Document downloaded from:

http://hdl.handle.net/10251/64230
This paper must be cited as:

Fe, JD.; Aliaga Varea, RJ.; Gadea Gironés, R. (2015). Evolutionary optimization of neural
networks with heterogeneous computation: study and implementation. The Journal of
Supercomputing. 71(8):2944-2962. doi:10.1007/s11227-015-1419-7.

The final publication is available at

http://dx.doi.org/10.1007/s11227-015-1419-7

Copyright springer Netherlands

Additional Information

Evolutionary optimization of neural networks with
heterogeneous computation

Study and Implementation

Jorge Fe, Ramoén J. Aliaga,
Rafael Gadea-Gironés

Abstract In the optimization of Artificial Neural Networks (ANNs) via Evo-
lutionary Algorithms (EAs) and the implementation of the necessary training
for the objective function, there is often a trade-off between efficiency and
flexibility. Pure software solutions on general-purpose processors tend to be
slow because they do not take advantage of the inherent parallelism, whereas
hardware realizations usually rely on optimizations that reduce the range of
applicable network topologies, or they attempt to increase processing efficiency
by means of low-precision data representation.

This paper presents, first of all, a study that shows the need of heteroge-
neous platform (CPU-GPU-FPGA) to accelerate the optimization of ANNs us-
ing genetic algorithms and, secondly, an implementation of a platform based on
embedded systems with hardware accelerators implemented in FPGA (Field
Pro-grammable Gate Array). The implementation of the individuals on a re-
mote low-cost Altera FPGA allowed us to obtain a 3x-4x acceleration com-
pared with a 2.83 GHz Intel Xeon Quad-Core and 6x-7x compared with a
2.2GHz AMD Opteron Quad-Core 2354.

Keywords Evolutionary Computation - Embedded System - FPGA - Neural
Networks

1 Introduction

Artificial neural networks (ANNs) are widely used in many areas of research,
delivering very promising results in some of them.

Institute for Molecular Imaging Technologies
Universitat Politecnica de Valéencia,

Camino de Vera s/n, 46022 Valencia, Spain
Tel.: +34-96-3877007

Fax: +34-96-3879609

E-mail: rgadea@eln.upv.es

2 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

However, the topology design of ANNs determines their usefulness because
it significantly affects a networks performance [1]. When beginning to work
with an ANN on a concrete problem, it is observed that too large a network
usually tends to overfit the training data, affecting its generalization capability,
whereas too small network usually encounters problems in learning the training
samples due to its limited representation capability. Furthermore, whenever
good results are achieved, there is always doubt as to whether these results
are optimal for all network structures.

This uncertainty may be deemed acceptable by researchers if the other
conditions when working with neural networks are fixed (for example number
of learning samples and input variables), but when all these parameters need
to be evaluated as part of the same research, the determination of the optimal
topology requires a long period of experimentation. Curteanu and Cartwright
[2] listed the main methods for the determination of optimal topology: trial
and error, empirical or statistical methods, hybrid methods, constructive and
destructive algorithms and evolutionary strategies.

In the structure design, Evolutionary Algorithms (EAs) are employed in
two ways: to evolve the structures only [3] and to evolve both the structures
and the connection weights simultaneously [4].

Many researchers focused on the simultaneous optimization of network
structure and connection weights : Leung et al. [5] presented an improved ge-
netic algorithm to tune the structure and parameters simultaneously. Tsai et
al. [6] used a hybrid Taguchi-genetic algorithm to solve the problem of tuning
both the network structure and parameters. Ludermir et al. [7] presented an
approach combining simulated annealing and tabu search for the simultaneous
optimization of multilayer perceptron (MLP) network weights and architec-
tures. Palmes et al.[8] used mutation-based genetic neural network (MGNN)
to replace BP by using the mutation strategy of local adaptation of evolution-
ary programming (EP) to effect weight learning. Li et al. [9] used an improved
particle swarm optimization using optimal foraging theory (PSOOFT) to train
an ANNSs free parameters (weights and bias) and used a binary PSO algorithm
to evolve the architecture, respectively. Lu et al. [10] propose a quantum bit
representation to codify the network, indicating not the actual links but the
probability of the existence of the connections, thus alleviating mapping prob-
lems and reducing the risk of discarding a potential candidate.

This use of EAs in this way face a major difficulty: the ability of an ANN
to evolve into a superior ANN relies on the survival of the right topology. For
this, it is necessary to ensure that individuals with the best topology are the
best ranked and that these are retained as the best breeding individuals for the
next generation. In the case of the simultaneous evolution of structures and
connection weights, a good fitness value does not necessarily give an accurate
representation of the quality of the structure. In the event that this fitness
function is achieved, then the most efficient way to perform the crossover of
these individuals should be determined.

