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Abstract We consider the numerical solution of linear systems arising from computational
electromagnetics applications. For large scale problems the solution is usually obtained it-
eratively with a Krylov subspace method. It is well known that for ill conditioned problems
the convergence of these methods can be very slow or even it may be impossible to obtain a
satisfactory solution. To improve the convergence a preconditioner can be used, but in some
cases additional strategies are needed. In this work we study the application of spectral low-
rank updates (SLRU) to a previously computed sparse approximate inverse preconditioner.
The updates are based on the computation of a small subset of the eigenpairs closest to the
origin. Thus, the performance of the SLRU technique depends on the method available to
compute the eigenpairs of interest. The SLRU method was first used using the IRA’s method
implemented in ARPACK. In this work we investigate the use of a Jacobi-Davidson method,
in particular its JDQR variant . The results of the numerical experiments show that the appli-
cation of the JDQR method to obtain the spectral low-rank updates can be quite competitive
compared with the IRA’s method.
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1 Introduction

Computational electromagnetics applications include the computation of the antenna ra-
diation pattern, electromagnetic interference and compatibility studies in aircraft industry
and electromagnetic scattering problems as the computation of the radar cross-section of a
complex body. A good understanding of these phenomena is crucial to the design of many
industrial devices like radars, computer microprocessors and optical fibre systems. All these
simulations can be very demanding in terms of computer resources. Therefore new algo-
rithms and the use of high performance computers are required to afford a rigorous numeri-
cal solution.

Maxwell’s equations [13] are used to model Electromagnetism phenomena. A numerical
solution can be computed by solving either the differential formulation of these equations or
their integral counterpart. Differential equation methods apply classical discretization tech-
niques, like the finite-element or the finite-difference method [12,19], to obtain very large
and sparse systems of linear equations which must be solved. Recently, integral equation
solvers have become more popular. The integral equations relate the electric and magnetic
fields to the equivalent electric and magnetic currents on the surface of the object. The
electric-field integral equation (EFIE) formulation is widely used in industrial simulations
since it can handle general geometries in open domains without truncating and formulating
any artificial boundary as it is the case with the differential methods. In this work we focus
on the solution of the linear systems obtained after applying the Method of Moments to
the integral equations, see [11,17]. The coefficient matrix of the system is dense, complex,
non-hermitian for EFIE and ill-conditioned. In real industrial applications the system matrix
can be so large that it can not be explicitly stored in memory. Indeed, only a sparse approx-
imation of the system matrix corresponding to the near-field interactions is stored and the
rest of the entries are computed on the fly whenever they are needed. In this context direct
methods are not applicable and preconditioned Krylov iterative methods must be employed.
The application of these methods requires the computation of matrix-vector products which
requires O(n2) operations. This complexity can be improved to O(n log2 n) by applying the
Fast Multipole Method [7,9].

The success of an iterative method, specially for ill-conditioned problems, depends on
the preconditioner that is applied to the system matrix. In [2,3] the authors show that most
general purpose preconditioners fail to produce good converge rates for the iterative method.
The best results were obtained with variants of the Sparse Approximate Inverse Precondi-
tioner (SPAI) [10], that computes a sparse approximation to the inverse of the coefficient
matrix. Nevertheless, for many applications the number of nonzeros of the SPAI precondi-
tioner necessary to get convergence is quite large. Then, it can be prohibitive in terms of
both memory requirements and computational time. To solve these problems, the authors
proposed the application of low-rank updates to the preconditioned matrix, such that a set of
the smallest eigenvalues in magnitude are shifted to one, which have a beneficial effect on
the convergence of Krylov solvers. The method, called spectral low-rank updates (SLRU),
depends on the computation of a set of the interior eigenpairs closest to the origin. To this
end, the Implicitly Restarted Arnoldi (IRA) method, implemented in the Arnoldi Package
(ARPACK) [16], was used [2–6]. The results showed that the SLRU technique can improve
considerably the performance, specially when multiple right hand sides have to be solved,
as is the case for most of the problems mentioned above. In this work we investigate the
use of a Jacobi-Davidson method [20], in particular the JDQR variant proposed in [8]. The
results of the numerical experiments show that with the application of the JDQR method the
spectral low-rank updates technique can be quite competitive.
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The paper is organized as follows. In section 2 we recall the solution of linear systems
with preconditioned iterative methods and the fundamentals of the SPAI preconditioner. In
section 3 the SLRU technique is described. Then, in section 4 the Jacobi-Davidson method
and its variant JDQR are revised. The numerical results are presented in section 5. Finally,
the main conclusions are outlined in section 6.

