStation Portable (PSP) [11].40

The overhead of performing refresh in eDRAM caches has been recently

noted by other researchers. A common approach to reduce this overhead is

to lower the impact of inter-cell variability on refresh energy [12, 9, 13]. Other

work has considered using time-based dead-block predictors [14] and cache block

state [15] for filtering refresh requests.45

It is generally accepted that only a small subset of L2 cache lines are reused

(see Section 3), which means that data locality in L2 caches is much lower than

in L1 caches. This behavior has been successfully exploited in recently proposed

smart replacement strategies [16, 17, 18, 19]. These mechanisms perform better

than Least Recently Used (LRU) replacement, selecting a victim block that is50

not likely to be reused again, which is normally chosen (e.g., randomly) from a

set of candidates. In other words, this class of algorithms speculatively identifies

those blocks within a cache set that exhibit poor locality and can be considered

as candidates for eviction.

This paper describes a novel strategy that reduces refresh energy in low-end55

single-core processors. Our approach uses the same information that is used

by replacement policies to discern whether a block should be refreshed or not

in the L2 cache. In this context, the proposed selective refresh policy is inte-

grated with a state-of-the-art Most Recently Used-Tour (MRUT) replacement

algorithm [18].60

To further increase energy savings, the refresh policy is evaluated with our

proposed energy-aware cache, hereafter referred to as the enaw architecture. As

part of this strategy, we allow blocks in different banks to be swapped. This

enables the MRU blocks to be placed in the same bank. Cache lines stored in

this bank are always refreshed and accessed first by using a technique referred65

to as bank-prediction.

Experimental results show that, compared to a conventional eDRAM cache

using a typical refresh mechanism, the proposed enaw approach with selective

refresh reduces refresh energy on average by 72%, whereas the overall on-chip

memory hierarchy energy savings are up to 30% on average. These benefits come70
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at the cost of minimal performance degradation and area overhead. Moreover,

compared to an energy-aware phased eDRAM cache with typical refresh, the

proposed enaw cache reduces the refresh energy consumption by more than 50%,

while also improving performance. Finally, the proposed cache architecture

achieves the best Energy-Delay-squared Product (ED2P ) among the studied75

schemes.

The remainder of this paper is organized as follows. Section 2 provides re-

lated research. Section 3 presents the MRUT replacement algorithm. Section 4

introduces the enaw eDRAM cache architecture with the selective refresh pol-

icy. Section 5 analyzes our experimental results, including energy, performance,80

ED2P , and area. Finally, Section 6 summarizes the paper and discusses direc-

tions for future work.

2. Related Work

Refresh performance for on-chip eDRAM caches is not as easy to optimize

as compared to off-chip DRAM devices since we cannot adopt most existing off-85

chip refresh techniques. First, the access time of external Dual In-Line Memory

Modules (DIMMs) is at least 6 orders of magnitude faster (from ns to ms) than

the next level of the hierarchy (e.g., disks). Thus, less aggressive techniques

should be used since a very long disk access is required on a misspeculation.

Second, main memory is not organized as a cache, so optimizations such as90

way-prediction cannot be applied. Third, external DRAM memory works at a

coarser (row or page) granularity, where the size is typically several KBytes.

The refresh overhead problem in on-chip eDRAM caches has been previously

addressed, taking into account inter-cell feature variations [12, 9, 13]. This prior

work pursued solutions that are orthogonal to our proposed selective refresh.95

In [12], the authors propose to learn the appropriate refresh period from each

cache set via a regressive process. Initially, this process assumes the worst-case

refresh period for the entire cache. Then, refresh periods are increased step-by-

step until ECC detects data losses. In this way, the proper refresh period for

5



each cache set is selected.100

In [9], an ECC optimization approach is proposed to identify expired data in

enlarged refresh periods. This approach provides both single-bit and multi-bit

failure detection. The single-bit error can be corrected, while those cache sec-

tions with multi-bit errors are disabled to avoid the high latency and complexity

of multi-bit error correction.105

The Mosaic [13] architecture minimizes the number of refresh operations

required by exploiting the fact that cell retention times of eDRAM caches exhibit

spatial correlation. The cache is divided into regions with different retention

time requirements, and the contents of each region are refreshed at different

rates using counters in the cache controller.110

Chang et al. [14] describe a mechanism that skips refresh operations in those

blocks marked as dead by a time-based dead-block predictor. The refresh mech-

anism requires four control bits per cache block and three additional bits per

cache set. Blocks are refreshed depending on the predictor accuracy, which is

controlled by a state machine. If the accuracy for a given block is low, then115

the elapsed time from the last access to the block until the time it is considered

useless is increased. On the other hand, high accuracy means that a reasonable

elapsed time has been reached. In contrast to this work, instead of making deci-

sions based on the elapsed time from the last access, our refresh policy exploits

reuse information in terms of how many times a block has been accessed, and120

does not require any predictor assistance nor state machine.

In [15], periodic refreshes are delayed taking into account the implicit re-

fresh incurred by regular accesses. This mechanism is orthogonal to our refresh

policy. Prior work has also proposed a refresh policy that is aware of the block

state. Refrint requires a 5-bit counter per cache block. The counter is set to its125

maximum value when a block is accessed or written back, and it is decremented

on each periodic refresh to that block. When the counter reaches zero, the block

is written back and refreshed if dirty, or it is invalidated in case it is clean.

