Document downloaded from:
http://hdl.handle.net/10251/64309
This paper must be cited as:
Calabuig Gomar, A.; Garcia Marí, F.; Pekas, A. (2015). Ants in citrus: impact on the abundance, species richness, diversity and community structure of predators and parasitoids. Agriculture, Ecosystems and Environment. 213:178-185.
doi:10.1016/j.agee.2015.08.001.


The final publication is available at
https://dx.doi.org/10.1016/j.agee.2015.08.001

Copyright
Elsevier Masson

Additional Information

Running head: ants and natural enemies

Title: Ants in citrus: impact on the abundance, species richness, diversity and community structure of predators and parasitoids

Authors: Altea Calabuiga, Ferran Garcia-María, Apostolos Pekas ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain

Corresponding author:
Altea Calabuig Gomar, alteac@outlook.com Tel. +34651995119, Fax +34963877331
E-mail address: alteac@outlook.com


#### Abstract

Although ants act as plant biotic defences, in agricultural ecosystems they are often associated with outbreaks of honeydew-producing pests mainly due to the protection they offer to the plant feeders in exchange for honeydew. In such an interaction ants may alter the abundance, diversity and community structure of predators and parasitoids. In the present study, we conducted ant-exclusion experiments in three commercial citrus orchards, each one dominated by one ant species (Pheidole pallidula, Lasius grandis or Linepithema humile) during two consecutive years (2011 and 2012). We then compared the abundance, species richness, diversity and community structure of predators and parasitoids between the antallowed and ant-excluded treatments. A total of 176,000 arthropods belonging to 81 taxa were captured and identified. Regarding abundance, our results showed a species specific response between treatments. When examining functional groups, in the ant-allowed treatment, seven species of predators decreased and four increased in abundance, whereas four species of parasitoids decreased and 18 increased in abundance. The species richness (S) was significantly lower for predators and higher for parasitoids in the ant-allowed treatment. The Shannon diversity index (H) was not different between treatments in the case of predators, whereas in the case of parasitoids diversity was significantly higher in the antallowed treatment. Finally, the community structure of predators and parasitoids was not significantly different between treatments. These results suggest that ants in the citrus agroecosystem are not associated with a dramatic decrease in natural enemy abundance or biodiversity; on the contrary ants were associated with increased parasitoid species richness and diversity. Despite the fact that ants have no negative impact on the abundance and diversity of predators and parasitoids at the community level their impact on specific natural


enemy species, mainly predators, may explain the highest pest densities associated with ants in citrus.

Keywords: biodiversity, biological control, ant exclusion, citrus agroecosystems, multitrophic interactions

## 1. Introduction

Ants are keystone species affecting directly and indirectly the ecosystem structure and functioning. Ants may act as soil tillers, seed dispersers, pollinators (Beattie, 1985), predators (Karhu, 1998; Olotu et al., 2013) and are involved in various mutualisms (Rosumek et al., 2009; Way, 1963). Especially mutualisms have been found to have broader effects on the wider arthropod community affecting eventually plant health (Eubanks and Finke, 2014; Kaplan and Eubanks, 2005). One of the best studied mutualisms involving ants is the relationship with honeydew producing hemipterans, in which ants use the honeydew excreted as an important carbohydrate source and, in turn, protect hemipterans from their natural enemies (Bartlett, 1961; Carroll and Janzen, 1973; Hölldobler and Wilson, 1990; Way, 1963). As a result, anttending may have wider community-level consequences by altering the abundance and distribution of predators and parasitoids (Styrsky and Eubanks, 2007; Tena et al., 2013). These interactions play an important role in natural and most crucially in agricultural ecosystems since biological pest control provided by predators and parasitoids, an important ecosystem service (Naylor and Ehrlich, 1997), may be negatively affected by ant activity (DeBach et al., 1951; Martínez-Ferrer et al., 2003)

The impact of ants on natural enemy abundance, diversity or community structure varies considerably depending on the natural enemy species as well as on the species of ants involved or the ecosystem where the study took place (Table 1 and references therein). Whereas several studies have demonstrated a negative impact of ants on the abundance of natural enemies (Eubanks, 2001; James et al., 1999; Kaplan and Eubanks, 2005; Piñol et al., 2012a) others find no effect (Chong et al., 2010; Gibb, 2003; Offenberg et al., 2005) or even find positive effects of ants on the community of natural enemies (Peng and Christian, 2013; Stewart-Jones et al., 2007). The same or even greater variability is reported at the species
level; natural enemies, even species belonging to the same taxonomic order, may be affected differently by ants. For example, several studies have shown that ants have a negative impact on certain coccinellid species (Bartlett, 1961; Itioka and Inoue, 1996; Kaplan and Eubanks, 2002), but other coccinellid species are not affected (Flanders, 1958; Vanek and Potter, 2010) or even increase their densities under ant presence (Daane et al., 2007; Völkl and Vohland, 1996). Likewise, the activity of several parasitoid species is disrupted by ants (Bartlett, 1961; Martínez-Ferrer et al., 2003; Mgocheki and Addison, 2009) while others are able to parasitize ant-tended plant feeders (Barzman and Daane, 2001; Flanders, 1958; Völkl, 1994).

Several studies have examined the multitrophic interactions involving ants and natural enemies in citrus in different parts of the world (Dao et al., 2014; James et al., 1999; Piñol and Espadaler, 2010; Piñol et al., 2012a; Yoo et al., 2013) yet again there are no studies examining the impact of ants simultaneously on predator and parasitoid species. Most of the studies focus on predators from different taxa but little is known about the impact of ants on the diversity and abundance of parasitoids, which are often studied as a single group in the order Hymenoptera. Knowledge about the impact of ants on the abundance, diversity and community structure of natural enemies in the citrus agroecosystem will provide useful insights and can help us to clarify the role of ants in biological control.

Thus, our research focuses on determining the impact of ants on the abundance, diversity and community structure of predators and parasitoids in Mediterranean citrus orchards. We performed an ant-exclusion experiment during two consecutive years in three commercial citrus orchards each one with a different dominant ant species. The main objectives of the study were: (1) to know, describe and quantify the community of predators and parasitoids in the three citrus orchards (2) to test whether ants impact the abundance of predators and
parasitoids and (3) to test whether ants impact the species richness, diversity and community structure of predators and parasitoids.

## 2. Materials and methods

### 2.1 Study sites

The study was conducted during two consecutive growing seasons, from April 2010 to November 2011, in three commercial citrus orchards located in an extensive citrus-growing area located 30 km south of Valencia, eastern Spain (3912' $\mathrm{N}, 0020^{\prime} \mathrm{W}$; $399^{11^{\prime} \mathrm{N}, 0020^{\prime} \mathrm{W}}$ and $39014^{\prime} \mathrm{N}, 0015^{\prime} \mathrm{W}$ ). The climate is Mediterranean, with a rainy spring and autumn and a dry winter and summer. The orchards were flood irrigated and weeds were controlled by local application of herbicides (Glyphosate ${ }^{\circledR}$, Bayer CropScience, Spain). Two orchards were of sweet orange Citrus sinensis (L.) Osbeck (cv. Navelina) and one of a mixture of two species, sweet orange C. sinensis (cv. Navelina) and Clementine mandarin Citrus reticulata Blanco (Cv. Clementina Fina). In all orchards trees were more than 10 years old. No insecticides were sprayed in the previous five years or during the two-year experimental period. In each orchard, a behaviourally dominant ant species was present. From now on we will refer to the orchards according to the acronym of the predominant ant species present. Thus, in the orchard PP the predominant ant species was Pheidole pallidula (Nylander), in the orchard LG the predominant ant species was Lasius grandis Forel and in the orchard LH Linepithema humile (Mayr) was the only ant species present and foraging on the tree canopies (for details see Calabuig et al., 2013).