The other aproach is to evolve the structures only, without any connection
weights.Connection weights have to be learned after a near-optimal architec-

Evolutionary optimization of neural networks with heterogeneous computation 3

ture is found. One major problem with the evolution of architectures without
connection weights is noisy fitness evaluation [11][12]. Different random initial
weights may produce different training results. Hence, the same representa-
tion (genotype) of a structure may have quite different levels of fitness. This
one-to many mapping from genotype to the actual networks (phenotypes) may
induce noisy fitness evaluation and misleading evolution. In order to reduce
such noise, an architecture usually has to be trained many times using different
random initial weights. The average result is then used to estimate the geno-
types mean fitness. This method increases the computation time for fitness
evaluation dramatically. It is one of the major drawbacks of this way of using
EAs, and it is therefore the main justification for our study, because our imple-
mentation permits the distribution of the computation across a heterogeneous
network, efficiently decreasing the computation load.

The second objective of our study is not to lose the perspective that the
optimization of a neural network is not only to achieve a good approximation
performance with the training data, but also with unseen data for the same
problem (generalization).

The paper is organized as follows: Section 2 describes the evolutionary op-
timization method and Section 3 the implemented platform. The experimental
results are presented in Section 4 and the conclusions in Section 5.

2 Evolutionary optimization method

The objective of our evolutionary optimization method was to get the best
trained neural network in order to provide a solution to a problem with no
apparent algorithmic solution.

The environment conditions for this objective used to be the following:

— We have a set of samples, with a number of clear targets, because it is
the problem that we aimed to resolve (classification, regression, pattern
matching in general)

— For each sample, we have several inputs. These inputs are not provided
with clear evidence if they are necessary or important.

— And finally, we don’t know whether all the obtained samples are suitable
for the training, validation or testing of our neural network.

Our method consisted in the following phases:

Phase 1: Selection of the best inputs by means of an evolutionary computation
based on the Delta Test [13].

Phase 2: Filtering of the samples through replicator neural networks [14].

Phase 3: Optimization of the topology of neural networks by means of het-
erogeneous evolutionary computation [15].

4 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

Phase 4: Optimization of the initial weights of neural networks by means of
evolutionary computation.

Phase 5: Final training of the neural network with the topology obtained in
phase 3 and with the initial weights obtained in phase 4.

With this method, it is very important to be able to secure, and evaluate, the
capacity for generalization of the optimal neural network obtained. For this
objective, we set the incoming constraints:

— The set of samples after phase 2 filtering was divided into four subsets:
training, validation, optimization and testing. The training subset was used
to train the multilayer perceptron (MLP) in the fitness function of the evo-
lutionary algorithm in phases 3 and 4. The validation subset was used for
the early stopping of the MLP training in phases 3 and 4. The purpose of
the optimization subset was to obtain the objective (a single objective or
multi-objective) of the fitness function for each individual of the popula-
tion. Finally the test subset was used to evaluate the final optimized neural
network. We followed the recommendation that the test subset should not
be used for the identification of the best-performing-trained neural network
[16].

— In phases 3 and 4 many training runs for the MLP were necessary. The
Resilient Backpropagation algorithm (RBP) was used, with this decision
being based on two considerations: the speed of the algorithm and, impor-
tantly, the ease of implementation of the hardware for all the technologies
used in the heterogeneous platform. In order to improve the generalization
properties of RB algorithm, we performed early stopping on the validation
subset.

— The final training run was carried out with the Bayesian regularization
algorithm, with the union of the training,validation and optimization sub-
sets.

— In phase 3, the optimization of the topology, we performed a multi-objective
optimization, in which the second objective of the evolutionary computa-
tion was the reduction of the number of connections. This technique im-
proved the generalization capacity of the resulting neural network [17]

2.1 Optimization of the topology

Phase 3 is the key part of our method. Our main contribution is to separate
the feature selection (phase 1) and the identification of the initial weights
(phase 4) from this optimization process. It is very common to combine the
optimization of the three goals with the evolutionary computation [18], but
this impairs the performance of the optimization of the topology.

In order to undertake the feature selection, it was very important to do
without the intervention of a neural network, because in this way we became

Evolutionary optimization of neural networks with heterogeneous computation 5

independent the selection of variables against the network topology. Until car-
rying out this study, we had used the optimization of the Delta Test using
genetic algorithms, with regression problems with only one output [13], but
this approach can be extended to classification problems with multiple out-
puts. The particular focus of this study did not concern this phase of the
methodology. We are convinced that different, more efficient methods can be
used, but, in our experiment, our aim was to have an orderly and efficient
partition problem that could be optimized and implemented independently.

As has been said in the introduction section, the separation of the topology
optimization and initialization of the weights is challenging because there is a
very high dependency between them.

Our first approximation to the problem of separating the optimization
problem was to perform several initializations of the weights in each individual
of the population of different topologies, and to calculate the fitness function
of the genetic algorithm with the average performance of these initializations.

Three main problems with this approach were:

— The enormous computational effort. This is the main contribution of our
work and further details on this are provided in section 3.

— The control of the generation of the random numbers necessary for the ini-
tialization of the weights in the training algorithms. Without this control,
the best individuals in the population may be lost because a good individ-
ual may decrease the value of the fitness function in subsequent generations
of the evolutionary algorithm (see section 2.1.1).

— The choice of the best method to extract the best individuals when the
different initializations are averaged (see section2.1.2).

2.1.1 Control of random number generation

The second problem was easily detected, because the best individual varied
from generation to generation , and this behavior was independent of the
method used to extract the best individual (third problem).

