

Master Thesis

Academic year 2014/15

Master’s degree in Computer Engineering

AAAA SSSSTUDY OF TUDY OF TUDY OF TUDY OF WWWWIRELESS IRELESS IRELESS IRELESS DDDDIGITAL IGITAL IGITAL IGITAL PPPPOSTS OSTS OSTS OSTS

AND AND AND AND TTTTRAFFIC RAFFIC RAFFIC RAFFIC SSSSIGNS USING IGNS USING IGNS USING IGNS USING

SSSSMARTPHONESMARTPHONESMARTPHONESMARTPHONES

 Author: Carlos J Fernández Laguía

 Advisor: Pietro Manzoni

Abstract.

The importance of active safety has received a growing interest in recent years.

Among the systems that compose the definition of active safety, traffic sign recognition

is playing a vital role in a scenario where transportation systems are becoming

increasingly autonomous. Most of the current implementations are focused on the use of

cameras to capture and process images from the road. However due to some intrinsic

limitations like weather, light conditions and partial occlusions there have been some

proposals to enhance/replace camera systems with other technologies.

The present report presents and clasiffies some of the current proposals for traffic

sign recognition. Analyzing the current and future situation and considering the

investment on vehicles and road infrastructure an original system is proposed in this

document, which is based on the smartphone as alternative platform to the in-build

capture device. This system aims to close the gap between technical prerequisites and

the requirement of potential users to easy an infrastructure change.

The results show that despite the smartphone constrains we have achieved a

successful detection and recognition experience above 90 kilometers per hour.

Moreover the system has been designed as a cost-effective solution that will be

potentially upgraded in the future. Therefore flexibility and compatibility are important

attributes that have underlined on every decision taken during the implementation

process. Ultimately the project confirms that the use of smartphones represents an

opportunity to expand wireless technology in the traffic sign recognition context.

“Vision is the art of seeing things invisible.”

Jonathan Swift

Content.