### 2.2 Experimental design

At each orchard, the experimental design was a randomized block with four replicates (blocks) of two adjacent treatments (plots): ant-allowed and ant-excluded trees. Each plot contained 16 trees (four rows by four trees per row). Ants were excluded in the 16 trees of the antexcluded plots and left unaffected in the 16 trees of the ant-allowed plots. Only the four central trees of each plot were used for the samplings. With that method we ensure that arthropods captured came from the trees of the same plot and corresponding treatment. Antexclusion began in April 2011 and was maintained until November 2012 (19 months). During the first season (2011), ant exclusion was achieved by painting a $25-\mathrm{cm}$ wide band of insecticidal paint in a micro-encapsulated formulation (Inesfly FITO© (chlorpyrifos 3\%)), Industrias Químicas Inesba S.L., Paiporta, Spain) on the trunk. To ensure that no ants reached the tree canopies, ant-excluded trees were inspected every month and the band was repainted if ants were observed crossing the band. Due to the fact that we observed ants crossing the painted bands in some of the trees during the first growing season we changed the ant exclusion method during the subsequent season. Thus, during 2012, ant exclusion was conducted by applying Tangle-trap ${ }^{\circledR}$ (Tanglefoot, Biagro, Valencia, Spain) sticky barrier on the tree trunks. Sticky barriers were inspected every month and, if necessary, the Tanglefoot was renewed; in any case, Tanglefoot was renewed routinely every two months. Trees were pruned periodically and ground vegetation was trimmed to prevent alternative ways for ants to reach the canopies.

### 2.3 Arthropod sampling and classification

Arthropods on the tree canopies were sampled with yellow sticky traps and by using an aspiration vacuum device. In each plot, one yellow sticky trap (Bug-scan, Biobest ${ }^{\circledR}$ ), 100 mm x 250 mm , was placed at 1.60 m high in the middle of the plot by hanging it on a twig. Aspiration
samples were taken from the four central trees of each plot using a modified vacuum sampler (Komatsu Zenoah Co. HBZ2601) consisting on a reversed leaf-blower with a mesh bag to retain the sample. The vacuum sampler was applied on the canopies during one minute on each one of the four central trees of the plot. The sticky traps were replaced monthly, from April 2011 to November 2012 whereas aspiration samples were taken monthly from April to August and bimonthly from September to December in 2011 and 2012. Samples were transferred to the laboratory and maintained in a freezer until their identification.

All natural enemies captured were counted and identified. Most of them were identified to species or morphospecies level, while a few natural enemies were identified to genera or families. The use of morphospecies is a useful tool for studies that require taxonomic identifications of a great number of invertebrates without compromising scientific accuracy (Oliver and Beattie, 1996).

### 2.4 Predator and parasitoid diversity

The natural enemy diversity was measured in each sampling date by calculating the species richness $S$ (number of species or morphospecies) and the Shannon diversity index $H^{\prime}$ (Shannon and Weaver, 1949):

$$
H^{\prime}=-\sum_{i=1}^{i=S} p_{i} \cdot \log _{e} p_{i}
$$

where $p_{i}$ is the proportion of individuals of each species (up to a total of $S$ species) in each sample. In the calculation of species richness and diversity we included the natural enemies identified to species or morphospecies level. Hyperparasitoid species and species belonging to the fourth trophic level were not included in these analyses.

### 2.5 Statistical analysis

All analysis were performed using all the captures of each month with both traps and aspiration samples (i.e. May, June, July, August, October and December for 2011 and April, May, June, July, August, September and November in 2012).

To compare the abundance of specific natural enemies in ant-allowed and ant-excluded treatments we included only those species with more than 40 individuals captured in total during the two seasons of the study in the three orchards. We applied repeated measures ANOVA on the abundance of every species, either at each orchard or globally, i.e. considering the three orchards together. Treatment (ant-excluded versus ant-allowed) was the fixed factor and orchard (in the global analysis), bloc (nested into orchard) and sampling date were random factors. Data were log-transformed in order to meet normality assumptions. All ANOVAS were conducted using Statgraphics 5.1 software (Statgraphics, 1994).

Repeated measures analysis of variance (ANOVA) were applied to compare the species richness $(S)$ and the Shannon diversity index $\left(H^{\prime}\right)$ in ant-allowed and ant-excluded treatments in each orchard and globally. Treatment (ant-excluded versus ant-allowed) was the fixed factor and orchard (in the global analysis), bloc (nested into orchard) and sampling date were random factors. For the community structure analysis we included all natural enemies identified to species or morphospecies. To compare the community structure of natural enemies in ant-allowed and ant-excluded treatments, permutational multivariate analyses of variance (PERMANOVA) were applied to predators and parasitoids abundances using the adonis function in the vegan package (Anderson, 2001; Oksanen et al., 2009) in R (R Development Core Team, 2014). A separate PERMANOVA was conducted in each orchard for each year. Distance matrices for use in PERMANOVA were constructed using the Bray-Curtis
index, and P-values were generated using F-tests based on sequential sums of squares from 99999 permutations of the raw data. Additionally, a nonmetric multidimensional scaling (NMDS) was conducted to analyse the natural enemy community composition at each orchard and year in ant-excluded and ant-allowed treatments. NMDS analysis applied a square-root transformation and calculated the Bray-Curtis distances for the community matrix. NMDS analyses were conducted using R ( $R$ Development Core Team, 2014).

## 3. Results

A total of 176,000 arthropods belonging to 81 taxa were captured and identified in all samplings in the three orchards, including sticky traps and aspiration of the canopies. Of them, 53 taxa contained more than 40 individuals: 18 taxa of predators, 31 of parasitoids and 4 belonging to the fourth trophic level. These were the taxa included in the comparative analyses of abundance (Table 2). Among predators, the most abundant order was Neuroptera and the most abundant species were Semidalis aleyrodiformis Stephens and Conwentzia psociformis (Curtis) (both Neuroptera: Coniopterygidae). In the case of parasitoids, all of them belonging to the order Hymenoptera, the most abundant group was the superfamily Chalcidoidea, being Aphytis chrysomphali (Mercet) and Cales noacki Howard (Aphelinidae) the most abundant species (Table 2).

### 3.1 Abundance of parasitoids and predators

When comparing the abundance of specific species or arthropod taxa between treatments we observed different responses depending on the functional group and species of the natural
enemy examined. From the 53 global comparisons of particular taxa of natural enemies between ant-allowed and ant-excluded trees, 21 (40\%) showed a significant differences between treatments. When separated according to functional groups, $44 \%$ of the predator and $37 \%$ of the parasitoid taxa were affected by ants (Table 1). Further, in the comparisons obtained considering orchards individually, the percentage of taxa of natural enemies significantly affected by ants was $38 \%$ in orchard LH, $31 \%$ in orchard PP and $27 \%$ in orchard LG (Table 1).

In those cases where we detected significant differences between treatments we observed a general pattern. In the ant-allowed treatment predator abundance was significantly lower (seven species decreased and four increased in at least one orchard) whereas parasitoid abundance was higher (four species decreased and 18 increased in at least one orchard).