The 3T1D-based L1 data cache [20] makes use of the information given by

the LRU replacement algorithm to save refresh energy. This approach modifies130
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the cache controller to allocate the MRU data blocks in those lines identified

with the longest retention time.

The Cache Decay [21] scheme was proposed for L1 SRAM caches to reduce

leakage energy. This approach turns off those blocks that are not being used

according to a given value (threshold) of processor cycles. The mechanism works135

based on the fact that due to L1 data locality, hits in a cache block concentrate

in bursts of accesses, which are followed by a long period where the block is not

accessed until it is evicted. However, this behavior is uncommon in lower-level

caches because L1 caches filter many accesses to L2. Unlike this Cache Decay,

the goal of our work is to reduce refresh energy in eDRAM caches that minimize140

leakage by design.

Finally, The Drowsy Cache [22] scheme also focuses on L1 SRAM cache

lines. This approach reduces the supply voltage of selected cache lines while

preserving their state. This technique is periodically applied in those lines that

have not been accessed during a sampling period of time (measured in processor145

cycles). In contrast, in our proposed adaptive refresh policy, the sampling period

is established by tracking cache misses, while the decision to skip the refresh of

a line is determined based on the number of misses that hit in the tag array and

by the specific information given by the MRUT replacement algorithm.

3. Exploiting Reuse Information: MRU-Tour150

Reuse information has been widely investigated in the past to improve cache

performance, especially in L1 data caches [23, 24, 25]. This section describes

the MRUT replacement policy that was originally devised for highly associative

SRAM low-level caches [18]. This policy is used in this work to drive refresh

decisions, that is, to discern which blocks do not need to be refreshed.155

The MRUT algorithm works on the MRUT concept, which is defined as the

number of times that a block becomes the MRU while it is in cache. Figure 2

illustrates this concept for a generic block A during its generation time. This

time starts when A is fetched into the cache (t1 ), and finishes when the block
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Figure 2: Generation time of the cache block A.

is replaced (t3 ). The generation time consists of live and dead times. The live160

time refers to the elapsed time since the block is placed in the cache until its last

access at time t2 before replacement, while the dead time comprises the time

from its last access until eviction. The first MRUT period of A starts when it is

first brought into the cache, continues while the block is being accessed in the

MRU position, and ends when another block, say B, is accessed and becomes165

the MRU block, forcing A to leave this location. In the example, after accessing

B block A is accessed again, so it returns to the MRU position and starts its

second MRUT period.

Based on the observation that most of the blocks exhibit a single MRUT at

the time they are evicted when managed by a typical LRU algorithm, the MRUT170

policy achieves a cost-efficient replacement strategy. The MRUT policy works as

follows. It requires a control bit per cache block, referred to as the MRUT-bit, to

indicate if the block has experienced one or multiple MRUTs. Each time a block

is fetched into the cache, its MRUT-bit is set to zero to reflect that an MRUT

period has started. If the block is accessed while it is in a non-MRU position, it175

returns to the MRU location and a new MRUT period starts. This is indicated

by setting the MRUT-bit to one, meaning that the block possesses good locality

(multiple MRUTs). The victim block is randomly selected among those that

have their MRUT-bit set to zero, excluding the last y accessed blocks. This

filters stale information, using only recent information, since the LRU stack180

order is kept for just these y blocks. In case that all the blocks in the same

8



Algorithm: MRUT

Cache hit in block x :

if(x is not the MRU block)

set the MRUT-bit of x to 1

Cache miss:

a) select the block to be replaced

if (there are candidates with MRUT-bit=0)

randomly among candidates (except the last y referenced blocks)

else

randomly among all blocks (except the last y referenced blocks)

b) set the MRUT-bit of the incoming block to 0

End Algorithm

Figure 3: MRUT replacement algorithm.

set exhibit multiple MRUTs, the victim block is selected among all the blocks

(except the last y referenced blocks). Figure 3 shows our implementation of this

algorithm. In addition, to adapt the replacement algorithm to dynamic changes

in the working set, the MRUT-bits of all the cache blocks are periodically set to185

zero at runtime in those applications exhibiting few cache misses (e.g., MPKI

< 10). Please refer to [18] for further details.

4. Enaw Cache Architecture

This section describes the proposed enaw eDRAM architecture, which relies

on two main design features to save energy: i) bank-prediction cache and ii)190

selective refresh. In addition we consider swap operations of blocks in different

banks to make bank-prediction more performance effective. These enhance-

ments are discussed below.

4.1. Bank-Prediction

Parallel access to all the tags and cache ways of the selected set helps enhance195

performance, but can be energy inefficient, especially in the context of highly-

9
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Figure 4: Percentage of cache hits across the ways of a 128B-line 2MB-16way L2 cache using

LRU replacement.

associative eDRAM caches where all the ways must be written back on each

access after a (destructive) read. Previous work has addressed this problem by

predicting which way should be accessed first. Some of these mechanisms [26,

27, 28] have been deployed in commercial microprocessors. These schemes,200

especially when applied in L1 caches, suffer minor performance losses since data

locality is high in these memories [29]. However, data locality is much less

predictable in L2, so way-prediction schemes lead to unacceptable performance

losses. To deal with this drawback, we propose a method to predict a group of

ways (instead of only one) to be accessed first.205

In order to discern how many cache ways should be accessed (i.e., predicted)

in a first step, we analyzed the hit distribution across the cache ways for a

2MB-16way L2 cache with the LRU algorithm. Figure 4 shows the results.