Chapter 1. Introduction . 1

� Contributions 2

� Structure of the Thesis 2

Chapter 2. State of the Art Review . 4

� A novel taxonomy. 4

� Camera-based systems. 5

o Color-based segmentation 6

o Shape-based detection 6

o Based on machine learning 6

o Camera approach evolution and limitations 6

� Wireless communications applied to TSR. 8

o Radio-frequency identification (RFID) 9

o Bluetooth 9

o Wireless Access in Vehicular Environments (WAVE) 10

� Data mapped based systems. 12

o Global Positioning System (GPS) 12

o Radio-frequency identification (RFID) 13

� Hybrid systems. 13

Chapter 3. Analysis & Foundation work . 15

� Maintainability, integrity and reliability 15

� Wireless technology adoption 17

� The low cost approach. 19

� The most extended Human Machine Interface. 20

� A low cost general-purpose transceiver. 21

� Benefits of using widespread standards and technology. 22

Chapter 4. Design and development methodology 24

� A wireless digital traffic sign model 24

o The Raspberry Pi 26

o Hostapd 27

o Dnsmasq 28

o LWire 29

� Android client implementation. 31

o The Android application 32

o WifiManager 33

o Multi-thread applications 35

o The TrafficSignMonitor State Machine

Chapter 5. Experimental Analysis . 38

� Experimental set-up 38

� Empirical analysis of the implementation 42

o Measurable factors 42

o Methodology 44

o Results: cycle time 45

o Results: CPU usage and memory allocation 52

o Results: battery usage 53

� Brief comparison with other TSR solutions for smartphones 55

� Summary 58

Chapter 6. Conclusions & Future work . 60

� Recommendation for future work 61

o Peer-to-peer strategy 61

o Multiple access points 62

o Active safety 63

References . 65

Appendix I. Digital traffic sign setup . 68

Appendix II. Station.ini keyword reference . 72

Appendix III. TrafficSignDroid quick start guide . 77

Appendix IV. Driving experiment results .78

List of Figures

1. Camera system limitations: (a) partial occlusions; (b) traffic sign not found

in the database; (c) complex situations . 1

2. World-wide smartphone sales – 4Q13 update . 20

3. Simplified Server Communication Stack Proposal . 25

4. Traffic sign equipped with 802.11 wireless interface . 26

5. Drawing of Raspberry Pi model B rev2 [31] . 27

6. Simplified Android Client Communication Stack Proposal 31

7. Example of TSR client application lifecycle . 35

8. TrafficSignMonitor state machine diagram . 37

9. Development setup used during the simulation session 39

10. Smartphone car mount in Renault Scenic . 40

11. Raspberry Pi equipped with external battery during the first driving trial 41

12. Raspberry Pi attached to a zebra crossing sign during the 2nd trial43

13. Satellite image from Google earth obtained after introducing data results

from one of the trial during the first driving experience 44

14. Client-server data exchange process . 47

15. Distance to the traffic sign where the information is received 51

16. CPU usage breakdown from one-hour simulation sample 52

17. Memory allocation breakdown from one-hour simulation sample 53

18. Battery state of charge from one-hour simulation sample 54

19. Battery power consumption comparison . 56

20. CPU usage by application . 57

21. Memory allocated by application . 58

List of Tables

1. Position and timestamp registered during the first driving trial48

2. Detection time brake down at different vehicle speeds . 51

3. Empirical detectability and accuracy rates from different TSR applications . . . 55

Abbreviations

ADB Android Debug Bridge

AP Access Point

API Application Programming Interface

BSSID Basic Service Set Identification

CALM Communications Access for Land Mobile

CCMP Counter Mode CBC-MAC Protocol

CPU Central Processing Unit

DOT U.S. Department of Transportation

GPU Graphics Processing Unit

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSRC Dedicated Short Range Communications

EIRP Effective Isotropic Radiated Power

FSM Finite-State Machine

GLONASS Global Navigation Satellite System

GPS Global Positioning System

HAL Hardware Abstraction Layer

IP Internet Protocol

JNI Java Native Interface

LTE Long Term Evolution

MAC Media Access Control

NFC Near-Field Communication

OEM Original Equipment Manufacturer

OS Operating System

RFID Radio-Frequency Identification

RSSI Received Signal Strength

SD Secure Digital

SDK Software Development Kit

SoC System on a Chip

SSID Service Set Identification

TCP Transmission Control Protocol

TSR Traffic Sign Detection and Recognition

UI User Interface

UMTRI University of Michigan Transportation Research Institute

V2V Vehicle-to-vehicle communications

VM Virtual Machine

WAVE Wireless Access in Vehicular Environment

WEXT Wireless Extension

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

 1

Chapter 1.

Introduction

The future of transportation is outlined by more efficient, more autonomous and

more connected vehicles. For this purpose the car will require an accurate knowledge

about the environment. Vehicles are already being equipped with different set of

sensors, cameras and transceivers with a common intention: collecting data from the

“outside world”. In this context traffic sign detection and recognition have drawn a lot

of attention from the vehicle industry. The topic has inspired many publications in the

literature, which has made their contributions to the concept in various different ways.

Most of these proposals are based on camera systems, which analyze images in

order to detect and recognize a traffic sign or panel. In practice these systems seem to be

a very good solution to detect speed limit indications, extending sensing capabilities of

the driver in situations of lack of concentration or due to drowsiness. However there are

some limitations on the nature of these systems that are critical in the future scenario

where transportation aims to become an autonomous system.

(a) (b) (c)

Figure 1: Camera system limitations: (a) partial occlusions; (b) traffic sign not found
in the database; (c) complex situations

The solutions that can be found in the market today are limited to detect the

traffic signs stored on the database, which are typically speed limits and overtaking bans

compliant with the Vienna convention. Even if these systems get upgraded to recognize

any traffic sign that might come across on the way with the same efficiency, light and

weather conditions would still play a critical role on the system reliability. Moreover the

location of some traffic signs is sometimes not the most appropriate one causing partial

occlusion. Unlike a computer, the driver easily overcomes these situations making

 2

decisions based on partial information. Also there are situation that are complex where

the information from a traffic sign cannot be fulfilled to the letter, like figure 1 illustrates

along with other examples where a camera-based system might fail to deliver a correct

result.