The abundance of natural enemies in ant-allowed and ant-excluded treatments also varied depending on the species of natural enemy (Table 1). This can be clearly seen for the following species by examining their seasonal population development in the ant-allowed and antexcluded trees in the three orchards. The abundance of the generalist predators Chrysoperla carnea sensu lato (Stephens) (Neuroptera: Chrysopidae) and Cardiasthetus sp. (Heteroptera: Anthocoridae) was significantly lower in the ant-allowed trees. On the contrary, the abundance of parasitoids such as Aphytis hispanicus (Mercet) attacking Parlatoria pergandii Comstock (Hemiptera: Diaspididae), and Anagyrus sp. (Girault) (Hymenoptera: Encyrtidae) attacking pseudococcids, was significantly higher in the ant-allowed trees (Fig. 1).

Among true bugs (Heteroptera) the abundance of the myrmecomorphic Pilophorus sp. (Heteroptera: Miridae) was significantly higher in the ant-allowed treatment, especially in the orchard dominated by L. grandis (LG), whereas the abundance of other true bug species such
as Cardiasthetus sp. (Heteroptera: Anthocoridae) or Campyloneura virgula (Herrich-Schäffer) (Heteroptera: Miridae) was significantly lower in the ant-allowed treatment (Fig. 2).

We captured several species belonging to the $4^{\text {th }}$ trophic level (most of them identified as morphospecies) in the citrus canopies. Marietta sp. (Hymenoptera: Aphelinidae), hyperparasitoid of coccid parasitoids, and Ablerus sp. (Hymenoptera: Aphelinidae), hyperparasitoid of diaspidid partasitoids, were significantly more abundant in the ant-allowed treatment. The abundance of Pachyneuron sp. (Hymenoptera: Pteromalidae), hyperparasitoid of aphid parasitoids, was not significantly different between treatments. Helorus sp. (Hymenoptera: Heloridae), a parasitoid of chrysopid eggs, was less abundant in the antallowed treatment.

### 3.2 Species richness, diversity and community structure of predators and parasitoids

Overall, in the ant-allowed treatment the species richness ( S ) was significantly lower for predators and higher for parasitoids when compared with the ant-excluded trees. This impact of ants observed globally was, nevertheless, significant only in one orchard for predators and two orchards for parasitoids when examining the three orchards separately (Table 3).

The Shannon diversity index (H) was not different between the ant-allowed and ant-excluded treatments in the case of predators, whereas in the case of parasitoids diversity was significantly higher in the ant-allowed treatment both in the global analysis and in the three orchards analyzed individually (Table 3).

The multivariate test showed that the community of parasitoids changed significantly in the antallowed treatment in 2012 in the orchard LH (Table 4). In the other orchards and/or years the community structure was not different between treatments. Moreover, the ordination plot NMDS did
not show a clear separation between ant-allowed and ant-excluded treatments in the community structure of the natural enemies (Fig. 3).

## 4. Discussion

Our results show that the community structure of predators and parasitoids was not significantly different between the ant-allowed and the ant-excluded treatments. However, when analyzing the effect of ants on the abundance of different species of natural enemies the results differ across species or taxa. The abundance of some species was lower in the antallowed treatment while for others it was unaffected or even higher. In general terms, we observed lower predator and higher parasitoid abundance in the ant-allowed treatment compared to the ant-excluded treatment. Most crucially, the species richness and diversity of parasitoids was higher in the ant-allowed treatment whereas the diversity of predators was not different between treatments.

### 4.1 Abundance of predators and parasitoids

It has been largely assumed that ant attendance offers hemipterans a protective service against parasitoids (Buckley, 1987; Flanders, 1951; Steyn, 1954). However, the abundance of most species of parasitoids in our study was either not affected by ants or was higher in the ant-allowed treatment. This effect seems to be related, at least in some cases, with the impact of ants on the parasitoids host populations and/or with the ability of the concrete species to cope with ant aggression. Often, honeydew producing pests are more abundant under ant protection and eventually this might explain the higher abundance of their parasitoids in the ant-allowed treatment. Parasitoids of honeydew producing pests, such as the soft scale
parasitoids Metaphycus helvolus Compere, Metaphycus flavus Howard and Encyrtus sp. (Hymenoptera: Encyrtidae) or the mealybug parasitoid Anagyrus sp. were, in general, more abundant in the ant-allowed treatment, especially in the orchard LH. The overall abundance of Aphidiinae (Hymenoptera: Braconidae), parasitoids of aphids, was similar between treatments. However, when examining the response of different species within Aphidiinae the picture was different: Lysiphlebus sp. was significantly more abundant and Aphidius sp. was significantly less abundant in the orchard PP in the ant-allowed treatment. Völkl (1992) and Liepert and Dettner (1993) showed that ants attacked and killed Trioxys angelicae (Hymenoptera: Braconidae) while ignored Lysiphlebus cardui Marshall (Hymenoptera: Braconidae) due to chemical mimicry. On the other hand, Powell and Silverman (2010) reported that Aphidius colemani Viereck (Hymenoptera: Braconidae) were negatively impacted by L. humile and Tapinoma sessile (Say). In general, we may have two contrasting effects of ant attendance on parasitoids: ants disturb parasitoids but, on the other hand, increased populations of Hemiptera might result in potentially more hosts and eventually to higher parasitoid populations.

It was surprising to see that Encarsia inquirenda Silvestri and A. hispanicus (Hymenoptera: Aphelinidae), parasitoids of $P$. pergandii, that does not produce honeydew and therefore is not tended by ants, were more abundant in the ant-allowed treatment both globally and on each orchard individually (except in the orchard LG for E. inquirenda). Apparently, ant presence is associated with increased abundances of $P$. pergandii, as already found for other armored scales (Calabuig et al., 2013; Pekas et al., 2010; Yoo et al., 2013). Other parasitoid species of non-honeydew producers did not follow this trend. In the case of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) and A. chrysomphali, parasitoids of Aonidiella aurantii Maskell (Hemiptera: Diaspididae), we observed no differences in their abundance between
treatments except in the orchard LH where the populations of A. chrysomphali were significantly higher in the ant-allowed treatment.

Predator abundance, at least for the most common species, was lower in the ant-allowed treatment. It is important to highlight the case of the chrysopids (green lacewings), C. carnea sensu lato and C. septempunctata. These species are considered important biological control agents in many agroecosystems (Senior and McEwen, 2001) and are among the most abundant predators in Mediterranean citrus orchards, preying upon a wide range of pests (Garcia-Marí, 2012). Our results are in agreement with other studies which have also found lower densities of chrysopids in ant-allowed treatments (James et al., 1999; Kaplan and Eubanks, 2002; McPhee et al., 2012; Vanek and Potter, 2010). Several authors reported aggressive behavior of different ant species against chrysopids (Bartlett, 1961; Vanek and Potter, 2010) or ant predation on chrysopid eggs (Dreistadt et al., 1986; Morris et al., 1998) which may result in lower chrysopid populations.

Regarding the impact of ants on coccinellids (Coleoptera) our results show great variability depending on the species examined. Stethorus punctillum Weise and Rodolia cardinalis Mulsant were less abundant in the ant-allowed treatment in orchard PP while Delphastus catalinae Horn and Scymnus subvillosus Goeze were more abundant in the ant-allowed treatment in orchard LH. The response of coccinellids to ant attacks differs between species (Jiggins et al., 1993) and some coccinellid species can cope with ant agression through morphological, behavioural or chemical adaptations. For example, Völkl and Vohland (1996) found higher populations of Scymnus $s p$. in ant attended resources due to the protective wax cover of the Scymnus larvae which allow them to predate upon honeydew producers tended by ants.