2 Iterative solution of linear systems

Let
Ax = b (1)

be a linear system of n equations with n unknowns obtained after applying a boundary
element discretization method to the Maxwell’s equations. The matrix A is large, dense and
non-hermitian with complex entries. An approximate solution of (1) is usually obtained
by using a preconditioned iterative Krylov method, as the Generalized Minimal Residual
algorithm (GMRES) [18] or the Biconjugate Gradient Stabilized (BiCGSTAB) method [21].

In general, to obtain good convergence rates, or even to converge, these methods are
applied to the left preconditioned linear system

MAx = Mb ,

where the matrix M is the preconditioner. Right preconditioning and two-side precondi-
tioning are also possible, see [18]. The matrix M should be chosen in such a way that the
preconditioned matrix MA has a smaller condition number and a better spectral distribution
than A. Typically, since MA ≈ In is desired, the eigenvalues should be clustered around 1,
but other distributions of the eigenvalues may be satisfactory. If the eigenvalues of MA are
clustered away from the origin, one can expect a good performance of the iterative solver.
Moreover, the preconditioner should be easily and inexpensively computed and applied.
Clearly, both requirements are difficult to fulfill for a general purpose preconditioner and
considerable efforts have been made to develop suitable methods which perform well for a
wide range of problems. In [2,3] the authors show that most preconditioners, both direct and
approximate inverse preconditioners type, fail to converge in electromagnetics applications,
while the best results were obtained with the SPAI [10] preconditioner.

The SPAI technique computes and stores explicitely a matrix M that approximates the
inverse of A. Its computation is based on the solution of the Frobenius norm minimization
problem ‖I−AM‖F . This problem is formulated equivalently as

min‖I−AM‖2
F =

n

∑
j=1

min‖e j−Am j‖2
2 , (2)

where e j is the unitary vector with all zero entries except the jth one which is equal to 1.
Then, by (2), M can be obtained solving n independent linear least squares problems, one for
each column m j of M. This characteristic has made the SPAI preconditioning technique quite
popular in parallel computing environments. To obtain a sparse preconditioner at a moderate
computational cost only some elements of the column m j are computed. Usually a static
sparsity pattern of nonzero elements is used [10]. The pattern is chosen from a sparse matrix
Â obtained applying an sparsifying process to A that keeps only the biggest entries. Figures 1
and 2 show the sparse patterns of the matrix Â and its inverse for the matrix CETAF1178
(see Table 1). These matrices are obtained considering the distance between mesh elements
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in terms of wavelength and discarding the entries that are not strongly coupled. Comparing
both figures we observe that their patterns present some similarities (see [2] for a detailed
study). Therefore, the SPAI technique is applied to a sparsified system matrix Â which is
explicitly stored in memory and corresponds to the near-field part of A.

Fig. 1 Sparse pattern of the sparsified matrix Â.

In Figures 3 and 4 we can see the effect of the preconditioner on the spectrum of the
system matrix CETAF1178. Even though most eigenvalues are shifted to one, there are
still some of them clustered around the origin which can slow down the convergence of
the iterative method. In the next section we will see that applying low-rank updates to the
preconditioned matrix, a small subset of these eigenvalues can be shifted to 1, improving
the convergence of the Krylov iterative solvers.