The system proposed on the present document tries to overcome these

limitations by the use of wireless technologies instead of cameras to capture the

information from traffic signs and panels. We even go further developing a solution

based on the smartphone platform, so drivers can adopt the solution not only on new

vehicles, but also on the current stock of cars on the road.

1.1 Contributions

The five principal contributions of this thesis are: (1) Development of a complete

hardware solution to equip traffic signs with wireless technology at a low cost; (2) a

resource-efficient Android application with the implementation of the client solution,

which would be installed on the driver’s smartphone as proof of concept; (3) a novel

traffic sign recognition taxonomy, which allows us to classify most of proposals in the

literature; (4) a vehicle-to-infrastructure high level communication protocol draft,

which can be extended in the future based on potential needs; and (5) reliable results

collected from a simulation context and validated in a real environment.

1.2 Structure of the Thesis

The present document is organized in six chapters including the introduction.

Chapter 2 makes reference to different traffic sign recognition methods proposed on the

literature and classifies them using an original taxonomy based on the technology of

each system. Chapter 3 describes the context where the project is developed and

underlies the major factors that justify a different TSR solution. Chapter 4 presents the

proposed architecture design in detail. Chapter 5 describes the experiences made to test

the solution from different points of view, discusses the results obtained, and compares

them with other solutions from the market. Finally chapter 6 presents the conclusions of

the report and recommends future work considering a final product based on the

solution that has been presented in this project.

 3

 4

Chapter 2.

State of the art review

Traffic sign detection and recognition (TSR) is receiving a lot of attention from

Original Equipment Manufacturer (OEM). Companies and clients have understood the

importance of the active safety systems and that traffic signs are a key factor in

responding to this demand. A lot of work and research is being conducted to enhance

traffic sign recognition capabilities by introducing new techniques and improving the

current ones. This chapter analyses different approaches in the literature and tries to

classify them in order to allow easy comparison.

2.1 A novel taxonomy

The importance given to TSR has been reflected on the literature. There are

several proposals that bring traffic signs and panels information to the digital domain.

Despite of the large amount of research works focusing on this topic, comparative and

evaluation studies that attempt to group the proposals depending on technology usage

are rare. This fact leads to the inability to quantify in a real working environment which

proposal is better for the user.

In this chapter we will provide a basic taxonomy of the most popular

technologies used or proposed for TSR implementation. They have been some excellent

attempts to classify vision techniques and algorithms like [16] and [17], however in this

document we propose to take a step back and analyze TSR as an abstract system.

When we consider the whole picture, a TSR system is composed not only by the

element that is detecting and recognizing an object, but also the object itself and how its

information gets propagated to the intended receivers. The most extended

implementation is a camera installed in the vehicle interior or exterior that captures

images, which are processed in real-time searching a known pattern, like a shape or a

color. We define this technology as “Camera-based” system because the information is

 5

actually recorded by an optical instrument, which digitalizes an image that is

propagated across the visible spectrum.

2.2 Camera-based systems.

The problem of geometric shape detection and “heavily constrained” image

recognition might not be a big challenge for an engineer acquainted with the recent

advances in computer vision. Traffic signs are rather simple objects in an age where a

machine can pick up the movement of pupils when navigating a web page. However to

apply the system on a real environment we must add additional variables that might

highly influence the system performance and, hence, will definitely increase its

complexity for a satisfactory result.

Road images will be acquired from a vehicle moving on the, often uneven, road

surface with a variable speed. Road signs are frequently totally or partially occluded by

other vehicles or objects like trees, lamp poles or other signs. Many other objects are

also present in the scene, like pedestrians, bicycles, billboards with a similar shape and

colors, etc. which make the sign detection hard. One example could be the one shown in

figure 1a.