For the two most abundant species of predatory Heteroptera (true bugs) Cardiasthetus sp . and Campyloneura virgula we registered lower populations in the ant-allowed treatment. In an 8-year study, (Piñol et al., 2012b) also found lower abundance of predatory Heteroptera especially Cardiasthetus fasciiventris in ant-allowed trees. It is interesting to mention the higher populations of Pilophorus sp. in the ant-allowed treatment. These results are in agreement with other studies reporting a strong positive association between the ant $L$. grandis and Pilophorus sp. (Piñol et al., 2012b; Sanchez and Ortín-Angulo, 2012).This species exhibits mirmecomorphy that allows it to benefit from ant presence.

The abundance of some species from the $4^{\text {th }}$ trophic level was also found to be different between the ant-allowed and ant-excluded treatments. This is apparently related with the abundance of their primary hosts. The hyperparasitoid of diaspidids Ablerus $\mathrm{sp} .$, which was present only in the orchard LH, was more abundant in the ant-allowed treatment, following the effect observed for its primary host A. chrysomphali. The hyperparasitoid Marietta sp. was also more abundant in the ant-allowed treatment, following the effect observed for the encyrtid parasitoids of coccids. The parasitoid of chrysopid eggs Helorus sp., on the other hand, was less abundant in the ant-allowed trees following the trend observed for its host. Several studies have demonstrated that some parasitoids benefit from ant attendance because ants may reduce hyperparasitism by disturbing hyperparasitoids (Sanders and Frank Van Veen, 2010; Völkl, 1992). On the other hand, intraguild predation caused by higher abundance of predators in ant excluded trees, which may predate upon parasitized hosts, may decrease the populations of some parasitoids and eventually hyperparasitoids (Kaneko, 2006, 2002; Novak, 1994).

### 4.2 Species richness, diversity and community structure of predators and parasitoids

Previous studies in several ecosystems showed a decrease of arthropod diversity as a result of ant activity (Human and Gordon, 1997; Wimp and Whitham, 2001). Nevertheless, it is difficult to compare these results with ours given that the previous studies focused on overall arthropod communities including different guilds such as herbivores. On the other hand, (Peng and Christian, 2013) found that weaver ants either had no impact or increased the diversity of natural enemies in cashew and mango trees. To our knowledge, the present study is the first to demonstrate a significant increase on the species richness as well as on the Shannon diversity index for parasitoids in the ant-allowed treatment.

Our results show that the community structure of predators and parasitoids on the citrus canopies were similar between treatments. Previous studies also found that ants did not affect the overall arthropod communities in vineyards (Chong et al., 2010), peaches (Mathews et al., 2009) or coffee (Philpott et al., 2008). Conversely, Piñol et al. (2012a), in an 8-year exclusion experiment, reported that ants changed the arthropod community in a citrus orchard in some years of the study. Differences in the results obtained in the different studies might be attributed to the different species of ants and/or the characteristics of the experimental orchards.

Despite L. humile having been described as an aggressive and very disruptive ant species for biological control (Markin, 1970), in our study we found no significant effects on the community structure of natural enemies. The same can be deduced for the native to the Mediterranean species in our study, L. grandis and P. pallidula. In fact, the impact of the three species on the community structure of natural enemies was quite similar. In a previous study it was found that the three ant species induced similar increases of the herbivore populations A. aurantii and A. floccossus (Calabuig et al., 2013).

In conclusion, our ant exclusion study reveals that ants in citrus are not associated with a dramatic decrease in natural enemy abundance or biodiversity at the community level. The impact of ants on the natural enemies depends mostly on the species of natural enemy; even closely related species showed different or opposite responses to ant activity. In spite of the species specific response of natural enemies, we detected a general tendency related to functional groups: predator abundance and diversity decreased whereas parasitoid abundance and diversity increased in the ant-allowed treatment. These results may have practical implications for biological pest control. Despite the fact that ants have no negative impact on the abundance and diversity of predators and parasitoids at the community level their impact on specific natural enemy species may explain the highest pest densities associated with ant presence in citrus (Calabuig et al., 2013; Dao et al., 2014; Pekas et al., 2010; Yoo et al., 2013). This would also highlight the importance of certain species, especially predators, rather than natural enemy assemblages on regulating pest populations as recently was demonstrated in olive groves in the Mediterranean (Paredes et al., 2015).

Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32-46.

Bartlett, B., 1961. The influence of ants upon parasites, predators, and scale insects. Ann. Entomol. Soc. Am. 54, 543-551.

Barzman, S.M., Daane, M.K., 2001. Host-handling behaviours in parasitoids of the black scale: a case for ant-mediated evolution. J. Anim. Ecol. 70, 237-247. doi:10.1111/j.1365-2656.2001.00483.x

Beattie, A.J., 1985. The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge University Press.

Buckley, R., 1987. Interactions involving plants, Homoptera, and ants. Annu. Rev. Ecol. Syst. 18, 111-135.

Calabuig, A., Garcia-Marí, F., Pekas, A., 2013. Ants affect the infestation levels but not the parasitism of honeydew and non-honeydew producing pests in citrus. Bull. Entomol. Res. 104, 405-417. doi:0.1017/S0007485313000564

Carroll, C., Janzen, D., 1973. Ecology of foraging by ants. Annu. Rev. Ecol. Syst. 4, 231-257.
Chong, C.S., D'Alberto, C.F., Thomson, L.J., Hoffmann, A.A., 2010. Influence of native ants on arthropod communities in a vineyard. Agric. For. Entomol. 12, 223-232. doi:10.1111/j.1461-9563.2010.00472.x

Daane, K.M., Sime, K.R., Fallon, J., Cooper, M.L., 2007. Impacts of Argentine ants on mealybugs and their natural enemies in California's coastal vineyards. Ecol. Entomol. 32, 583-596. doi:10.1111/j.1365-2311.2007.00910.x

Dao, H.T., Meats, A., Beattie, G.A.C., Spooner-Hart, R., 2014. Ant-coccid mutualism in citrus canopies and its effect on natural enemies of red scale, Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae). Bull. Entomol. Res. 104, 137-42.
doi:10.1017/S0007485313000187
DeBach, P., Fleschner, C., Dietrick, E., 1951. A biological check method for evaluating the effectiveness of entomophagous insects. J. Econ. Entomol. 44.

Dreistadt, S.H., Hagen, K.S., Dahlsten, D.L., 1986. Predation by Iridomyrmex humilis on eggs of Chrysoperla carnea released for inundative control of Illinoia liriodendri [Hom.: Aphididae] infesting Liriodendron tulipifera. Entomophaga 31, 397-400.

Eubanks, M., Finke, D.L., 2014. Interactions webs in agroecosystems: beyond who eats whom. Curr. Opin. Insect Sci. 2, 1-6. doi:10.1016/j.cois.2014.06.005

Eubanks, M.D., 2001. Estimates of the direct and indirect effects of Red Imported Fire ants on biological control in field crops. Biol. Control 21, 35-43. doi:10.1006/bcon.2001.0923

Flanders, S., 1951. The role of the ant in the biological control of homopterous insects. Can. Entomol. 83, 93-98.

Flanders, S., 1958. The role of the ant in the biological control of scale insects in California. Proc. Inter. Entomol. Congr., Montréal 4, 579-584.

Garcia-Marí, F., 2012. Plagas de los cítricos. Gestión integrada en países de clima mediterráneo. Phytoma, Valencia.