3 Spectral low rank updates

As already stated, the purpose of the SLRU technique is to shift a subset of the smallest
eigenvalues in magnitude of a given matrix from the origin to one. Let M1A be a left pre-
conditioned matrix and assume it is diagonalizable, that is:

M1A =VΛV−1 ,

where Λ = diag(λi), |λ1| ≤ · · · ≤ |λn| are the eigenvalues of M1A, and V = (vi) is the matrix
whose columns are the associated right eigenvectors. Let Vε be the matrix whose columns
are the set of right eigenvectors associated with the set of eigenvalues λi with |λi| < ε . We
have the following result from [4].
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Fig. 2 Sparse pattern of Â−1

Fig. 3 Eigenvalues of A.

Theorem 1 (Proposition 2 of [4]) Let W be a matrix such that the matrix Ãc =W HAVε has
full rank, M̃c =Vε Ã−1

c W H and

M̃ = M1 + M̃c.
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Fig. 4 Eigenvalules of MA

Then the matrix M̃A is similar to a matrix whose eigenvalues are{
ηi = λi if |λi|> ε ,
ηi = 1+λi if |λi| ≤ ε .

A similar result also holds for right preconditioned matrices.
To reduce the computational cost the matrix W is chosen equal to Vε . The result implies

that some of the eigenvalues closest to the origin can be shifted near to one by comput-
ing the associated right eigenvectors. We recall that for most of the problems considered
in computational electromagnetics the system matrix is very ill-conditioned and indefinite.
Therefore the computation of these eigenpairs can be a challenge since interior eigenvalues
computation is a difficult task. In previous work the Implicit Restarted Arnoldi method im-
plemented in ARPACK [16] has been employed [2–6]. The results showed that the SLRU
technique can improve considerably the performance, specially when multiple right hand
sides have to be solved, as it is the case for many scattering problems, for instance the com-
putation of the radar cross section of a complex body. In this work we investigate the use of
a Jacobi-Davidson method. In particular the JDQR variant [8].

4 Jacobi-Davidson method

The Jacobi-Davidson [20] method is an excellent method for the computation of a subset
of eigenpairs of a matrix. Because its basic ingredients are matrix-vector products, vector
updates and inner products it can be parallelized easily [1]. Its JDQR variant [8], which is
based on the computation of a partial Schur form of the system matrix, uses deflation tech-
niques to compute a number of interior eigenpairs. The application of the method involves
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the solution of a small projected eigenproblem. Given an approximate eigenpair (u,θ) the
correction equation

(I−uu∗)(A−θ I)(I−uu∗)s =−r, s⊥ u , (3)

where r = Au−θu, must be approximately solved to expand the search subespace. This is
the most expensive phase of the algorithm.

In our case to obtain good eigenpairs estimates to apply the low-rank updates, it was
enough to solve equation (3) iteratively using GMRES(10) without preconditioning and
stopping the iteration at a small accuracy (10−2). Indeed, we found that on the average for
medium size and large problems the computational cost of the spectral low-rank updates is
moderate if compared with the overall solution time.

5 Numerical experiments

In this section we show the results of the numerical experiments obtained for a set of model
problems which are listed in Table 1. All matrices were kindly provided to us by the EADS-
CASA company.