The camera-based technology has been extensively studied in the literature and

it is definitely the most developed one among our classification. There are a lot of

attributes that we can evaluate for categorization: the sort of stream, which could be a

single picture [25] or a video stream [24]; the color segmentation, for example RGB [23]

or YCbCr [1]; the different elements that handle algorithm solve load, for example a

dedicated GPU [19] or an external server [12]; etc.

However since the primary motivation of this section is just to provide a general

idea of the different approaches to the sign recognition problem, we are not going to

explain each of them in detailed, but provide a general idea of the most common aspects

studied in the literature. The three methods here described have been proposed as

stand-alone algorithms, but more and more frequently we can find publications were

the combination of different methods is explored.

 6

2.2.1 Color-based segmentation

This technique is very popular due to the fact that the colors of a traffic signs are

usually easy to distinguish from the environment. For that reason a high color resolution

is not mandatory for a good system performance. The biggest disadvantage is that

external factors like illumination and weather conditions can significantly reduce the

ability to detect as it is studied by Benallal and Meunier in [23].

2.2.2 Shape-based detection

This technique has also been broadly studied in the literature. The basic idea is

trying to find an arbitrary or pre-defined shape in an image. Systems that implement

this method benefit from the fact that traffic signs are well-defined shapes within the

picture; hence edges must be easily identified. Once the object is detached from the

whole picture, an algorithm tries to recognize it. The definition method varies from one

proposal to another. For example on [20] the algorithm defines the center of the object,

on [22] it will try to define a regular polygon within the object and on [21] it searches a

template from a database in the image. This technique performance is also highly

influenced by illumination changes, shadows and weather conditions.

2.2.3 Based on machine learning

Unlike the previous two sub-categories, this method does not only rely on

previous patterns, the expected color or shape, but is also able to discover new patterns

using machine learning. Viola and Jons proposed a very robust solution against noise

and low-quality images in [18]. It seems to be one of the most reliable solutions, and it

has also been enhanced by later researches, however the computational requirements

and complexity might be the highest compared with other techniques.

2.2.4 Camera approach evolution and limitations

Despite the fact that the system has been extensively developed and there is

already a wide range of different products in the market, there are some obstacles still

 7

to be overcome. The first car company that offered this technology was BMW in 2008,

followed by Daimler the following year. The system was able to recognize only speed

limits signs that were compliant with the Vienna Convention. The information retrieved

from the camera was always verified against a navigation system database.

Opel introduced the second generation of camera-based systems. The system

was able to work using vision-only information and included overtaking ban signs

recognition. OEMs like Ford, Volvo, Volkswagen or Saab offer today TSR systems, which

are able to recognize and interpret a few more traffic signs, on mid-range vehicles with

high detection accuracy.

In the literature [19], [20], [21] and [22], researches go further aiming detection

of all other types of traffic signs like stop, dead end, railroad crossing, turn regulation

etc. Their results are promising and we might soon get vehicles that are able to detect

these types of signs. Nevertheless, in my humble opinion, they all share an ultimate goal,

which is to detect and recognize traffic signs as a human being.

We should not fail to appreciate such ambitious target, but also cannot ignore

that the human eyesight has its own limitations and it is just an element that we use to

understand the road information and environment. Other elements like the driver

instinct to foresee unsafe situations, or the ability to ignore ambiguous data are more

difficult replicate into a computer based on the picture or a sequence of pictures.

At this stage we should reconsider whether exchanging traffic signs information

in the traditional way is the best option in a scenario where technology is getting a more

and more active role. In the case of camera-based systems we have to capture, store and

process pictures that are a few Kbytes large, with the only intention of extracting data

that can be codified using a couple of bytes. Furthermore this information is always the

same; hence the image-decode algorithm is applied several times to the same image

(every time a vehicle approaches to the traffic sign). Consequently, although a camera-

based method is the instinctive solution to traffic sign recognition, it worth evaluating a

system where the information exchange can be completed without image decoding. The

next categories present two different pre-shared code systems where image decoding is

not required.