Gibb, H., 2003. Dominant meat ants affect only their specialist predator in an epigaeic arthropod community. Oecologia 136, 609-15. doi:10.1007/s00442-003-1299-z

Hölldobler, B., Wilson, E.O., 1990. The ants. Belknap Press, Cambridge, MA.

Human, K., Gordon, D., 1997. Effects of Argentine ants on invertebrate biodiversity in northern California. Conserv. Biol. 11, 1242-1248.

Itioka, T., Inoue, T., 1996. The role of predators and attendant ants in the regulation and persistence of a population of the citrus mealybug Pseudococcus citriculus in a Satsuma orange orchard. Appl. Entomol. Zool. 31, 195-202.

James, D.G., Stevens, M., O'Malley, K.J., Faulder, R.J., 1999. Ant foraging reduces the abundance of beneficial and incidental arthropods in citrus canopies. Biol. Control 14, 121-126. doi:10.1006/bcon.1998.0678

Jiggins, C., Majerus, M., Gough, U., 1993. Ant defence of colonies of Aphis fabae Scopoli (Hemiptera: Aphididae), against predation by ladybirds. Br. J. Entomol. Nat. Hist. 6, 129-137.

Kaneko, S., 2002. Aphid-attending ants increase the number of emerging adults of the aphid's primary parasitoid and hyperparasitoids by repelling intraguild predators. Entomol. Sci. 5, 131-146.

Kaneko, S., 2006. Predator and parasitoid attacking ant-attended aphids: effects of predator presence and attending ant species on emerging parasitoid numbers. Ecol. Res. 22, 451-458. doi:10.1007/s11284-006-0025-9

Kaplan, I., Eubanks, M., 2005. Aphids alter the community-wide impact of fire ants. Ecology 86, 1640-1649. doi:org/10.1890/04-0016

Kaplan, I., Eubanks, M.D., 2002. Disruption of Cotton aphid (Homoptera: Aphididae)—natural enemy dynamics by Red Imported Fire ants (Hymenoptera: Formicidae). Environ. Entomol. 31, 1175-1183. doi:10.1603/0046-225X-31.6.1175

Karhu, K.J., 1998. Effects of ant exclusion during outbreaks of a defoliator and a sap-sucker on birch. Ecol. Entomol. 23, 185-194. doi:10.1046/j.1365-2311.1998.00116.x

Liepert, C., Dettner, K., 1993. Recognition of aphid parasitoids by honeydew-collecting ants: The role of cuticular lipids in a chemical mimicry system. J. Chem. Ecol. 19, 2143-53. doi:10.1007/BF00979653

Markin, G.P., 1970. Foraging behavior of the Argentine ant in a California citru grove. J. Econ. Entomol. 63, 740-744.

Martínez-Ferrer, M.T., Grafton-Cardwell, E.E., Shorey, H.H., 2003. Disruption of parasitism of the California red scale (Homoptera: Diaspididae) by three ant species (Hymenoptera: Formicidae). Biol. Control 26, 279-286. doi:10.1016/S1049-9644(02)00158-5

Mathews, C., Bottrell, D., Brown, M., 2009. Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense. Ecol. Appl. 19, 722-730.

McPhee, K., Garnas, J., Drummond, F., Groden, E., 2012. Homopterans and an invasive red ant, Myrmica rubra (L.), in Maine. Environ. Entomol. 41, 59-71.

Mgocheki, N., Addison, P., 2009. Interference of ants (Hymenoptera: Formicidae) with biological control of the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biol. Control 49, 180-185. doi:10.1016/j.biocontrol.2009.02.001

Mody, K., Linsenmair, K., 2004. Plant-attracted ants affect arthropod community structure but not necessarily herbivory. Ecol. Entomol. 29, 217-225.

Morris, T.I., Campos, M., Jervis, M.A., McEwen, P.K., Kidd, N. a. C., 1998. Potential effects of various ant species on green lacewing, Chrysoperla carnea (Stephens) (Neuropt., Chrysopidae) egg numbers. J. Appl. Entomol. 122, 401-403. doi:10.1111/j.14390418.1998.tb01519.x

Novak, H., 1994. The influence of ant attendance on larval parasitism in hawthorn psyllids (Homoptera: Psyllidae). Oecologia 99, 72-78. doi:10.1007/BF00317085

Offenberg, J., Nielsen, M., Macintosh, D., 2005. Lack of ant attendance may induce compensatory plant growth. Oikos 111, 170-178.

Oksanen, J., Kindt, R., Legendre, P., 2009. Vegan: community ecology package. R package version 1.15-2. 2009.

Oliver, I., Beattie, A., 1996. Invertebrate morphospecies as surrogates for species: a case study. Conserv. Biol.

Olotu, M.I., du Plessis, H., Seguni, Z.S., Maniania, N.K., 2013. Efficacy of the African weaver ant Oecophylla longinoda (Hymenoptera: Formicidae) in the control of Helopeltis spp. (Hemiptera: Miridae) and Pseudotheraptus wayi (Hemiptera: Coreidae) in cashew crop in Tanzania. Pest Manag. Sci. 69, 911-8. doi:10.1002/ps. 3451

Paredes, D., Cayuela, L., Gurr, G.M., Campos, M., 2015. Single best species or natural enemy assemblages ? a correlational approach to investigating ecosystem function. BioControl 60, 37-45. doi:10.1007/s10526-014-9620-9

Pekas, A., Tena, A., Aguilar, A., Garcia-Marí, F., 2010. Effect of Mediterranean ants (Hymenoptera: Formicidae) on California red scale (Hemiptera: Diaspididae) populations in citrus orchards. Environ. Entomol. 39, 827-34. doi:10.1603/EN09207

Peng, R., Christian, K., 2013. Do weaver ants affect arthropod diversity and the natural-enemy-to-pest ratio in horticultural systems? J. Appl. Entomol. 137, 711-720. doi:10.1111/jen. 12058

Philpott, S., Greenberg, R., Bichier, P., Perfecto, I., 2004. Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa. Oecologia 140, 140-9. doi:10.1007/s00442-004-1561-z

Philpott, S., Perfecto, I., Vandermeer, J., 2008. Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity. J. Anim. Ecol. 77, 505-11. doi:10.1111/j.1365-2656.2008.01358.x

Piñol, J., Espadaler, X., 2010. Ant versus bird exclusion effects on the arthropod assemblage of an organic citrus grove. Ecol. Entomol. 35, 367-376. doi:10.1111/j.13652311.2010.01190.x

Piñol, J., Espadaler, X., Cañellas, N., 2012a. Eight years of ant-exclusion from citrus canopies: effects on the arthropod assemblage and on fruit yield. Agric. For. Entomol. 14, 49-57. doi:10.1111/j.1461-9563.2011.00542.x

Piñol, J., Ribes, E., Ribes, J., Espadaler, X., 2012b. Long-term changes and ant-exclusion effects on the true bugs (Hemiptera: Heteroptera) of an organic citrus grove. Agric. Ecosyst. Environ. 158, 127-131. doi:10.1016/j.agee.2012.06.004

Powell, B., Silverman, J., 2010. Impact of Linepithema humile and Tapinoma sessile (Hymenoptera: Formicidae) on three natural enemies of Aphis gossypii (Hemiptera: Aphididae). Biol. Control 54, 285-291.