Labels way-0 and way-1 refer to the cache way storing the MRU block and the

following MRU block, respectively. Label way-15 refers to the way holding the210

LRU block. Several ways have been grouped together for illustrative purposes.

On average, 69% of the cache hits land in way-0 due to the temporal locality

present in L2 caches. This percentage is significantly lower than the hit ratio

found in L1 caches, where this value is generally above 90% [29]. This means

that, unlike way-predictors for L1 caches, a predictor for L2 caches accessing215

first the cache way containing the MRU data of the target set would introduce

an unacceptable performance drop. However, this problem does not remain a

10
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barrier if we predict the access to more cache ways. Effectively, the percentage

of hits increases to 80% when considering an additional way (considering both

way-0 and way-1 ). Using two ways, the hit percentage is above 90% in 15 of220

26 benchmarks, though only 6 benchmarks have a 90% or higher hit ratio in

the case where only a single way is considered. We analyzed the benefits of

predicting an increasing number of ways, but each additional way provides only

a marginal benefit as seen in Figure 4. For instance, including way-2 and way-3

only increases the hit ratio by 3%. Based on these results, we can conclude225

that accessing both way-0 and way-1 as an initial step should lead to better

performance in L2 caches (see Section 5.2).

For analysis purposes, this work assumes that each cache bank of the data

array consists of a pair of ways. For example, a 16-way cache has 8 banks. The

key idea behind this bank distribution is to keep the pair of ways associated230

with the MRU and second MRU blocks in the same bank (we will refer to this

bank as the MRU bank), which is accessed first on every cache access. The

bank-prediction technique works as follows. On each cache access, both the tag

array and the MRU bank of the data array are accessed in parallel in a first step.

Therefore, on a hit in the MRU bank, the access time of the cache is the same235

as that of a conventional cache. Otherwise, in case of a tag hit associated with

any other bank, only the bank containing the target block is accessed in the

second step, which starts right after the tag comparison. On a cache miss, just

the MRU bank is accessed during the first step and the second step is skipped.

Figure 5 plots both steps. Gray color refers to the accessed components in the240

first and second steps (if any).
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Finally, the tag array is assumed to be built with SRAM technology, since

implementing this structure with slow eDRAM would negatively affect the per-

formance when performing the second step and on a cache miss. Besides, as

the tag array is much smaller than the data array, much less leakage and area245

savings can come from it.

4.2. Maintaining the Block Order Only in the MRU Bank and Swap Operation

Details

Our bank distribution scheme produces banks containing the two MRU

blocks. This design simplifies replacement logic. The MRUT algorithm main-250

taining just the order of two ways (way-0 and way-1, -i.e., y = 2-) shows roughly

the same hit distribution across cache ways as the LRU algorithm. For instance,

the percentage of hits in way-0 is on average by 68%. This percentage grows

up to 79% when considering both way-0 and way-1. The MRUT algorithm can

be implemented as follows in the enaw design. The stack order is maintained255

just for the blocks stored in the MRU bank, which are not selected for replace-

ment to leverage the freshness of the information. The remaining blocks are

considered as candidates for eviction in case they experienced a single MRUT

(MRUT-bit=0). Hardware complexity is significantly reduced with respect to

the LRU algorithm, since blocks in the MRU bank only require a pair of control260

bits per cache block: the MRU-bit (to track the position in the LRU stack)

and the MRUT-bit (to indicate whether the block has multiple MRUTs or not),

whereas blocks stored in non-MRU banks do not require any status bit apart

from the MRUT-bit. Figure 6 depicts a block diagram of the proposed cache

with a possible set of values of the control bits used by the MRUT replacement265

algorithm.

In order to keep the pair of ways that hold the MRU data blocks of each

set in the same bank, the cache controller is enhanced to implement the swap

of blocks between different banks. Figure 7(a) and Figure 7(b) illustrate the

data transfers performed during the swap operation that arise in non-MRU270

hits and cache misses, respectively. On a cache hit in a non-MRU bank, the

12



MRU bank non-MRU banks

MRUT-bit

MRU-bit

01 1 1 0 1 0 0 1

1 0

0 1 0 0 1 1 1
c
a

c
h

e
 w

a
y

c
a

c
h

e
 w

a
y

c
a

c
h

e
 w

a
y

c
a

c
h

e
 w

a
y

..
.

candidates for eviction

Figure 6: Diagram of the data array of the enaw cache with the control bits of the MRUT

algorithm.

target block is temporarily stored in an auxiliary buffer associated with the

non-MRU bank2 as shown in the first step of Figure 7(a). The LRU block of

the MRU bank (second MRU block) is transferred to this non-MRU bank (step

2). Then, the target block is moved from the intermediate buffer to the MRU275

bank, and becomes the MRU block (step 3). Notice that after this step the

LRU stack must be updated accordingly (step 4). On a cache miss, the LRU

block of the MRU bank moves to the non-MRU bank which contains the victim

block according to the MRUT algorithm (step 1 of Figure 7(b)), whereas the

requested block is fetched from main memory and stored in the MRU bank (step280

2). Finally, the LRU stack is updated (step 3). On a hit in the MRU bank, no

data movement between ways or banks is performed, instead the LRU stack is

updated if necessary.