 8

2.3 Wireless communication applied to TSR

The name of this category might not seem an accurate delimiter if we consider

that information transmitted through the visible spectrum does not require a wired

connection either. However the kind of technology that we would like to group under

this name is only related with sort of communications designed to transfer information

altering some form of energy, mainly radio waves. Also both transmitter and receptor

need to be designed upon the same protocol in order to be able to establish the

communication link and exchange intelligible information.

A machine is not limited to the visible spectrum as the human is; hence it is

coherent that a more efficient band is used to exchange information. The main idea is to

provide the traffic sign with an asset that makes it able to broadcast the information that

is visually available, through a wireless protocol.

Compared to the previous category, this subject does not usually appear in the

literature as a case of study for traffic sign recognition by its own, but integrated in the

vehicular communications matter. It is not easy to find technical details about the few

real cases that have been implemented on real applications.

One of the reasons why this technology has not been as extensively studied as

the camera-based systems is that wireless communications needs at least in two

elements from the system to be developed: environment and vehicle receptor; while in

the camera-based case only the receptor needs to be adapted. This fact has an important

influence on real implementations because the vehicle owner covers the entire cost.

This is an critical factor that must underlie every decision while developing a

wireless communication system. Unlike camera-based implementation, it is essential

that the highest number of drivers is able to benefit from the system, thus the traffic sign

adaptation worth the investment. Also the cost per traffic sign should not be

unaffordable in order to cover the largest distance and therefore a higher number of

drivers.

There have been different approaches to provide traffic signs with wireless

technology assets. In the following paragraphs an overview about the different

technologies proposed by different researches is presented.

 9

2.3.1 Radio-frequency identification (RFID).

Among the different wireless protocols, RFID is probably the most extended in

the literature. There are two main subcategories depending on the power source,

passive and active. In either of them, the system is composed by two types of tags:

transponders and beacons. The basic idea is that the beacon emits signals at a pre-set

interval. The transponders “wake up” when they receive a radio signal from a reader

and by transmitting a signal back. In the passive case transponders are usually called

tags, and they do not require a dedicated power supply, using the transmitted signal to

power on and reflect energy back to the reader.

One of the first examples in the literature is the field test carried out by Yoshimi

Sato and Koji Makanae [8]. They took the opportunity that camera-based systems were

not yet extended in Japan and proposed a different solution: equipping the road with

general-purpose RFID tags that contains sign information. They overcame the extra cost

problem of replacing existing traffic sign because passive RFID tags are inexpensive. In

addition RFID is a proven technology in transportation systems. Many countries have

already adapted their toll electronic collection using RFID technology, also adaptive

traffic lights is controlled in some cities by the same kind of system.

The main issue observed by other researches about Sato’s work is the position of

the RFID tags and the antenna. The communication range of the type of RFID devices

used by Sato is approximately 40 cm. Therefore the antenna was placed in the rear part

of the car and close to the floor. Considering that a mid-size sedan is roughly 1.8 meters

and the width of the traffic lane is 3.5 meters in Spain [14], the driver could easily ride

the car out of the range of the antenna.

In [9], the research group proposed a RFID system that allows readers to be

mounted at better location in vehicle and the tags attached directly to the traffic sign.

The enhancement is critical, since the range achieved is approximately 30 meters. The

battery life as per the supplier specification is three to five years. Although this proposal

is a bit more expensive still a reasonable cost at the infrastructure side.

2.3.2 Bluetooth.

Another short-wavelength proposal is the one presented by Bohonos [10].

Although it is not exactly a vehicle application, an important concept is exposed in this

 10

paper: data beaconing using smartphones. He proposed Bluetooth as an ideal solution

for location-aware information broadcasting. He implements a model that is able to

assist the blind collecting information from the urban environment, for example from

the traffic light real-time information.

However Bluetooth has a major restriction in the vehicle context: its maximum

communication range, which is approximately 10 meters. This fact leaves it behind

other approaches like the use of active RFID tags, which provides a range of 30 meters

[9]. We cannot overlook the benefit of using a smartphone instead of a dedicated

transceiver. Nowadays almost every citizen owns a portable device with Bluetooth-

enabled, most of them smartphones. In Spain, at the end of 2013, 95,6% of the

households had a contract with a mobile phone operator. It demonstrates that Bohonos’

proposal can reach a higher number of potential users than previous RFID systems like

[8] and [9]. Although a Bluetooth-based solution can reach a higher number of potential

users, the technology cannot be adapted to the vehicle/road context due to its short

communication range.