R Development Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rosumek, F., Silveira, F., Neves, F., 2009. Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia 160, 537-549. doi:10.1007/s00442-009-1309-x

Sanchez, J.A., Ortín-Angulo, M.C., 2012. Abundance and population dynamics of Cacopsylla pyri (Hemiptera: Psyllidae) and its potential natural enemies in pear orchards in southern Spain. Crop Prot. 32, 24-29. doi:10.1016/j.cropro.2011.11.003

Sanders, D., Frank Van Veen, F.J., 2010. The impact of an ant-aphid mutualism on the functional composition of the secondary parasitoid community. Ecol. Entomol. 35, 704710. doi:10.1111/j.1365-2311.2010.01230.x

Senior, L., McEwen, P., 2001. The use of lacewings in biological control, in: McEwen, Peter K., Tim R. New, and A.E.W. (Ed.), Lacewings in the Crop Environment. Cambridge University Press, pp. 296-302.

Shannon, C.E., Weaver, W., 1949. The mathematical theory of communication. Univ. Illinois Press, Urbana.

Statgraphics, 1994. Statistical Graphics System, Version 5.1 Plus. Manugistics, Rockville, MD, USA.

Stewart-Jones, A., Pope, T.W., Fitzgerald, J.D., Poppy, G.M., 2007. The effect of ant attendance on the success of rosy apple aphid populations, natural enemy abundance and apple damage in orchards. Agric. For. Entomol. 10, 37-43. doi:10.1111/j.14619563.2007.00353.x

Steyn, J., 1954. The Effect of the Cosmopolitan Brown House Ant (Pheidole megaecphala F.) on Citrus Red Scale (Aonidiella aurantii Mask.) at Letaba. J. Entomol. Soc. South. Afr. 17, 252-264.

Styrsky, J.D., Eubanks, M., 2007. Ecological consequences of interactions between ants and honeydew-producing insects. Proc. R. Soc. B Biol. Sci. 274, 151-64. doi:10.1098/rspb.2006.3701

Tena, A., Hoddle, C.D., Hoddle, M.S., 2013. Competition between honeydew producers in an ant-hemipteran interaction may enhance biological control of an invasive pest. Bull. Entomol. Res. 103, 714-23. doi:10.1017/S000748531300045X

Vanek, S.J., Potter, D. a, 2010. Ant-exclusion to promote biological control of soft scales (Hemiptera: Coccidae) on woody landscape plants. Environ. Entomol. 39, 1829-37. doi:10.1603/EN10093

Völkl, W., 1992. Aphids or their parasitoids: who actually benefits from ant-attendance? J. Anim. Ecol. 61, 273-281.

Völkl, W., 1994. The effect of ant-attendance on the foraging behaviour of the aphid parasitoid Lysiphlebus cardui. Oikos 70, 149-155.

Völkl, W., Vohland, K., 1996. Wax covers in larvae of two Scymnus species: do they enhance coccinellid larval survival? Oecologia 107, 498-503. doi:10.1007/BF00333941

Way, M., 1963. Mutualism between ants and honeydew-producing Homoptera. Annu. Rev. Entomol. 8, 307-344.

Wimp, G., Whitham, T., 2001. Biodiversity consequences of predation and host plant hybridization on an aphid-ant mutualism. Ecology 82, 440-452.

Yoo, H.J.S., Kizner, M.C., Holway, D.A., 2013. Ecological effects of multi-species, anthemipteran mutualisms in citrus. Ecol. Entomol. 38, 505-514. doi:10.1111/een. 12042

Table 1. Studies examining the impact of ants on the diversity, community structure or abundances of natural enemies in different ecosystems.

| Reference | Ecosystem | IMPACT OF ANTS |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Diversity index | Community structure | Natural enemy abundance |
| James et al., 1999 | 1 Citrus orchard | n.d.* | n.d | Negative impact (in some seasons) on predatory beetles, lacewings, parasitic wasps and spiders. |
| Piñol et al., 2012 | 1 Citrus orchard | n.d | Impacted (includes herbivores) | Negative impact on several orders (analyzed at order level) |
| Philpott et al., 2008 | 3 Coffee farms | n.d | Impacted (includes herbivores) | No impact (order level). |
| Philpott et al., 2004 | 1 Coffee farm | n.d | Impacted depending on the ant species (includes herbivores) | Negative impact on Araneae and Coleoptera, but not other orders depending on the ant species. |
| Mody and Linsenmair, 2004 | Pseudocedrela kotschyi trees | n.d | n.d | Negative impact on Araneae, Coleoptera, and Hymenoptera. |
| Peng and Christian, 2013 | 1 Cashew and 1 Mango orchard | Ants increased diversity of natural enemies in Cashew | n.d | No effect of ants in Mango and higher abundances in ant presence in Cashew (all natural enemies pooled). |
| Offenberg et al., 2005 | Mangrove trees | n.d | No impact (only predators) | Negative impact on predators |
| Eubanks, 2001 | 3 Cotton fields | n.d | n.d | Negative impact on numerous predator species and Hymenoptera (grouped as wasps). |
| Human and Gordon, 1997 | Variable vegetation types | No statistical analysis | n.d | Slightly negative impact on Araneae, Hemiptera and Cynipidae. |
| Wimp and Whitham, 2001 | Poplar trees | Ants reduced diversity (includes all arthropods) | n.d | Negative impact on generalist predators; positive impact on aphid natural enemies. |
| Kaplan and Eubanks, 2002 | 4 Cotton fields | n.d | n.d | Negative impact on Chrysopids and Coccinellids, |
| Kaplan and Eubanks, 2005 | 2 Cotton fields | n.d | n.d | Negative impact on predators |
| Stewart-Jones et al., 2007 | 2 Apple orchards | n.d | n.d | Positive impact (all natural enemies pooled). |
| Chong et al., 2010 | 1 Vineyard | n.d | No impact | No impact |
| Vanek and Potter, 2010 | Maple trees and Magnolias | n.d. | n.d. | Negative impact on Aranae, Crysopa rufilabris Burmeister and parasitic wasps (several species grouped) depending on the sampling date |

${ }^{*}$ n.d. Not determined

Table 2. Total arthropods captured, arthropods captured in ant-allowed and ant-excluded trees (mean $\pm$ SE) and effect of ants, globally and for the three orchards separately, during two
years, 2011 and 2012, in three citrus orchards.