Table 1 Tested matrices

Matrix size

CETAF1178 1178
CETAF3000 3097
CETAF5000 5021
CETAF10000 10022
CN5000 5005

The BiCGSTAB [15] method with left preconditioning was used to solve the linear
system. In [14] the authors found that the GMRES(m) method performs similarly to the
BiCGSTAB with a restart parameter value around 10 percent of the size of the matrix. We
choosed the BiCGSTAB method because its smaller memory requirements, that can become
a critical point in large scale computational electromagnetics computations. All codes de-
veloped for the tests were written in FORTRAN 95 in double precision complex arithmetic,
and have been compiled with Intel Fortran Composer XE 2013 and linked with the Intel
Math Kernel Library. For the experiments we used one AMD Opteron CPU of a Sun Fire
X2200 M2 Server. The experiments were made with a SPAI preconditioner of moderate
density, i.e., the ratio between the number of nonzeros and the square of its dimension is
less than 4 percent in all cases. Table 2 reports relative densities, under ρ , and the time
needed to compute the SPAI preconditioners used. The iterative method was stopped when
the initial residual was reduced by a factor of 10−6. The JDQR method was run to compute
the eigenpairs for the low-rank updates until the norm of the residual vector was reduced to
ε1 = 10−1 or to ε2 = 10−2. These parameters are indicated in tables as superscripts of the
SLRU dimension. To speed-up the computations, instead of computing the eigenpairs of the
full matrix the JDQR was applied to a preconditioned near-field matrix MÂ. Tables also the
parameter δ that indicates the relative density of the matrix Â. We note that the sparsified
matrix Â used to compute the SLRU subspace may be different from that used for the com-
putation of the SPAI preconditioner M. We found that it is better, from the point of view of
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Table 2 SPAI preconditioner density and computation time

Matrix ρ T. prec (s)

CETAF1178 0.04 3.3
CETAF3000 0.03 31.3
CETAF5000 0.02 21.1
CETAF10000 0.01 85.2
CN5000 0.01 15.4

Table 3 Matrix CETAF1178. SLRU subspace computed with ARPACK and JDQR.

SLRU method SLRU size Iter. CPU SLRU time (s) CPU solution time (s) VA

ARPACK 0 297 0 4.21
5(ε2) 273 27.9 3.93 100

10(ε2) 191 30.6 2.77 21
15(ε2) 138 34.19 2.06 16
20(ε2) 81 29.72 1.21 10

JDQR 0 297 0 5
5(ε2) 223 3.82 2.97 3

10(ε2) 95 5.96 1.26 2
15(ε2) 65 9.37 0.88 3
20(ε2) 58 11.86 0.79 4

total computational time, to keep M as sparse as possible and then compute the SLRU sub-
space for a slightly denser matrix Â. Table 9 shows some results concerning this idea for the
matrix CETAF3000. SLRU size is the number of eigenpairs computed to apply the updates;
Iter., the number of iterations performed by the BiCGSTAB; and VA, the number of linear
systems that amortize the extra computational cost of computing the SLRU subspace.

We want to compare the performance for computing the SLRU subspace of the previ-
ously used, [2–6], IRA method, with the performance of the Jacobi-Davidson method. The
balance between the quality of the SLRU subspace and its computational cost for different
densities of the matrix Â is also of interest. In addition, some remarks concerning to the
performance for different sizes of the subspace SLRU and the density of the SPAI precon-
ditioner are given.

Tables 3 to 5 show the performance differences observed when computing the SLRU
subspace using the ARPACK and JDQR methods. We observe that the computational cost
reduces quickly for a relative small size of the SLRU subspace. Nevertheless, with JDQR
the performance of the SLRU method seems to be higher compared with ARPACK. Tables
show that the JDQR method is quite competitive for the relative small number of eigen-
pairs, around 1% of the size of the matrix, needed to be computed in order to accelerate the
convergence of the iterative method. For the matrices not listed above the same behaviour
was observed. We recall the moderate accuracy estimation and small number of eigenpairs
required in order to successfully apply the spectral correction, and in this situation JDQR
performed significantly better.

Tables 6, 7 and 8 show that computing the eigenpairs with the JDQR method the number
of vectors VA can be reduce to 1, showing a very good performance of the algorithm. As
it has been stated before, the use of ARPACK often pays off when more than 3 systems
with the same coefficient matrix are solved. In general, for the tested problems an SLRU
subspace of size around 0.5–1 percent of the size of the matrix is enough to obtain the best
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Table 4 Matrix CETAF3000. SLRU subspace computed with ARPACK and JDQR.