On the other hand, RFID is becoming more popular on the latest smartphone

generations, so some could think about using this technology on the TSR context.

However smartphones are only equipped, so far, with Near-Field Communication (NFC)

technology, a short range variant of the Radio-frequency identification, which unlike the

active RFID devices proposed in [9], it does transmit on the ISM band of 13.56 MHz, with

a maximum communication range of 3 meters.

2.3.3 Wireless Access in Vehicular Environments (WAVE)

WAVE, also known as IEEE P1609, is a relatively new standard designed for

IEE 802.11 devices to operate in the Dedicated Short Range Communications (DSRC)

band. The idea is to provide a wireless communication protocol for automotive use.

WAVE is based on an amended data link and physical standards that offers a high

performance multi-channel communication for multiple application types.

The 802.11p standard draws on most of the IEEE 802.11a, IEEE 802.11e and

IEEE 802.11q characteristics. The amendment motivation is supporting quicker data

exchange among fixed and mobile nodes within a range of one kilometer. To achieve a

robust connection under high vehicle speeds, the physical layer relies on the band of 5.9

GHz (5.85 – 5.925 GHz), divided in 10MHz channels, half clocked mode compared to the

 11

802.11a standard. As a result, parameters in the time domain are doubled and data rates

are halved. The signal is then more robust; effects of Doppler spread are reduced

because of reduced bandwidth.

The seven channels belong to two categories, control and service. Devices

should continuously switch from service to monitor, and only stay in monitor channel if

there is no on-going communication. Also two channels are used solely for public safety

applications, which means that they can only be used for messages with a certain

priority or higher. Priority messages are also allowed to use the maximum allowable

Effective Isotropic Radiated Power (EIRP) is raised to 33 dBM, which makes the

maximum distance to be achieved.

Unlike 802.11a/b/g/n, the MAC services: SCAN, JOIN, ASSOCIATE and

AUTHENTICATE are not applicable on the 802.11p standard, dedicated control channels

for beaconing have replaced all such operations.

The 802.11p protocol is intended to be the standard in vehicular

communication systems. 802.11p has also been adopted by the Communications Access

for Land Mobile (CALM) M5 specification, which ensures that European and North

American vehicular communication systems will be compatible at a data link layer.

The U.S. Department of Transportation (DOT) along with the University of

Michigan Transportation Research Institute (UMTRI) has launched and ambitious pilot

program that will involve 2850 vehicles during a 30-month period [7]. Traffic signs and

vehicles have been equipped with specific technology that is able to manage

communication on the 802.11p standard. Drivers can volunteer to participate in the

program and all necessary equipment gets installed at the university and maintained for

one year.

This solution overcomes the distance problem and also introduces the benefit

of vehicle-to-vehicle communications (V2V). Nevertheless to the knowledge of the

author there is still not overcome the cost issue of road/city adaptation, neither it has

been studied whether an aftermarket product for the vehicles worth the market.

Following Vandenberghe estimation [5], the new on-board transceiver units will cost

about the same as a built-in car navigation system, between 1000 and 3000 Euros.

As it has been already mentioned, one pitfall of wireless communication

systems applied to traffic sign detection and recognition is that the investment only

worth if an important number of users can benefit from it. The problem is not easier if

we consider V2V as part of the equation because even if the final user gets not only the

 12

possibility of receiving information from the road/city environment, but also from other

vehicles, many vehicles are required to obtain an immediate positive impact as part of

the driver experience.

2.4 Data mapped systems

Unlike previous underlined technologies, in data mapping the information

associated with environment is not exchanged or captured while driving on a specific

road or street. The entire set of information should be previously collected and stored

on a location, that should be accessible by the client.