| Arthropods | Total arthropods | Principal prey | Global |  |  | *Ant effect / Orchard |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Arthropods / sample |  | *Ant effect |  |  |  |
|  |  |  | Ant-allowed | Ant-excluded |  | LG | LH | PP |
| Neuroptera |  |  |  |  |  |  |  |  |
| Chrysopidae |  |  |  |  |  |  |  |  |
| Chrysoperla carnea (Stephens) | 591 | generalist | $1.39 \pm 0.19$ | $2.70 \pm 0.33$ | -- | -- | -- | -- |
| Chrysopa septempuctata Wesmael | 39 | generalist | $0.07 \pm 0.02$ | $0.21 \pm 0.04$ | -- | n.p. | -- | -- |
| Coniopterigidae |  |  |  |  |  |  |  |  |
| Semidalis aleyrodiformis Stephens | 29987 | spider mites | $107.39 \pm 11.37$ | $101.68 \pm 10.46$ | 0 | 0 | 0 | 0 |
| Conwentzia psociformis (Curtis) | 4395 | spider mites | $14.77 \pm 3.65$ | $15.84 \pm 3.39$ | 0 | 0 | - | 0 |
| Coniopteryx sp. | 65 | spider mites | $0.20 \pm 0.04$ | $0.25 \pm 0.06$ | 0 | 0 | n.p. | 0 |
| Coleoptera |  |  |  |  |  |  |  |  |
| Ragonycha sp. | 235 | generalist | $0.59 \pm 0.23$ | $1.03 \pm 0.32$ | 0 | 0 | n.p. | 0 |
| Cybocephalus sp. | 131 |  | $0.67 \pm 0.12$ | $0.25 \pm 0.05$ | + | 0 | + | 0 |
| Coccinellidae |  |  |  |  |  |  |  |  |
| Scymnus subvillosus (Goeze) | 1242 | aphids | $4.85 \pm 0.41$ | $3.83 \pm 0.32$ | 0 | 0 | ++ | 0 |
| Rodolia cardinalis (Mulsant) | 803 | Icerya purchasi | $2.54 \pm 0.41$ | $3.05 \pm 0.50$ | 0 | 0 | 0 | -- |
| Delphastus catalinae Horn | 626 | whiteflies | $2.22 \pm 0.38$ | $2.15 \pm 0.49$ | ++ | 0 | 0 | 0 |
| Clitosthetus arcuatus Rossi | 258 | whiteflies | $1.57 \pm 0.13$ | $2.18 \pm 0.18$ | 0 | 0 | 0 | 0 |
| Rhizobius lophantae Blaisdell | 89 | whiteflies | $0.36 \pm 0.10$ | $0.26 \pm 0.10$ | 0 | n.p. | 0 | n.p. |
| Stethorus punctillum Weise | 82 | spider mites | $0.26 \pm 0.07$ | $0.31 \pm 0.05$ | -- | 0 | 0 | 0 |
| Diptera |  |  |  |  |  |  |  |  |
| Platypalpus sp. | 1338 |  | $3.07 \pm 0.83$ | $6.20 \pm 1.88$ | 0 | 0 | 0 | 0 |
| Heteroptera |  |  |  |  |  |  |  |  |
| Campyloneura virgula Herrich-Schäffer | 745 | generalist | $2.04 \pm 0.62$ | $3.13 \pm 0.71$ | -- | 0 | - | - |
| Cardiasthetus sp. | 368 | generalist | $1.03 \pm 0.15$ | $1.53 \pm 0.17$ | -- | -- | 0 | 0 |
| Ploearia sp. | 78 | spider mites | $0.27 \pm 0.07$ | $0.28 \pm 0.06$ | 0 | 0 | 0 | 0 |
| Pilophorus sp. | 43 | generalist | $0.21 \pm 0.04$ | $0.09 \pm 0.02$ | ++ | + | 0 | 0 |
| Hymenoptera |  |  |  |  |  |  |  |  |
| Chalcidoidea |  |  |  |  |  |  |  |  |
| Aphelinus sp. | 127 | aphids | $0.21 \pm 0.04$ | $0.09 \pm 0.02$ | 0 | 0 | 0 | 0 |
| Aphytis hispanicus (Mercet) | 7534 | Parlatoria pergandii | $35.34 \pm 6.08$ | $17.47 \pm 1.92$ | ++ | ++ | ++ | ++ |
| Aphytis melinus DeBach | 11694 | Aonidiella aurantii | $39.96 \pm 5.53$ | $41.50 \pm 7.12$ | 0 | 0 | 0 | 0 |
| Aphytis chrysomphali (Mercet) | 50638 | Aonidiella aurantii | $167.94 \pm 20.29$ | $184.64 \pm 21.83$ | 0 | + | ++ | 0 |
| Encarsia inquirenda (Silvestri) | 3662 | Parlatoria pergandii | $15.21 \pm 2.16$ | $10.39 \pm 1.22$ | ++ | -- | ++ | ++ |
| Encarsia sp. 1 | 59 |  | $0.26 \pm 0.05$ | $0.15 \pm 0.03$ | ++ | 0 | ++ | 0 |
| Encarsia sp. 2 | 178 |  | $0.69 \pm 0.34$ | $0.55 \pm 0.19$ | 0 | n.p. | 0 | n.p. |
| Encarsia sp. 3 | 1029 |  | $4.50 \pm 0.63$ | $2.71 \pm 0.32$ | ++ | ++ | ++ | 0 |
| Cales noacki | 18448 | whiteflies | $67.66 \pm 8.16$ | $61.01 \pm 6.71$ | 0 | 0 | + | + |
| Marietta sp. ** | 313 | coccid parasitoids | $1.36 \pm 0.32$ | $0.83 \pm 0.21$ | ++ | 0 | n.p. | ++ |
| Ablerus sp.** | 645 | diaspidid parasitoids | $3.65 \pm 0.96$ | $0.90 \pm 0.23$ | ++ | n.p. | ++ | n.p. |
| Eretmocerus sp. | 102 | whiteflies | $0.35 \pm 0.09$ | $0.37 \pm 0.09$ | 0 | n.p. | 0 | 0 |
| Citrostichus phyllocnistoides (Naranayan) | 659 | Phyllocnistis citrella | $2.74 \pm 0.86$ | $1.86 \pm 0.29$ | + | 0 | 0 | ++ |
| Metaphycus helvolus (Compere) | 4355 | coccids | $18.83 \pm 3.58$ | $11.64 \pm 1.56$ | ++ | 0 | ++ | ++ |
| Metaphycus flavus (Howard) | 8005 | coccids | $29.43 \pm 4.32$ | $26.40 \pm 4.03$ | 0 | 0 | ++ | 0 |
| Metaphycus lounsburyi (Howard) | 75 | coccids | $0.35 \pm 0.12$ | $0.17 \pm 0.05$ | 0 | n.p. | 0 | n.p. |
| Microterys nietneri (Motschulsky) | 184 | coccids | $0.54 \pm 0.11$ | $0.73 \pm 0.13$ | 0 | 0 | + | 0 |
| Anagyrus sp. | 281 | pseudococcids | $1.43 \pm 0.36$ | $0.54 \pm 0.11$ | ++ | ++ | ++ | ++ |
| Encyrtus sp. | 62 | coccids | $0.33 \pm 0.08$ | $0.10 \pm 0.04$ | ++ | n.p. | ++ | n.p. |
| Pachyneuron sp.** | 65 | aphid parasitoids | $0.22 \pm 0.08$ | $0.23 \pm 0.07$ | 0 | n.p. | 0 | n.p. |
| Mymaridae | 4932 | cicadellidae | $19.65 \pm 2.09$ | $14.80 \pm 1.81$ | ++ | + | 0 | + |
| Trichogramma sp. | 75 | lepidoptera | $0.29 \pm 0.05$ | $0.23 \pm 0.05$ | 0 | + | 0 | 0 |
| Ichneumonoidea |  |  |  |  |  |  |  |  |
| Ichneumonidae | 1038 |  | $3.70 \pm 0.44$ | $3.54 \pm 0.43$ | 0 | ++ | 0 | 0 |
| Microgastrinae | 587 | lepidoptera | $1.82 \pm 0.23$ | $2.26 \pm 0.30$ | 0 | 0 | 0 | -- |
| Lysiphlebus sp. | 93 | aphids | $0.42 \pm 0.13$ | $0.24 \pm 0.08$ | 0 | 0 | 0 | ++ |
| Aphidius sp. | 45 | aphids | $0.15 \pm 0.04$ | $0.17 \pm 0.05$ | 0 | - | 0 | -- |
| Trioxys sp. | 3451 | aphids | $11.94 \pm 3.33$ | $12.11 \pm 3.09$ | 0 | 0 | 0 | 0 |
| Alysinae: Alysinii | 172 | leaf miners | $0.59 \pm 0.08$ | $0.69 \pm 0.08$ | 0 | 0 | 0 | 0 |
| Other Braconidae | 270 |  | $1.01 \pm 0.17$ | $0.87 \pm 0.14$ | 0 | 0 | 0 | 0 |