It is very important in our method to get the value of the fitness function
of the best individuals will decrease in the evolution of the genetic algorithm.
For this objective, the random generation stream of the individuals needed
to be controlled, without affecting the random generation properties of the
main genetic algorithm and preventing individuals from working with the same
random number generator. All these properties were achieved by means of the
following actions in the fitness function:

— The definition of a random generator stream with a defined seed particular
to each individual. Therefore, three variables were necessary for the evolu-
tionary computation of the topology of the neural networks: the number
of neurons in the first hidden layer, the number of neurons in the second
hidden layer and the seed of the random generator stream.

6 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

— The resetting of the number generator stream in order to reproduce the
results of the best individuals.

— Different sub-streams for the different initializations of the weights for each
individual.

2.1.2 Weight initialization

For the third problem, three different alternatives were used:

— A fitness function with the goal of the minimum mean of mse (mean
squared error) of the same topology with the different weight initializa-
tions. This alternative was named GATOPOMEAN.

— A fitness function with the goal of the minimum mse of the same topol-
ogy with the different weight initializations. This alternative is named
GATOPOMIN.

— A fitness function with the goal of the best fitness value for the evolution-
ary computation of the initialization of the weights (as phase 4). In other
words, the execution of an evolutionary computation for each individual
as part of the main evolutionary computation. This alternative is named
GATOPOGA.

The detailed assessment of these three alternatives was not an objective
of this study. However, the computational effort required for each alternative
is obvious, and the need of a high flexibility in the implementation of the
individuals of the genetic algorithm.

3 Heterogeneous computational platform

From the point of view of implementation, the method of optimization of
neural networks explained in section 2, and specifically with regard to phase
3 of the method, required a host processor in charge of the main genetic
algorithm, which it is manager of the obtention of the topology of ANN.

The number of variables to be handled was reduced to 3 and therefore the
population to be managed is realively limited. Each individual must implement
the training of a neural network consisting of two hidden layers and various
initializations of the weights (GATOPOMEAN and GATOPOMIN), with a
nested genetic algorithm in the most complex case (GATOPOGA).

To implement the host processor, we opted for a generalist solution based
on a multicore CPU using MATLAB, enabling us to easily adapt to plat-
forms in order to obtain experimental samples, make quick implementation
comparisons with existing toolboxes concerning global optimization methods
and implementation of neural networks, and obtain a straightforward repre-
sentaion of the results. This generalist host platform had access to the GPU
through a graphics board connected to the main board. Our study does not
focus on this host processor, as it is a very common platform, but evidently

Evolutionary optimization of neural networks with heterogeneous computation 7

—
ress
u&; \:\ Chipset
‘t

S ol | L] [
%-« we || |00
oood Multicore

Oooo
1

CPU t
l Memory I [Memory

v v ¥

ndividual Individual Individual s Individual

Fig. 1: Heterogeneous computational platform.

the minimum requirements are described. The structure can be seen at the
top of Fig 1.

Our main contribution to this platform was the provision of the ability to
connect the host processor (via simple socket clients) to a set of embedded pro-
cessors (soft or hard) over an FPGA technology that provides us with many
different solutions (systems) on a programmable chip (Fig. 1). This contribu-

8 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

tion enabled us to implement the individuals of the main genetic algorithm
with the following alternatives:

e CPU cores

e GPU processors

e FPGA1 soft embedded processor + soft embedded processor with neural
instructions

e FPGA2 soft embedded processor 4+ programmable coprocessor by software

e FPGA3 soft embedded processor + programmable coprocessor by hard-
ware

e FPGA4 hard embedded processor + soft embedded processor with neural
instructions

e FPGAS5 hard embedded processor + programmable coprocessor by software

e FPGAG hard embedded processor 4+ programmable coprocessor by hard-
ware

e FPGAT soft embedded processor

e FPGAS hard embedded processor

Our group started with technologically possible solutions with devices using
Altera’s Cyclone IV family (FPGAL, FPGA2 and FPGAT). Evidently the
FPGA technology enabling solutions (FPGA3, FPGA4, FPGA5, FPGAG6 and
FPGAS) had to be able to draw on the features provided by devices in Altera’s
Cyclone V family, which are shared by new devices from other FPGA vendors:

— Embedded hard cores
— Run time reconfiguration
— Partial reconfiguration

There are several precedents for implementing neural networks on FPGA.
Sankaradas et al.[19] developed a coprocessor for convolutional neural net-
works, and they made a comparison of the acceleration in front of other tech-
nologies (CPU). Prado et al. [20] provided a training platform for reconfig-
urable topology. The drawback to this application is that it has to synthesize
the topology each time it is changed and then implement it in FPGA. An-
other application implements a fixed-topology ANN and the backpropagation
algorithm (BP) for training [21]. Wu et al. [22] proposed a BP algorithm im-
plementation in FPGA, this is reconfigurable by means of software. Pinjare et
al.[23] have implemented an FPGA accelerator for online training.

In the majority of these studies, the implementation of the ANN with
FPGA (with online training) takes place with very complex and efficient pro-
cessing elements (PE), but these implementations present great difficulties in
terms of communication with them, their flexibility and, and above all, their
adaptability to technological changes.