The design assumes that tags are not swapped. For 16-way caches, four

status bits per tag are required to maintain the mapping between tags and285

cache ways, which is similar to the technique used in [30]. Note that the access

to these status bits is not in the critical path since they are read together with

the tag array and the MRU bank in the first step of the enaw cache access (see

Figure 5). The area overhead introduced by these control bits, as well as the

auxiliary buffers, is minimal as analyzed in Section 5.3.290

2The proposed design includes as many buffers as non-MRU banks to permit bank paral-

lelism.
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4.3. Refresh Mechanism

The cache memory accesses and swap operations implicitly refresh the eDRAM

contents. However, as the storage cells lose their charge over time, if some form

of refresh is not performed, rarely accessed data will be lost. In such a case,

if the data are later requested, a clean copy can be fetched from the main295

memory (assuming a write-through policy), but this negatively impacts both

performance and energy consumption. To avoid data losses, refresh cycles are

scheduled using either a distributed or burst method in typical DRAM memo-

ries [31]. This work assumes a distributed refresh method as the baseline since

it is the most commonly used method.300

Refresh operations are performed at a cache block granularity, so that the

refresh period can be established by computing the shortest charge retention

time divided by the number of blocks in the cache. This guarantees that all the

blocks are refreshed ahead of losing their contents. This work simulates logic-

14



compatible eDRAM technology using 10fF trench capacitors [32] in CACTI [33],305

which gives a retention time of 190K processor cycles for a 3GHz processor clock

and 45nm technology. Notice that such a retention time value is reasonable,

since it increases from a 1.3x to a 2.1x factor with respect to the retention

times assumed in previous work [13, 15, 9]. In order to reduce bank conflicts

and contention, refresh operations are interleaved across cache banks and follow310

a round-robin pattern.

In addition to the baseline distributed refresh policy (referred to as Alw),

two additional selective refresh policies exploiting the MRUT concept have been

devised for saving energy. We will refer to these as i) Cond and ii) Adp. These

policies work as follows:315

• Alw . This policy always refreshes the target block regardless of the value

of the MRUT-bit and the LRU-stack position of the block.

• Cond . Refresh is applied whenever the following condition is satisfied:

the target block is stored in the MRU bank or its MRUT-bit=’1’ (multiple

MRUTs). Otherwise the block is marked as invalid and written back to320

main memory if dirty (early writeback).

• Adp. This policy dynamically adapts between Alw and Cond at runtime.

The Cond policy aims to reduce energy waste due to refresh with respect to

Alw. This policy allows data losses in those blocks less likely to be accessed again

(i.e., these blocks are not refreshed). Since Cond is a speculative approach, it can325

lead to performance degradation caused by misspeculation (a block is requested

after capacitive discharge). The block must then be fetched from the main

memory. This policy uses the position in the LRU stack and the MRUT-bit to

decide whether the block should be refreshed or not. If the prediction accuracy

is high, the Cond policy can achieve substantial energy savings with minimal330

performance loss. However, if the prediction accuracy is low, this policy can

severely impact performance.
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Because of Cond can threaten performance in the case of low prediction

accuracy, the Adp policy has been devised to deal with this drawback. The

Adp policy dynamically selects which of the previous policies will be applied335

depending on the previous cache behavior. It uses a pair of counters for the

whole cache to track the number of standard cache misses (miss counter), as

well as the number of misses that hit in the tag array when the associated data

line has lost its contents (tag-hit-data-miss counter). These misses occur when

the requested block has been previously invalidated when working under the340

Cond policy, and they are a subset of the number of standard misses.

Initially, the Cond policy is selected by default, both counters are reset to

zero, and a sampling period starts. This period finishes when the miss counter

reaches a given value (e.g., 128). At that point, if the tag-hit-data-miss counter

exceeds a given threshold (e.g., 8), the Alw refresh policy is selected during345

the next sampling period. Otherwise the Cond policy continues to be applied.

Then, both counters are reset and a new sampling period starts. In the case

where the Alw policy is used during a given sampling period and the tag-hit-

data-miss counter does not surpass its threshold, the Cond policy is chosen for

the next sampling period.350

Threshold values of miss and tag-hit-data-miss counters are defined as a

power of two, in order to make hardware simple. That is, it is enough to check

just a single bit of each counter to choose the policy to be applied during the

next sampling period. Note that the sampling period is independent of the

refresh period, which is determined by the retention time and number of blocks.355

Figure 8 presents an example that illustrates how the Cond policy works3 in

a cache set consisting of two and four MRU and non-MRU ways, respectively.

Initially, the cache set does not store any valid data (represented by the mark

“–”). Then, blocks A and B are accessed and consequently placed in the two

MRU ways. After that, the first periodic refresh is triggered, affecting the360

MRU way where block A resides. Note that this refresh operation is performed

3Of course, it also includes the behavior of Adp when the selected policy is Cond.