| Proctotrupoidea |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Helorus sp.** | 309 | crisopids | $0.80 \pm 0.14$ | $1.34 \pm 0.18$ | -- | 0 | -- | 0 |
| Chrysidoidea |  |  |  |  |  |  |  |  |
| Chrysis sp. | 62 | hymenoptera | $0.21 \pm 0.09$ | $0.22 \pm 0.07$ | 0 | n.p. | 0 | n.p. |
| Cynipoidea | 286 |  | $1.03 \pm 0.17$ | $0.97 \pm 0.18$ | 0 | 0 | 0 | 0 |
| Ceraphronoidea |  |  |  |  |  |  |  |  |
| Ceraphronidae | 1083 |  | $4.26 \pm 0.54$ | $3.30 \pm 0.34$ | ++ | ++ | 0 | n.p. |
| Megaspilidae | 349 |  | $1.18 \pm 0.18$ | $1.25 \pm 0.22$ | 0 | 0 | 0 | 0 |
| Platygastroidea |  |  |  |  |  |  |  |  |
| Scelionidae | 10897 |  | $39.73 \pm 4.00$ | $36.27 \pm 3.11$ | 0 | 0 | 0 | 0 |

* Repeated measures analysis of variance (ANOVA) was used, with treatment as fixed factor and time and block as random factors. In global analysis, orchard was set as random factor as well. The + indicates a slightly positive effect of ants on the abundance of the natural enemy ( $\mathrm{P}<0.1$ ); ++ indicates a significant positive effect of ants ( $\mathrm{P}<0.05$ ); - indicates a slightly negative effect of ants ( $\mathrm{P}<0.1$ ); - - indicates a significant negative effect of ants ( $\mathrm{P}<0.05$ ); n.p. indicates no presence of the natural enemy. LG: Lasius grandis orchard; LH: Linepithema humile orchard; PP: Pheidole pallidula orchard.
** Species belonging to the $4^{\text {th }}$ trophic level.

Table 3. Impact of ants on Species richness (S) (mean $\pm$ SE) and Shannon diversity index (H)
(mean $\pm$ SE) of predators and parasitoids, globally and for the three orchards separately.

| Species richness (S) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Predators |  |  |  |  | Parasitoids |  |  |  |  |
| Orchard | Ant-excluded | Ant-allowed | d.f. | F | $P$ | Ant-excluded | Ant-allowed | d.f. | F | P |
| LG | $7.61 \pm 0.37$ | $6.96 \pm 0.35$ | 1,71 | 4.34 | 0.059* | $11.02 \pm 0.30$ | $11.76 \pm 0.33$ | 1,71 | 5.50 | 0.037** |
| LH | $8.42 \pm 0.43$ | $8.55 \pm 0.42$ | 1,56 | 0.05 | 0.828 | $13.54 \pm 0.56$ | $15.50 \pm 0.60$ | 1,56 | 14.08 | 0.003** |
| PP | $7.35 \pm 0.34$ | $7.10 \pm 0.38$ | 1,75 | 0.76 | 0.401 | $11.58 \pm 0.30$ | $11.27 \pm 0.31$ | 1,75 | 0.78 | 0.396 |
| Global | $7.77 \pm 0.22$ | $7.44 \pm 0.23$ | 1,250 | 4.93 | 0.045** | $12.03 \pm 0.24$ | $12.59 \pm 0.28$ | 1,250 | 14.02 | 0.003** |
| Shannon diversity (H) |  |  |  |  |  |  |  |  |  |  |
|  | Predators |  |  |  |  | Parasitoids |  |  |  |  |
| Orchard | Ant-excluded | Ant-allowed | d.f. | $F$ | $P$ | Ant-excluded | Ant-allowed | d.f. | $F$ | $P$ |
| LG | $0.66 \pm 0.06$ | $0.62 \pm 0.07$ | 1,71 | 0.16 | 0.699 | $1.41 \pm 0.04$ | $1.51 \pm 0.03$ | 1,71 | 5.98 | 0.031** |
| LH | $1.32 \pm 0.08$ | $1.45 \pm 0.06$ | 1,56 | 1.99 | 0.183 | $1.40 \pm 0.05$ | $1.54 \pm 0.04$ | 1,56 | 6.67 | 0.022** |
| PP | $0.69 \pm 0.06$ | $0.60 \pm 0.06$ | 1,75 | 1.50 | 0.245 | $1.37 \pm 0.05$ | $1.45 \pm 0.05$ | 1,75 | 5.28 | 0.040** |
| Global | $0.88 \pm 0.04$ | $0.84 \pm 0.05$ | 1,250 | 0.09 | 0.773 | $1.39 \pm 0.03$ | $1.49 \pm 0.02$ | 1,250 | 33.58 | <0.001** |

Repeated measures analysis of variance (ANOVA) was used, with treatment as fixed factor and time and block as random factors. In global analysis, orchard was set as random factor as well. ** indicates a significant effect of ants ( $\mathrm{P}<0.05$ ) and * indicates a marginally significant effect ( $\mathrm{P}<0.1$ ). LG: Lasius grandis orchard; LH: Linepithema humile orchard; PP: Pheidole pallidula orchard.

Table 4. Summary of the PERMANOVA results of the effect of ants on the predators and parasitoids communities in 2011 and 2012 in orchards LG, LH and PP.

|  |  | Predators |  |  | Parasitoids |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Orchard | $R^{2}$ | $P$ | $R^{2}$ | $P$ |  |
| 2011 | LG | 0.077 | 0.742 |  | 0.105 | 0.630 |
|  | LH | 0.301 | 0.059 |  | 0.210 | 0.288 |
|  | PP | 0.372 | 0.057 |  | 0.199 | 0.200 |
| 2012 | LG | 0.050 | 0.828 |  | 0.107 | 0.544 |
|  | LH | 0.166 | 0.371 |  | 0.332 | $0.029^{* *}$ |
|  | PP | 0.395 | 0.085 |  | 0.043 | 0.943 |

## Figure legends

Figure 1. Abundance of $C$. carnea s.l., Cardiasthetus sp., A. hispanicus and Anagyrus sp. in ant-allowed and ant-excluded trees during 2011 and 2012. Abundance is measured as the mean number of individuals captured in one sticky trap and four aspirations (one/tree) in each experimental plot (each plot consisted in 16 trees and only the four central trees were sampled; each orchard contained 8 plots, 4 ant-allowed and 4 ant-excluded).

Figure 2. Abundance of C. virgula and Pilophorus sp. in ant-allowed and ant-excluded trees during 2011 and 2012. Abundance is measured as the mean number of individuals captured in one sticky trap and four aspirations (one/tree) in each experimental plot (each plot consisted in 16 trees and only the four central trees were sampled; each orchard contained 8 plots, 4 ant-allowed and 4 ant-excluded).

Figure 3. Nonmetric multidimensional scaling (NMDS) diagram of predators and parasitoids mean abundances in ant-allowed and ant-excluded trees in the three orchards and two years of the study. Straight lines connect ant-allowed and ant-excluded results for each case. Circles connect the results for each year of the study. LG: Lasius grandis orchard; LH: Linepithema humile orchard; PP: Pheidole pallidula orchard.

Fig. 1

Chrysoperla carnea s.l.


## Cardiasthetus sp.





## Aphytis hispanicus





## Anagyrus sp.





Fig. 2

## Campyloneura virgula





## Pilophorus sp.





Fig. 3