Similar to a cache, the environment data can be partially or fully copied to a

convenient location, which can be used as primary source during the drive time. The

information should be available during the drive time exchanging the vehicle data

(position, direction, etc.) with the database.

This solution does not require a sophisticate method to acquire information

from the environment. Nevertheless, there should be a system that efficiently collects

accurate location data. The applications could be classified based on the technology used

to collect this information.

2.4.1 Global Positioning System (GPS)

GPS is a space-based satellite navigation system owned by the United States

government and opened for commercial and scientific applications in 1983. It provides

location and time of a GPS receiver in the Earth.

The vehicle speed limit as part of the information provided along with the map

and directions to destination is now common among most of navigation system

suppliers. It provides the driver with more or less reliable indications of speed limit

signs and although it is not real-time information, companies like Garmin provides

updates every three months.

Although GPS could be the most extended option for outdoor location

technology, the build-in GPS receiver from an average smartphone has an accuracy of

about 15 meters for a moving object. Also there are some environments where tall

buildings can obscure one or more satellites and impact the performance of this sort of

 13

technology. GPS only provides static location-based information, and not dynamic

information such as the status of a traffic light.

GPS is not the only satellite navigation system, but it is the most popular one.

Most of smartphones in the market are equipped with GPS receiver, and due to open

systems like Google Maps, there are plenty of applications available for different

smartphone operating systems that use the information. Another satellite system that

has recently become popular is GLObal Navigation Satellite System or GLONASS. The

system got restored on 2010 by the Russian Federal Space Agency and surprisingly it is

becoming the best complementary to GPS. Those two systems working simultaneously

provide better coverage and precision rather than just one of them. The number of

smartphones that include both technologies has increased in the last years.

2.4.2 Radio-frequency identification (RFID)

Although this technology has been already outlined under the wireless

communication category, in this section is presented as a solution to the position and

direction data. The basic idea is that RFID tags broadcast an identifier with specific

information for one place, for example the begging of a tunnel. The system uses this

information to query a database and prompt the driver with the associated data to that

particular tunnel. A new RFID tag will notify the system that the information is not

longer valid.

Since the information from a RFID tag is not usually updated very frequently, the

system relies on the database to provide up-to-date information based on the vehicle

location. This technology has extensively used at indoors applications like airports or

museums, however it has not so far been exploited in the vehicle navigation systems.

2.5 Hybrid traffic sign recognition

Although most of the examples in the literature study a stand-alone category

from the ones underlined categories, it is very easy to find hybrid implementations in

the market. Developers usually combine different technologies to overcome intrinsic

disadvantages of a system.

 14

As an example the method that García-Garrido proposed in [13] to overcome a

common problem on camera-based systems. Their prototype had some difficulties to

disregard traffic signs that belong to a freeway exit. This technology along with the GPS

to provide primary source for vehicle trajectory creates a system that combines all three

categories for a better result performance.

Nevertheless combining different technologies is not the most efficient solution

because it increases the complexity degree of the system as well as the final product

cost.

There are some other cases where a hybrid system can be implemented on an

inexpensive hardware setup. As part of this work the free-of-charge application

aCoDriver has been tested [26]. This application implements a hybrid system based on

GPS data mapping and camera-based recognition. The only hardware infrastructure

required is a smartphone equipped with an in-build camera, a GPS receiver and Internet

connection.

 15

Chapter 3.

Analysis & Foundation work

Most of the road sign detection and recognition systems underlined in the

previous chapter require specific hardware to be installed in the vehicle to provide this

functionality to the driver. We have also introduced the idea that camera-based systems

have intrinsic restrictions and that wireless communication technologies can improve or

enhance the TSR user experience. However camera-based systems are already present

on the market and the introduction additional wireless technology will require a change

in infrastructure.

In this chapter we analyze the benefits of wireless communications applied to

TSR and some of the proposals about how to bring them into the world of active safety.

We also introduce an original project that tries to close the gap between technology

prerequisites on one side and the requirement of potential users to easy the

infrastructure change on the other.