The first step for our platform that implements an individual was to resolve
the issue of communication with the host, obviously for the particular type of
algorithm running on this host. This requires that the portion of the platform
that handles individuals, implementing a processor provided to be in charge
of managing a socket server. Therefore, all our FPGA based solutions had one

Evolutionary optimization of neural networks with heterogeneous computation 9

main processor (soft or hard macro) responsible for this task, usually requiring
an operating system that helps management of the sockets.

On the issue of flexible platforms, we proceeded first with implementations
that achieve the flexibility to allow the implementation of neural networks
of different topology by using an architecture acting as a co-processor that
acquire the instructions from the main processor. Therefore a new task was
implemented in the main processor: the compilation of the instructions for the
coprocessor. This was carried out for the implementations FPGA1, FPGA2,
FPGA4 and FPGAS5. In the future, we are convinced that the hardware recon-
figuration of the coprocessor (partial reconfiguration) may well be a very good
option for the creation of very efficient accelerators without a loss of flexibility
(FPGA3 and FPGAG)

Finally, the issue of adaptability to new technologies was addressed by em-
ploying a standard interface (or a widespread interface) permitted the straight-
forward re-use of its intellectual property for different technological applica-
tions. We started with Altera Avalon, a proprietary bus system for Altera’s
Nios IT SoCs, but in the future AMBA, a proprietary bus system from ARM,
may provide the definitive solution for adaptability.

3.1 Training of neural networks

In the fitness function of each individual of the main genetic algorithm pop-
ulation, the computational effort was centered on the training of the neural
network with resilient backpropagation.

We compared the speed efficiency of the different technologies in order to
train the neural networks in accordance with the size of the topology of the
ANN and the size of the training set (the number of samples). This compari-
son was very important for our evolutionary algorithm, because the different
individuals of the populations in our method (phase 3) were going to work
with topologies of different size.

The results of these comparisons are shown in Fig. 2 and 3, and it can be
seen that different technologies are suited to training different sizes of neural
networks:

— For 2'5 training samples (shown in Fig. 2a), our training run with an
FPGA Cyclone IV (100 MHz coprocessor clock) was faster than a Tesla
C1060 GPU (602 MHz core clock) when the number of neurons in the
hidden layer was less than 20 (topology of the ANN: 6-20-20-1).

— For 2! training samples (shown in Fig. 3b), our training run with a Xeon
CPU (2534 MHz core clock) is faster than Tesla C1060 GPU (602 MHz
core clock) when the number of neurons in the hidden layer was less than
6 (topology of the ANN: 6-6-6-1)

These results do not claim to be an exhaustive comparison of technologies
for the specific task of training neural networks. This is not an objective of
this article because there are many other variables that we have not taken into
account, such as:

10 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

Rprop - CPU S5, Tesla, Cyclone IV 2e11-2e14

161
———CPUs5
GPU
141 FPGA IV
12f
4L
=
(]
E 08} B
[~ —\/
“‘ \
06} |
7
0.4 /1;"‘\/&// S
s
02 e o S
ol—m ‘ ; ; ; ; ;
0 10 20 30 40 50 60 70
N1/N2

(a) Number of samples: 212, 213 214 and 215

Rprop — CPU S5, Tesla, Cyclone IV 2e15-2e16

CPUs5
— GPU
FPGA IV

0 10 20 30 40 50 60 70
N1/N2

(b) Number of samples: 216 and 217

Fig. 2: Training RBP, Comparative CPU(XEON)-GPU(TESLA1060)-
FPGA (cyclone IV) with different topologies, 16 epochs

— The type of training algorithm;

— The different technological examples are not totally contemporary;

— The resolution with the FPGAs was the single precision IEEE754 floating
point format and the CPU and GPU used the double precision IEEE754
floating point format;

— The importance of the software layers and operating systems used in the
CPU and GPU;

— The programming mode (essential when working with CUDA);

— And the number of CPU cores used (only one of the four available cores in
the Xeon series was used).

Evolutionary optimization of neural networks with heterogeneous computation 11

Rprop — CPU S5, Tesla, Cyclone IV 2e17-2e18
251

——— CPUs5
———GPU
FPGA IV
200
3 15f
Q
£
£
10}
\
f .
[A /
5 A VA /NS
A
,/\/\'/\/ ey
0 — : — ———
0 10 20 30 40 50 60 70
N1/N2
(a) Number of samples: 218 and 21°
Rprop — CPU S5, Tesla, Cyclone IV 2e19-2e20
80r
——— CPUs5
———GPU
7001 FPGA IV
60
50
z
(]
£ 401
IS
300
200
10}
—
= ‘ ; i i ; ;
0 10 20 30 40 50 60 70

N1/N2

(b) Number of samples: 220 and 22!

Fig. 3: Training RBP, Comparative CPU(XEON)-GPU(TESLA1060)-
FPGA(cyclone IV) with different topologies, 16 epochs

Our proposal with these experiments is that the choice of a heterogeneous
platform for the implementation of evolutionary computation for the identi-
fication of the optimal topology of a neural network makes sense when the
objective function is essentially based on neural network training.