16



MRU
ways

non-MRU
ways

M
R

U
T

-b
it

M
R

U
-b

it

--

--

--

--

--

0 0

--

A

--

--

--

--

0

0 1

0

A

B

C

D D

--

--

--

0

0

0 0

1

--

--

0

0

0

1 0

1

--

--

--

--

0

0 1

0

A

B

1 refreshst

B

A

--

--

0

0

0

0 1

0

C

A

B

--

--

0

0

0

0 1

0D

C

B

A

B

A

C

Accessed
blocks

A B C D B

time

--

0

1

0

0

1 1

0

C

--

0

1

0

0

1 1

0

C

F

G

F H

1

0

1

0

0

0 0

1

1

0

1

0

0

0 0

1

1

0

1

0

0

0 0

1

B

4 refreshth

E

G

1

--

1

0

0

0 0

1

G

E

B

1

0

1

0

0

0 1

0H

G

B

E

I

E

F G H I

time

D

B

E

F

B

D D

F

G

F

B

D D F

C C

G

B

--

0

0

0

0

1 1

0

B

--

0

0

--

0

1 1

0

B

D

I

H1

0

1

0

0

0 0

1

--

0

1

--

0

1 0

1

B

E

0

0

1

0

1

0 1

0C

E

B

0

0

1

0

1

1

C

I

B

E

C

E

I

C

A

E

C

I

E

D

H

B

G G G

H

D

E C

C

C

refresh period

D

E

C

E

C C

0

1

2 refreshnd 3 refresh (skipped)rd

refresh period

5 refresh (skipped)th 6 refreshth

refresh period refresh period

Figure 8: Example of periodic refresh operations performed by Cond in the devised energy-

aware cache.

regardless of the value of the MRUT-bit corresponding to block A, since the

contents of the two MRU ways are always refreshed. Similarly, block D is

refreshed in the second periodic refresh.

The third periodic refresh corresponds to a non-MRU way that contains365

the block A with its MRUT-bit not set, so the refresh operation is skipped

and the block is invalidated. This situation also occurs in the fifth periodic

refresh, resulting in the invalidation of block D. In contrast, blocks B and C

are refreshed (in the fourth and sixth periodic refreshes, respectively) because

their MRUT-bit is set. Recall that the MRUT-bit is set whenever a block is370

accessed while it is not in the MRU position, which occurs for blocks B, C, and

I in their second access. Finally, according to the round-robin policy followed

by the refresh mechanism, the seventh periodic refresh to this cache set (not

shown) would correspond to the first MRU way (assuming in this example that

17



each cache bank implements a single way in the cache).375

5. Experimental Evaluation

Next, we present the simulation environment used to evaluate the studied

cache schemes. An extended version of the SimpleScalar simulation frame-

work [34] has been used to model the MRUT replacement algorithm and the

devised enaw architecture with the selective refresh policies. Leakage and dy-380

namic energy were estimated from the execution time and the required memory

events (i.e., cache hits, misses, writebacks, swaps, and refreshes) of the bench-

marks, respectively. Bank conflicts and contention due to all these memory

events has also been considered. Accesses to different banks can be issued con-

currently, but an access to a given bank must wait until the previous access to385

the same bank finishes. On a swap operation, the banks involved cannot be ac-

cessed until the data migration finishes. Access time, leakage currents, dynamic

energy per memory event, and area were calculated with CACTI 5.3 [33, 35]

assuming a 3GHz processor clock and 45nm technology. The overall energy was

estimated by combining the results of the detailed architectural simulator and390

the energy estimations.

Experiments have been performed for the Alpha ISA with the ref input

set and running the SPEC CPU benchmark suite [36]. Results were collected

simulating 500M instructions after skipping the initial 1B instructions. Table 1

summarizes the main architectural parameters.395

5.1. Impact on Dynamic Energy

We want to evaluate the dynamic energy savings of the proposed enaw

eDRAM cache and the refresh policies applied to it. Dynamic consumption has

been divided into four major components, according to the type of operation:

i) accesses to the L2 cache (Access consumption), ii) swap operations between400

banks in the enaw architecture (Swap consumption), iii) refresh operations of

the L2 data (Refresh consumption), and iv) fetched blocks to the L2 cache from

18



Microprocessor core

Issue policy Out of order
Branch predictor type Hybrid gshare/bimodal: gshare

has 14-bit global history plus 16K
2-bit counters, bimodal has 4K
2-bit counters, and choice
predictor has 4K 2-bit counters

Branch predictor penalty 10 cycles
Fetch, issue, commit width 4 instructions/cycle
ROB size (entries) 256
# Int/FP ALUs 4/4

Memory hierarchy

L1 instruction cache 16KB, 2-way, 64B-line, 2-cycle
L1 data cache 16KB, 2-way, 64B-line, 2-cycle
L2 unified cache 2MB, 16-way, 128B-line, 8 banks

SRAM tag array: 2-cycle
eDRAM data array: 12-cycle
MRUT replacement algorithm

Main Memory 100-cycle

Table 1: Architectural machine parameters.

the main memory and L2 writebacks to the main memory (Miss and writeback

consumption). The first component covers the energy spent in the access to the

L2 cache, including the tag array, data array, and cache controller logic (e.g.,405

decoders, multiplexers, and sense amplifiers). Remember that a swap operation

arises in each non-MRU hit. Its consumption has been obtained as the sum of

the cost of a read access to the MRU bank, a read access to the target non-MRU

bank, a write access to that bank (i.e., step 2 in Figure 7(a)), and a write access

to the MRU bank (step 3). The unidirectional transfer performed on each cache410

miss (step 1 in Figure 7(b)) has also been included in this category as a write

access to a non-MRU bank. The L2 refresh consumption considers the energy

cost due to refreshing the contents after reads and periodic refresh operations.