SLRU method SLRU size Iter. CPU SLRU time (s) CPU solution time (s) VA

ARPACK 0 326 0 19.7
15(ε1) 106 18.1 11.1 3
30(ε1) 77 16.9 8.1 2
60(ε1) 66 34.8 7.1 3

JDQR 0 326 0 19.7
15(ε1) 119 5.3 12.4 1
30(ε1) 90 8.62 9.52 1
60(ε1) 77 28.7 10.4 3

Table 5 Matrix CETAF10000. SLRU subspace computed with ARPACK and JDQR.

SLRU method SLRU size Iter. CPU SLRU time (s) CPU solution time (s) VA

ARPACK 0 922 601.0
50(ε1) 208 384.3 226.9 2
100(ε1) 150 689.4 159.8 2
200(ε1) 104 1774.5 116.0 3

JDQR 0 922 601.0
50(ε1) 151 131.9 164.0 1
100(ε1) 91 287.8 100.5 1
200(ε1) 71 1188.5 79.7 3
200(ε2) 126 723.6 142.0 2

results. Larger subspace sizes increase the overall computational time in such a way that the
number of amortizing vectors may become larger. In addition, it is important to note that,
for large scale problems, the memory storage requirements can also be a limiting factor and
therefore it must be taken into account.

With respect to the density of the sparsified matrix Â used to compute the eigenpairs,
a density from 2 to 5 percent is usually good. Higher densities improve the quality of the
SLRU subspace and the number of iterations decreases. But, as the computational time also
grows, the extra cost only pays off for applications where many linear system with the same
coefficient matrix is going to be solved for different right hand sides, without mentioning
the extra memory requirements. We do not recommend densities larger than 10 percent.

Another important question is the precision recommended to estimate the eigenpairs of
the SLRU subspace. From the results we can see that reducing the initial error to 10−1 or to
10−2 can be a good compromise between the overall computational time and the number of
iterations required to obtain a solution.

Finally, Table 9 shows the results for the matrix CETAF3000 where both, the effect
of the density of the SPAI preconditioner and the matrix Â used for the SLRU computation,
was studied. In this table, ρ indicates the density of the preconditioner relative to the number
of elements of the system matrix. The column Prec. time corresponds to the preconditioner
computational time. As pointed above, the computation of the SPAI preconditioner has a big
impact in the total solution time. Thus, we found that it is better to keep the preconditioner
matrix M as sparse as possible and then, if needed, performing the SLRU computations with
a slightly denser matrix Â. That implies that the sparsified matrix Â used to compute M
may be different from that used for the SLRU subspace. For instance, considering only the
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Table 6 Matrix CETAF5000. SLRU subspace computed with JDQR.

SLRU size Iter. CPU SLRU time (s) CPU solution time (s) δ VA

0 940 128.5
25(ε2) 653 12.2 178.2 0.02 1
25(ε1) 426 19.4 143.3 0.02 1
25(ε2) 269 9.5 94.0 0.04 1
25(ε1) 130 22.1 35.6 0.04 1
25(ε2) 138 20.0 38.7 0.10 1
25(ε1) 89 33.3 24.4 0.10 1
50(ε1) 1110 55.0 410.0 0.01 †
50(ε2) 163 26.4 51.1 0.02 1
50(ε1) 141 40.5 47.2 0.02 1
50(ε2) 81 39.4 22.4 0.04 1
50(ε1) 59 48.0 16.4 0.04 1
50(ε2) 89 30.5 24.6 0.10 1
50(ε1) 46 53.3 12.8 0.10 1
100(ε2) 56 140.3 15.8 0.04 1
100(ε1) 45 145.5 13.0 0.04 1
100(ε2) 27 100.6 7.7 0.10 1
100(ε1) 25 148.8 9.7 0.10 1

Table 7 Matrix CETAF10000. SLRU subspace computed with JDQR.