Of course, in terms of computational effectiveness, the FPGA solution is
the best, but the availability of this technology, together with the design effort
of reprogramming and its adaptability to new versions of training algorithms,
is the main disadvantage of this type of technology solutions that only the
emergence of standards like OpenCL may circumvent.

12 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

Ethernet ——
Embedded System (ES)

Fig. 4: ANN platform training.

4 Example of Platform FPGA2

The platform consists of eight embedded systems development boards (ES).
The boards have an Altera Cyclone IV EP4CE115F29CN FPGA [24]. Each ES
use the coprocessor [25] called the Neural Network Processor (NNP), having
a training system in FPGA based on RBP algorithm. Each ES communicates
with a host PC via Ethernet, this PC with MATLAB [26], Global Optimiza-
tion Toolbox and Parallel Computing Toolbox, manages training with genetic
algorithm (GA) and parallel tasks executed in each of the ES. Getting a 6x-7x
acceleration compared with Quad-Core AMD Opteron 2354 and 3x-4x accel-
eration compared with Processor Intel Xeon Quad-Core E5540.

The experimental platform is presented in Fig. 4 and is composed of a host
multi-core PC, and eight ESs, connected to the network via Ethernet. Using
this mode of communication provides scalability, efficient data transfer, and
the ability to quickly add further ESs.

As the number of variables for the determination of the topology or the
initial weights varied, when a GA was used in the systematic search for both
variables (phases 3 and 4 of our method), an initial population of individuals,
n, was generated, and the calculation of each individual was performed in each
ES, allowing the calculation of eight individuals simultaneously.

4.1 Software

This section presents the execution flow of the software in order to achieve
optimal topology and determine the initial weights of an ANN. The software
responsible for managing the training tasks was MATLAB with the Paral-
lel Computing Toolbox (PCT), which enables the management of the tasks
running on each processor core and the execution of the tasks of higher com-
putational cost running on an ES. Besides using Global Optimization (GO),

Evolutionary optimization of neural networks with heterogeneous computation 13

Paralletization of Fitness Select Cores
Tasks: Number of AG Initialize and =l End
Function
Workers C
Training
ANN

CPU

FPGA

Fig. 5: Software flow diagram.

this provides different methods for finding solutions to different problems and,
one of these is with genetic algorithms, which are based on natural selection
and the laws of genetics.

4.2 GA tasks

In GA the most important parameters to configure are the number of indi-
viduals, the number of generations and the fitness function. These parameters
determine the execution time of the GA in this application. The computation
time depends on the number of individuals to be computed in parallel and,
this parameter is configurable in the algorithm by combining the PCT with
GO. 1 to 8 individuals can be run in parallel. Fig. 5 shows a flowchart of the
algorithm. Here is a brief description of each process:

— Initialize the number of cores used in the host PC for ANN training.

— Transmit the set of training vectors to SDRAM memory in the ES.

— Configure the genetic algorithm (number of generations, numbers of indi-
viduals, use PCT, etc).

— Called to the fitness function.

— The fitness function determines whether there is a free core and then gen-
erates an identifier, which is assigned an IP address.

— The fitness function communicates with each ES via the IP address.

— The process continues until all the individuals and generations set in the
GA have been processed.

— The stopping method is by the number of generations.

4.3 Embedded System

Using a Terasic development board DE2-115 to implement the embedded sys-
tem, the ES is mainly composed of a real-time RTOS MicroC/OS-1I operating
system, and NIOS II/f processor and an NNP coprocessor. The NNP is a
soft-core single instruction, multiple data-path (SIMD) processor using single-
precision IEEE754. In Fig.6 shows the implemented hardware.

14 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

Embedded System

/ FPGA Cyclone IV\
Timer Performance System
[NPP COPROCESSOR] [NIOS I PROCESSOR]

Bus-Avalon I

-
. . Triple
On-chip On-chip SRAM SDRAM sgdma_rx Speed sgdma_tx0
memory memory Controller Controller Ethemet

SRAM SDRAM PHY
Memory Memory

Fig. 6: Embedded System.

Counier D

The Nios embedded processor is the master and controls the other system
components, running the program memory from External 2MB SSRAM to
FPGA. The training vectors are stored in the external SDRAM. The remain-
ing components are internal to the FPGA, and in addition to the coprocessor,
there are two DMAs that control the training vector transfer and instructions
to the coprocessor, a memory of 16 KB which stores coprocessor instructions,
and a memory of 4 KB (double the size of the memories of weights or gradi-
ents) for the variables needed for the RBP algorithm, corresponding to local
increases and gradients of a previous epoch. Fig.7a shows the connection di-
agram and internal architecture of the NNP and Fig.7b shows the schematic
for the contents of each processor unit (PU). It consists of an adder unit, a
multiplier unit,a local memory block and a limited number of local registers.

The NIOS II/f processor receives instructions through the Ethernet connec-
tion to generate a training run. These instructions to configure the topology,
if the generation of the initial weights is undertaken by the NIOS II, or should
start with weights sent to memory via the Ethernet connection and the number
of epoch. Next, with all data received, NIOS is responsible for generating the
instructions for each new topology received, then, known [25] that the copro-
cessor is capable of processing a certain number n of parallel training vectors
and the gradients generated automatically accumulate, ultimately appearing
in the memory of gradients at the end of the epoch. The reading and process-
ing of each group of n vectors are obtained by means of a set of instructions
NNP.