Finally, a commodity 2GB DRAM main memory is assumed to estimate energy

due to L2 misses and L2 writebacks. The number of these L2 memory events415

differs among refresh policies since they result in different prediction accuracies.

First, we analyze the effects of the devised bank-prediction technique and

swap operations. Figure 9(a) and Figure 9(b) plot the dynamic energy (in
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Figure 9: Dynamic energy (in mJ) of the conventional cache (Conv), the enaw cache (Alw),

and the phased cache (Psd), all using the baseline refresh policy.

mJ) consumed, for Integer (Int) and Floating-Point (FP) benchmarks, respec-

tively. We are evaluating the enaw cache working with the previously described420

Alw policy (labelled as Alw in the graph). Two additional cache schemes have

been considered for comparison purposes. Label Conv refers to a conventional

eDRAM cache that accesses the tag array in parallel with all the data cache
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ways, while Psd refers to a phased eDRAM cache that serializes accesses to the

tag array and the data array [30]. Thus, the access time includes the tag array425

latency plus the data array latency, and only the target bank is accessed after

the tag comparison. For the sake of fairness, it is assumed that these caches are

implemented with the same technology and replacement policy as the proposal.

That is, the tag array is built with SRAM technology and the the MRUT re-

placement algorithm is used. In addition, both cache schemes implement the430

baseline Alw refresh policy.

Results differ wildly across benchmarks for a given refresh policy due to two

main factors. First, all the analyzed types of consumption depend on the number

of accesses to L2 or main memory. The higher the number of accesses, the higher

the energy consumption. Second, applications have different execution times.435

Those benchmarks with longer execution times significantly increase the refresh

energy (e.g., mcf and ammp).

Compared to Conv, the consumption of the enaw cache is significantly re-

duced. Note that in some benchmarks such as gcc and vortex, only the Access

consumption of the conventional cache exceeds the total dynamic energy con-440

sumption of the proposed enaw approach. This is due to a reduced number of

accesses and refresh operations are carried out in the enaw cache thanks to the

bank-prediction technique, which enables the proposed cache to access just the

target non-MRU bank after the tag comparison. In addition, although enaw

wastes energy in swap operations, this consumption is minimal because most445

of the hits concentrate in the MRU bank (see Figure 11). In fact, the swap

energy only represents on average a 11% of the overall dynamic consumption.

The highest swap energy overhead can be found in art, which is the benchmark

with the highest number of non-MRU hits.

Compared to Psd, the enaw cache slightly increases the overall dynamic en-450

ergy. Such energy waste, which can be observed in some of the applications like

mcf, comes from the bank-prediction inaccuracy (useless MRU bank accesses)

that produce a subsequent swap operation. On the other hand, Psd consumes

slightly more refresh energy than Alw because the target bank must be refreshed
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on each cache access (Psd does not include swaps) and it increases the execution455

time (see Section 5.2). Finally, notice that for a given benchmark, the Miss and

writeback energy is the same regardless of the cache design. This is due to the

fact that all the studied schemes prevent data loss by refreshing all the cache

blocks.

Figure 10(a) and Figure 10(b) compare the effects of the devised refresh460

policies used in the enaw architecture. Both figures show that the Cond policy

largely increases the consumption in the Miss and writeback component with

respect to Alw due to extra cache misses and early writebacks caused by the

non-refreshed blocks. Compared to Alw, the increase in Misses and writebacks

observed in Cond is balanced out by the associated refresh energy savings. On465

the other hand, Adp slightly increases the refresh energy with respect to Cond,

but it considerably reduces the Miss and writeback energy. Since Adp reduces

the number of accesses to the main memory, it performs much better than Cond

(see Section 5.2). Regarding swap energy, the Cond policy barely reduces this

consumption. This effect can be clearly appreciated in twolf. However, these470

savings are compensated for by the Access energy, which increases due to extra

misses (requests to non-refreshed blocks and subsequent fetches to L2). The sum

of both Access and Swap costs are uniform across the studied refresh policies

and benchmarks. Overall, Adp is the most energy-efficient refresh method.

The refresh energy savings of Alw and Adp are on average 50% and 72%,475

respectively, as compared to Conv. The refresh reduction of Alw comes from

bank-prediction, while savings of Adp are due to both bank-prediction and se-

lective refresh. Taking into account the four components, the overall dynamic

energy savings of Alw are on average 52% with respect to Conv, while the Adp

method reduces the overall energy by 58%. Compared to Alw and Psd, Adp480

reduces the refresh energy consumption by 43% and 46%, respectively, which

confirms that the proposed selective refresh technique is an effective way to

attack the refresh overhead.