SLRU size Iter. CPU SLRU time (s) CPU solution time (s) δ VA

0 922 601.1
25(ε1) 240 64.5 324.0 0.05 1
25(ε2) 319 49.5 365.8 0.05 1
50(ε1) 260 75.5 282.6 0.02 1
50(ε2) 319 58.5 347.4 0.02 1
50(ε1) 164 131.9 164.0 0.05 1
50(ε2) 234 75.3 306.7 0.05 1

100(ε1) 91 287.8 100.5 0.05 1
100(ε2) 105 198.7 155.3 0.05 1
200(ε1) 137 1188.5 173.0 0.05 2
200(ε2) 126 723.6 142.0 0.05 2

Table 8 Matrix CN5000. SLRU subspace computed with JDQR.

SLRU size Iter. CPU SLRU time (s) CPU solution time (s) δ VA

0 3451 465.5
25(ε1) 1385 37.0 380.5 0.04 1
25(ε1) 793 52.6 213.7 0.10 1
50(ε1) 1072 56.5 296.9 0.04 1
50(ε1) 538 81.4 126.6 0.10 1
100(ε1) 270 180.4 76.4 0.04 1
100(ε1) 73 185.0 20.4 0.10 1
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Table 9 Matrix CETAF3000. ρ indicates the density of the preconditioner SPAI relative to the number of
elements of the matrix. CPU time in seconds.

ρ Prec. time SLRU size Iter. SLRU time Solution time δ VA

0.1 589.5 166 15.5
0.06 142.2 229 13.5
0.03 38.3 326 19.7

15(ε1) 390 7.0 41.4 0.02 †
15(ε1) 119 5.3 12.4 0.03 1
15(ε2) 181 2.6 19.2 0.03 1
15(ε1) 100 5.3 10.7 0.06 1
15(ε2) 126 4.4 13.5 0.06 1
15(ε1) 82 8.2 8.7 0.10 1
15(ε2) 113 5.9 12.0 0.10 1

solution time, Table 9 shows that the best result for SPAI preconditioning without the SLRU
technique is achieved with a density of 6 percent. But the application of the SLRU technique
allows us to almost achieve this result with a preconditioner of half size. In this case, we
compute the SLRU subspace with a slightly denser matrix Â (δ = 0.06). Also observe that,
for a given preconditioner size, the solution time decreases for increasing densities of Â
although the overall solution time is obtained for intermediate values. We also note that
there are not big differences between the results obtained for different δ values. Therefore,
fine tuning can be avoided by keeping the same matrix Â for computing both, the SPAI
preconditioner and the SLRU subspace without an important loose of efficiency. Densities
from 2 to 10 percent have been good enough for all the problems considered.

6 Conclusions

In this work we consider the iterative solution of the linear systems arising from different
computational electromagnetics applications. We studied spectral low-rank updates (SLRU)
of the preconditioned system matrix. The SLRU relies on the computation of a small subset
of the eigenvalues closest to the origin which have a negative effect on the convergence of the
Krylov solvers. The SLRU subspace is used to update an existing SPAI preconditioner. Pre-
vious work computed these updates by using an Implicit Restarted Arnoldi method, in par-
ticular ARPACK’s implementation. In this work we experimented with a Jacobi-Davidson
method, the JDQR variant. From the numerical experiments presented we conclude that the
combination of the SLRU method with the JDQR algorithm provides a robust and fast algo-
rithm to reduce the number of iterations and overall computational cost. In order to speed-up
the SLRU set-up time it is convenient to apply the JDQR method to a sparsified matrix Â,
the near-field part of the system matrix. Moreover, estimating the eigenvalues with precision
0.1 or 0.01 is enough to obtain good low-rank updates. And finally, the use of the JDQR al-
gorithm reduces the computational cost of the updates such that multiple right hand sides
for the same coefficient matrix are not needed to be solved.
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