Evolutionary optimization of neural networks with heterogeneous computation

15

Active Data

data flaw select

Flow Register

erfianmess

converter

output
queue

Val
Level Register

ovenwiite gradent?

control
port

e O
queue
converter
instruction
queue —-| instruction word TS ¢
= ™
weight 1
% weight 2
i<
H
00
weight gradient
memory memory

(a) Overall structure of the copprocessor NNP

FIFO QUTPUT

LOCAL MEMORY

VECTOR INPUT

-

WR ‘

BYPASS

A3 —»| ADDR
|
AO—>{ADDR RD LO L
s
o P
WEIGHT [A1] T \
neg
MULTIPLIER I—>
WEIGHT [A2] L2
Pl Epe A
INDEX C1

LOCAL REGISTERS

VALID?

ADDER INPUT BYPASS SIGNALS

(b) Structure of each PU

Fig. 7: Neural Network Coprocessor.

4.4 Performance of the platform

To demonstrate the validity of the platform as an accelerator, we determined
the initial weights of an ANN (evolutionary computation of phase 4 of our
method). We worked with a fixed 6/5/3/1-topology (obtained in phase 3 of
our methodology) with a sample set of 243,000 training vectors. This choice for

the determination of the performance of our platform was necessary because

a phase with a deterministic number of training runs with a fixed topology is
necessary in order to allow us to compare technologies when they undertake

the same computational effort.

16 Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

Table 1: Total Time - Command time

(a) Case I OPTERON&ES

Total Time | Command Time

5 epochs 1432.105 105.4
10 epochs 1749.802 100.2
20 epochs 2390.985 98.2
40 epochs 3663.150 97.4
80 epochs 6210.783 108.8
160 epochs 11301.815 109.3

(b) Case I XEON&ES

Total Time | Command Time

Time (s)

5 epochs 1236.961 185.2
10 epochs 1578.712 166.9
20 epochs 2237.215 146.8
40 epochs 3520.052 132.0
80 epochs 6078.963 118.7
160 epochs 11136.066 118.3
« 10° CPU AMD Opteron o0 CPU AMD Opteron
6 T T -
. Epoch Linear Speedup
5l . -*-5 — % - Speedup 5 epochs
s 10 8 |~ Speedup 10 epochs e
. -*-20 - % - Speedup 20 epochs el
4r . 40 a Speedup 40 epochs e
- AN -*-80 =] 6 | —% -Speedup 80 epochs e
w N . -® -160 o) — % - Speedup 160 epochs| -~
0 3 R ‘a R 2 e
Bl e s geped
r - ~ea -7 - =
. R : e ,
! ... e L ._/4’/5.:’
*'-~:::ZZ;::‘::::;::3::-0 0
% > 4 ps s 0 2 4 6 8
N Core N Core
(a) Time: OPTERON with 8 cores (b) Speedup: OPTERON with 8 cores
ES & AMD Opteron ES & AMD Opteron
12000 T T T 10 T T T
¢ Epoch Linear Speedup
10000 N me- f . g| | ~* Speedup s epochs
\ — % Speedup 10 epochs /,a
' -*-20 - % - Speedup 20 epochs P
8000 \ 40 a Speedup 40 epochs e &
' - =80 3 6 | =% - Speedup 80 epochs B /Q¢
6000 « \ -*-160 3 - % ‘Speedup160epochs)ga\—;'
2 >
@ 4 ‘3!
4000 g
e
2 ®
2000 -./
0
9 0 2 4 6 8
Ne¢ ES
(c) Time: OPTERON with 8 ES (d) Speedup: OPTERON with 8 ES

Fig. 8: Case I homogeneous and heterogeneous platforms with OPTERON

Evolutionary optimization of neural networks with heterogeneous computation

17

x 10° CPU Intel Xeon
3
L] Epoch
\ -e-5
25¢ Y\ - -10
' -®-20
2t \ 40
* -*-80
Ll 4 - ° o160
[0) N AN
£ N
1+ N Seo
'~\ N\.._h'
~ S - .
05 o S, b
P T
0 LA TET EE T At e pett |
0 2 4 6 8
N° Core
(a) Time: XEON with 8 cores
ES & Intel Xeon
12000 T T -
N Epoch
\ _._5
10000 \ Ce-10
\ -e-20
8000 ' 40
\ -*-80
— \ e
< o0l & v * - 160
[0} \ .
€ N AN
= .
= 4000 VT
.\\ ~"“~
2000 S Se R PSR
$ila: e LU
BE PRt T e S--
0 =R e s s |
0 2 4 6 8
N° ES

(¢) Time: XEON with 8 ES

CPU Intel Xeon

Speedup

Linear Speedup

+ Speedup 5 epochs

- Speedup 10 epochs]

+ Speedup 20 epochs el
Speedup 40 epochs ~

+ Speedup 80 epochs -

- Speedup 160 epochs| -~

L#®

(%
P
»