Finally, different threshold values for miss and tag-hit-data-miss counters

were analyzed for Adp. Results were obtained with a threshold of 128 and 8485

22



100 100109

0

10

20

30

40

50

60

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

crafty gcc mcf twolf gap parser eon gzip perlb. vortex vpr bzip2 Avg

D
y
n
a
m

ic
E

n
e
rg

y
(m

J
)

Miss and writeback (mJ)

Refresh (mJ)

Swap (mJ)

Access (mJ)

a) Int benchmarks

201217 201

0

20

40

60

80

100

120

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

A
lw

C
o
n
d

A
d
p

apsi ammp equa. sixtr. swim lucas art facer. galgel wup. mesa fma3d mgrid applu Avg

D
y
n
a
m

ic
E

n
e
rg

y
(m

J
)

Miss and writeback (mJ)

Refresh (mJ)

Swap (mJ)

Access (mJ)

b) FP benchmarks

Figure 10: Dynamic energy (in mJ) of the enaw cache using the baseline refresh policy (Alw)

and the proposed Cond and Adp selective refresh policies.

for miss and tag-hit-data-miss, respectively, since this pair is the most energy-

efficient4.

4Increasing the tag-hit-data-miss threshold reduces the Refresh consumption, but the Miss

and writeback energy increases much more due to additional induced misses and writebacks.

In contrast, a smaller threshold value makes the behavior of Adp closer to that of Alw. For
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Figure 11: Hit ratio (%) of the enaw cache, divided into hits in MRU and non-MRU banks

for the refresh policies considered.

5.2. Performance

Figure 11 presents the cache hit ratio of the enaw design, with the hit ratio

in MRU and non-MRU banks reported individually. Notice that the hit ratio of490

Alw matches the hit ratio of conventional and phased caches, since both refresh

methods avoid data losses.

The MRU hit ratio is on average 70%, while this percentage is above 80% in

half of the applications. These results illustrate the effectiveness of the bank-

prediction and the swap mechanism, since most of the cache accesses hit the495

MRU bank at the first step.

An interesting observation is that the MRU hit ratio remains constant for

each benchmark regardless of the refresh policy used. This is due to the refresh

methods considered here assume the same placement/replacement strategies

and blocks stored in the MRU bank are always refreshed.500

Regarding the non-MRU hit ratio, it is lower for the Cond policy than in

the Alw policy. This is because Cond refreshes a small percentage of non-MRU

blocks that are reused later. For instance, in a number of the benchmarks (9 of

the miss threshold, larger values allow the Cond refresh to be applied for a long period, which

may lead to severe performance losses. On the contrary, smaller values shorten the sampling

period in such a way that the mechanism does not have enough information to decide which

is the most appropriate policy for the next period.
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Figure 12: Slowdown (%) of the phased cache and the enaw cache for the proposed refresh

policies with respect to the conventional cache.

26) such as parser or galgel experience noticeable non-MRU hit ratio differences,

which results in unacceptable performance, as shown in Figure 12. In contrast,505

the non-MRU hit ratio of Alw and Adp are quite similar, with the only exception

of ammp. Moreover, in other benchmarks like apsi and art, the non-MRU hit

ratio remains almost constant (regardless of the refresh policy), which suggests

that most of the blocks exhibit multiple MRUTs so that they are refreshed.

Figure 12 plots the slowdown (lower is the better) of the enaw scheme using510

Alw, Adp, and Cond refresh policies and the phased cache scheme (Psd) with

respect to the conventional cache (Conv). On average, the performance loss

of Alw is roughly the same as that of Conv, although differences can be found

in some specific benchmarks. For example, in applications such as crafty and

vortex, Conv outperforms Alw. This is mainly due to the fact that the latter515

scheme has to wait for the tag comparison before accessing the target non-MRU

bank. In other benchmarks like mcf and bzip2, Alw obtains better results than

the conventional cache. This is because the latter approach experiences higher

bank contention, since on each cache access, all the cache banks are accessed

in parallel. Thus, a given memory request may be stalled by a previous access,520

independent of the target bank. In mcf and art, this factor severely impacts

Conv, since both selective refresh policies obtain better performance.

As explained above, the performance differences between Alw and the selec-

tive policies are mostly due to L2 misses caused by misspeculation. Notice that
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employing a cache decay technique that does not refresh any block significantly525

impacts performance as compare to Cond. The slowdown associated with this

policy is on average 6.9% higher with respect to the conventional cache. This

percentage can be significantly reduced by using a less-aggressive Adp policy

(only by 1.2%). These results lead us to conclude that: i) having the enaw

cache access a single MRU bank first (a couple of cache ways) allows us to530

achieve negligible slowdown and ii) the swap operation does not substantially

impact performance.

The Psd cache negatively impacts execution time with respect to Alw and

Conv, since it waits for the tag comparison before accessing the target bank

on each cache access. Notice too that the enaw cache using the Adp policy535

improves the performance with respect to Psd in almost all of the applications

(i.e., 20 of 26 benchmarks). This means that, even though the misspeculation

of the selective refresh can lead to performance loss, the benefits due to bank

prediction can counteract the losses. In fact, even the Cond policy outperforms

Psd in most of the benchmarks (e.g., crafty, equake, and fma3d); however,540

Cond experiences more slowdown on average because it is severely penalized

by poorly performing applications such as twolf and sixtrack. Overall, Adp

improves performance on average by 2.1% with respect to Psd.

5.3. On-Chip Memory Hierarchy Energy, Energy-Delay-Squared Product, and

Area545

This section quantifies the total on-chip memory hierarchy consumption,

Energy-Delay-squared Product (ED2P ), and area for the studied L2 caches

and both SRAM-based L1 data and L1 instruction caches. Table 2 summarizes

results for the Int and FP applications together.

Leakage has been accounted for cycle by cycle during each benchmark ex-550

ecution. It comprises the tag array, data array, intermediate buffers (if any),

and remaining cache controller logic. Dynamic energy is the sum of the Access,

Swap, and Miss and writeback categories defined above. Total energy refers to

the sum of leakage, dynamic, and refresh consumption. The area values (in
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L1 caches L2 caches
Data Insn. Conv Psd Enaw

Alw Cond Adp

Leakage (mJ) 2.0 2.0 33.1 34.3 33.1 35.6 33.6
Dynamic (mJ) 9.7 30.8 54.3 21.6 25.4 29.9 26.8
Refresh (mJ) 0 0 29.9 15.6 15.0 6.6 8.5

Total energy (mJ) 11.7 32.8 117.3 71.5 73.5 72.1 68.9

ED2P – – 997499 650925 624909 708007 600213

Area (mm2) 0.27 0.27 8.20 8.20 8.23 8.23 8.23

Table 2: Total energy, ED2P , and area of the L1 and L2 studied caches.

mm2) include all the components considered for leakage, plus the overhead of555

the status bits required to keep the mapping between tags and data blocks,

the MRU-bits, and the MRUT-bits. The ED2P values for each cache architec-

ture were obtained multiplying the corresponding total energy (in mJ) by the

squared execution time (in ms).

Compared to the L1 caches, despite the proposed L2 caches are eDRAM-560

based, the amount of leakage current significantly increases in the eDRAM

caches mainly due to their larger capacity. Both conventional and the enaw

schemes using Alw consume the same amount of leakage energy, closely fol-

lowed by Adp. Leakage differences appear due to this energy is proportional

to the execution time, and longer execution time (see Figure 12) implies higher565

consumption. Depending on the cache architecture, the ratio of leakage with

respect to the overall energy varies from 28% (Conv) to 49% (enaw caches with

selective refresh).

The dynamic energy also increases with the storage capacity, although the

proposed caches save energy by applying bank-prediction. Compared to the570

L1 data cache, the L1 instruction cache consumes a larger amount of dynamic

energy because it is more frequently accessed. As discussed above, compared

to Conv, the proposed cache reduces dynamic energy by implementing bank-

prediction and swap operations. In addition, the selective policies considerably

minimize the refresh costs. This allows Adp to be the most energy conservative575

cache among all the studied schemes. Overall, this approach reduces the total
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energy by 41% with respect to the conventional cache. Taking into account all

the on-chip memory hierarchy, this percentage is by 30%.

The enaw cache using the Adp policy is also the best cache design choice

from the perspective of the ED2P (lower is the better). Despite the fact that580

Adp increases the execution time when compared to Conv and Alw, its overall

energy savings allow this scheme to obtain the lowest ED2P among all the

studied caches, even though this metric gives more weight to performance than

to energy. Note that although Alw consumes more energy than Psd (mainly

due to the savings of predicting the access to the MRU bank), Alw also reduces585

the ED2P compared to Psd because it performs better.

Finally, the scant area overhead (0.4%) that we see in the enaw caches with

respect to both conventional and phased approaches is due to the use of inter-

mediate buffers and status bits. Regarding the additional hardware incurred by

the proposed Adp refresh method, remember that it only requires two counters590

for the entire cache, and the policy to be applied is selected by checking just a

single bit of each counter, yielding negligible overhead.

6. Conclusions and Future Work

This paper has shown that the information used by recent replacement al-

gorithms for highly-associative caches can help designers to efficiently reduce595

the refresh overhead of eDRAM caches. Selective refresh mechanisms relying on

a state-of-the-art MRU-Tour replacement algorithm have been studied, which

leverages reuse information to identify useless blocks exhibiting poor locality and

considers them as candidates for eviction. The proposed refresh policy prevents

these blocks from being refreshed, reducing the overall energy consumption.600

To further obtain energy benefits, the refresh policies have been evaluated

on an energy-aware (enaw) cache architecture, which reduces dynamic energy

by applying bank-prediction and swap operations. Compared to a conventional

cache with the same storage capacity, the enaw cache reduces refresh energy by

72% and dynamic energy by 58%, which translates into a 30% reduction of the605
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overall on-chip memory hierarchy (leakage and dynamic) consumption. These

energy benefits are achieved with minimal impact on performance and area.

Compared to an enegy-aware phased cache, the devised enaw cache reduces

the refresh energy consumption in half, while improving the performance. Fi-

nally, the energy-delay-squared product analysis further supports that the enaw610

cache with selective refresh is the best design option among the studied schemes.

Our evaluation here has focused on L2 caches of single-core processors. For

future work we plan to extend the selective refresh design to much largered

shared low-level caches and multithreaded workloads in chip multi-processors.
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