2 4 6 8
Ne¢ Core

(b) Speedup: XEON with 8 cores

ES & Intel Xeon

Linear Speedup

' Speedup 5 epochs

Speedup 10 epochs ~ ,a

*Speedup 20 epochs Py
Speedup 40 epochs
*Speedup 80 epochs
*Speedup 160 epochs

<
Y 4
o4

Ne¢ ES
(d) Speedup: XEON with 8 ES

Fig. 9: Case II homogeneous and heterogeneous platforms with XEON

Fig. 8a shows the results for time taken by an evolutionary computation
(phase 4 of our method of optimization of ANN) with only an AMD worksta-
tion (host processor and individuals) and in Fig. 8¢ with an AMD workstation
(host processor) and ESs (implementing the individuals). We varied the num-
ber of cores used in case 8a and the number of ESs in case 8c. In Fig . 9a and
9¢ show the results of the same experiment with an Intel workstation.

Before we examine the acceleration of our proposed platform (with ESs), we
can observe and conclude that our heterogeneous platforms (see Fig.8d and
9d) divide linearly the computational effort when the number of processing
elements (remote ESs) for implementing the individual increases. This shows
that the time dedicated to the calculation of the population of the different
generations and the time dedicated to communicate commands and data with
the individuals of the population (in our solution through simple sockets)
are practically negligible for the calculation of the objective function of each
individual. We detail these times in Table 1.

18

Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

Speedup

FPGA vs CPU (AMD Opteron)

11 : : ‘ ; ;
[—Epoch-e-5-v-10-4-20 - »-40 -4 -80 - & - 160}
10t o=
9 __,-u—” -
‘u—___‘_-u- "—‘_—‘
8r _--" _-4-"" B
Tl _qem--
IR
7 Ral __:—"' - _.&A
PP L T
6F c':/ R o i
L 4 A --—-— b == " i
5 = A---"" =L -
- P S 4
4k ARt G DO -
3r e == - R
2 . g
1k i
0 L L L L L L L
0 1 2 3 4 5 6 7 8
N Workers(FPGA->ESs CPU->cores)
(a) Case I OPTERON&ES
FPGA vs CPU (Intel Xeon)
5 : ‘ ‘ ; ;
[—Epoch - ¢ -5 10 -4 -20 40 -4 -80 - 8 -160
45
4 -
e =T
35 R et~ e “‘ g
i <+--"
3 ,a—:::::z """ < -
_-zoeeT PUDEEEY S
zz- R 3
25 -4 O R A -
2 a--"" """
15 e---""" oot Tttt R T o
1
05
L L L L L L L
% 1 2 6 7 8

3 4 5
N® Workers(FPGA->ESs CPU->cores)

(b) Case II XEON&ES

Fig. 10: Acceleration of our FPGA2 platform

Our proposed heterogeneous platform achieve an acceleration of 3x-4x com-

pared with a 2.83 GHz Intel Xeon Quad-Core and 6x-7x compared with a
2.2GHz AMD Opteron Quad-Core 2354 (see Fig. 10).

It is very interesting to note in Figure 10 as improved acceleration as the

number of workers increases. This convinces us about the suitability of our
contribution: send computing of the fitness function of the individuals of the
evolutionary algorithm to a remote computing system.

5 Conclusions

This paper has shown firstly the need for heterogeneous computing as we
proceed to the optimization of neural networks using evolutionary algorithms.

Evolutionary optimization of neural networks with heterogeneous computation 19

In our optimization methodology the most expensive phase computation-
ally is the selection of network topology, and we have shown in our section 3
that the best solution to address this evolutionary algorithm is that different
individuals are implemented by hardware platforms with different technologies
and different architectures.

Secondly we have shown that our solution is the distribution of computing
via sockets (section 4) is scalable, flexible (to adapt to heterogeneous comput-
ing) and efficient compared to conventional solutions or homogeneous plat-
forms.

Clearly it is an initial step that must be continued to incorporate GPUs.
We have shown that GPUs are very efficient when topologies are large with a
large number of learning samples; but we need to adapt this type of computing
to our distribution system via sockets.

In the field of FPGA implementations, our future work will be directed to
the use the partial and dynamic reconfiguration. That is, several systems could
be loaded in flash memory in order to enable the hardware to be reconfigured
during the execution of the evolutionary algorithm. This method would permit
us to use for the different individuals, the optimal hardware implementation
for each topology, thereby increasing the overall efficiency of the system.

Acknowledgments

The translation of this paper was funded by the Universitat Politecnica de
Valencia, Spain

References

1. A. Farmahini-Farahani, S. Vakili, S. M. Fakhraie, S. Safari, and C. Lucas, “Parallel scal-
able hardware implementation of asynchronous discrete particle swarm optimization,”
Engineering Applications of Artificial Intelligence, vol. 23, no. 2, pp. 177-187, 2010.

2. S. Curteanu and H. Cartwright, “Neural networks applied in chemistry. i.
determination of the optimal topology of multilayer perceptron neural networks,”
Journal of Chemometrics, vol. 25, no. 10, pp. 527-549, 2011. [Online]. Available:
http://dx.doi.org/10.1002/cem.1401

3. M. M. Islam, M. A. Sattar, M. F. Amin, X. Yao, and K. Murase, “A new adaptive merg-
ing and growing algorithm for designing artificial neural networks,” Ieee Transactions
on Systems Man and Cybernetics Part B-Cybernetics, vol. 39, no. 3, pp. 705-722, 2009.

4. K. H. Han and J. H. Kim, “Quantum-inspired evolutionary algorithms with a new ter-
mination criterion, h-epsilon gate, and two-phase scheme,” leee Transactions on Evo-
lutionary Computation, vol. 8, no. 2, pp. 156-169, 2004.

5. T. B. Ludermir, A. Yamazaki, and C. Zanchettin, “An optimization methodology for
neural network weights and architectures,” Ieece Transactions on Neural Networks,
vol. 17, no. 6, pp. 1452-1459, 2006.

6. L. Y. Ma and K. Khorasani, “Constructive feedforward neural networks using hermite
polynomial activation functions,” Ieee Transactions on Neural Networks, vol. 16, no. 4,
pp- 821-833, 2005.

7. V. Maniezzo, “Genetic evolution of the topology and weight distribution of neural net-
works,” Ieee Transactions on Neural Networks, vol. 5, no. 1, pp. 39-53, 1994.

20

Jorge Fe, Ramén J. Aliaga, Rafael Gadea-Gironés

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural network,”
Trans. Neur. Netw., vol. 16, no. 3, pp. 587-600, May 2005. [Online]. Available:
http://dx.doi.org/10.1109/TNN.2005.844858

. T. Mu, J. Jiang, Y. Wang, and J. Y. Goulermas, “Adaptive data embedding frame-

work for multiclass classification,” Ieee Transactions on Neural Networks and Learning
Systems, vol. 23, no. 8, pp. 1291-1303, 2012.

T.-C. Lu, G.-R. Yu, and J.-C. Juang, “Quantum-based algorithm for optimizing artificial
neural networks.” IEEE Trans. Neural Netw. Learning Syst., vol. 24, no. 8, pp. 1266—
1278, 2013.

X. Yao, “Evolving artificial neural networks,” Proceedings of the Ieee, vol. 87, no. 9, pp.
1423-1447, 1999.

X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural networks,”
leee Transactions on Neural Networks, vol. 8, no. 3, pp. 694—713, 1997.

F. Mateo, D. Sovilj, and R. Gadea-Gironés, “Approximate k-NN delta test minimization
method using genetic algorithms: Application to time series,” NEUROCOMPUTING,
vol. 73, no. 10-12, Sp., pp. 2017-2029, JUN 2010.

S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection using replicator neu-
ral networks,” in In Proc. of the Fifth Int. Conf. and Data Warehousing and Knowledge
Discovery (DaWaK02, 2002, pp. 170-180.

J. Fe, R. J. Aliaga, and R. G. Gironés, “Experimental platform for accelerate the training
of anns with genetic algorithm and embedded system on fpga,” in IWINAC (2), 2013,
pp. 413-420.

L. Prechelt, “Probenl - a set of neural network benchmark problems and benchmarking
rules,” Tech. Rep., 1994.

H. A. Abbass, “An evolutionary artificial neural networks approach for breast cancer
diagnosis,” Artificial Intelligence in Medicine, vol. 25, pp. 265—281, 2002.

F. Ahmad, N. A. M. Isa, Z. Hussain, and S. N. Sulaiman, “A genetic algorithm-based
multi-objective optimization of an artificial neural network classifier for breast cancer
diagnosis,” Neural Computing and Applications, vol. 23, no. 5, pp. 1427—-1435, 2013.
M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto,
and H. Graf, “A massively parallel coprocessor for convolutional neural networks,” in
Application-specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th
IEEE International Conference on, july 2009, pp. 53 —60.

R. Prado, J. Melo, J. Oliveira, and A. Neto, “Fpga based implementation of a fuzzy neu-
ral network modular architecture for embedded systems,” in Neural Networks (IJCNN),
The 2012 International Joint Conference on, june 2012, pp. 1 —7.

M. avulu, C. Karakuzu, S. ahin, and M. Yakut, “Neural network training
based on fpga with floating point number format and its performance,” Neural
Computing and Applications, vol. 20, pp. 195-202, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s00521-010-0423-3

G.-D. Wu, Z.-W. Zhu, and B.-W. Lin, “Reconfigurable back propagation based neural
network architecture,” in Integrated Circuits (ISIC), 2011 13th International Sympo-
stum on, dec. 2011, pp. 67 —70.

S. L. Pinjare and A. K. M, “Article: Implementation of neural network back propagation
training algorithm on fpga,” International Journal of Computer Applications, vol. 52,
no. 6, pp. 1-7, August 2012, published by Foundation of Computer Science, New York,
USA.

http://www.altera.com.

R. Aliaga, R. Gadea, R. Colom, J. Cerda, N. Ferrando, and V. Herrero, “A mixed
hardware-software approach to flexible artificial neural network training on fpga,” in
Systems, Architectures, Modeling, and Simulation, 2009. SAMOS ’09. International
Symposium on, july 2009, pp. 1 —8.

http://www.matlab.com.