3.1 Maintainability, integrity and reliability

Previously we have defined different categories for the current applications and

proposals on traffic sign detection and recognition subject. As we have already

advanced, data mapping and camera-based are the two most extended solutions. In this

section we will analyze these two systems from the maintainability and integrity point

of view.

Maintainability applied to traffic signs information can be understood as the

ability to capture live data from road or urban environments. The information from a

traffic sign is assumed to be static and with rare updates, but nothing could be further

from truth. Traffic direction, speed limit, etc. can frequently change without previous

notifications. This is not a problem for camera-based systems, but it is for applications

that use data maps. The navigation data provider usually updates road information

 16

every three-four months. It typically results in inaccurate information prompted to the

driver.

Furthermore the information coming from a vertical road traffic sign does not

represent the complete driver view. This sort of traffic information is just the fourth one

in the priority list according to the circulation code [29]; above it we can find traffic

lights, temporary signs and police indications. None of these dynamic sources of

information could be understood by a data map system, as the information changes

dynamically and most of the times does not match with the data recorded in a database.

On camera-based systems the situation is not much better. Traffic lights are not usually

covered by camera-based systems, temporary signs do not share colors with the regular

ones and they are usually placed at ground level, which makes the detection much more

difficult because the camera is not calibrated to detect objects at that level from the

ground. Finally police indications will also be hardly understood by a vision system.

On the other hand, if the data is transmitted by a wireless device, the system is

much more flexible in regards to the sort of information that can be exchanged. Wireless

transceivers could be installed to temporary traffic signs and a policeman can hold it

while he controls the traffic flow giving indications to the drivers through wireless

media. This solution is much more beneficial in the case of traffic lights, as the final user

will be able to receive not only the current illuminated color, but also the reminding

time before the indication changes.

Regarding integrity applied to TSR we can analyze it by the amount of

misleading information events registered by the system, like in the previous example

where a navigation application warns the user based on out-of-date speed limit data.

The degree of integrity on data mapped systems is based on two fundamentals:

frequency on database updates and position information precision. The current

situation of mobile Internet could make a smartphone-based system or any other

portable device equipped with this technology able to be always connected to the

Internet. However this fact does not completely overcome the integrity issue because to

the knowledge of the author there is not an official and frequently updated record of

traffic signs information that could be query at any time.

Camera-based systems also have a weakness in regards to integrity: detection of

traffic signs from all different tracks available on the visual range. A frequent example is

the freeway service road; the application can prompt the driver with gradually lower

speed limits while driving on a real 120kph freeway. This sort of behavior has been

 17

proved to be an important factor on chapter 5 when some deployed solutions, like [25]

and [26], are empirically tested.

Finally, another important issue is the total latency, which should always remain

below the limit established by the vehicle speed and the information availability. The

information should be always prompted before the driver overtakes the traffic sign.

Latter prompted information could impact the integrity degree of the system. It might

not represent a problem for data mapped systems that get continuously updates about

vehicle location or real-time camera systems, however can have a major influence on the

reliability of wireless systems.

3.2 Wireless technology adoption

Despite the fact that the development lifecycle for passenger and commercial

vehicles has been reduced up to the current five years, it is still far from other products

like smartphones, which are fully functional after five months from the first

development steps.

Furthermore the average vehicle replacement time in Spain is 9.5 years, which

translates that although OEM starts developing an affordable built-in technology for

wireless communication applied to traffic sign recognition today, it will not be available

on half of the vehicles in circulation until 2030. So, regardless any other motivation, if

we assume that 50% of the fleet is an authoritative figure for the infrastructure

investment, we need 15 years more to benefit from the advantages of the wireless

technology applied to traffic sign recognition.

The need of a substantial embracement of this technology for it to become

realistic target might be the main barrier to start benefiting from its potential. In order

to break this “chicken-and-egg” situation, we propose an alternative platform that

implements Human-machine interface and wireless communications.

The idea proposed in this document is to modify traffic infrastructure for a small

and critical area of the city at low cost (further in this chapter we will present a rough

calculation), in order to attract some potential users. Furthermore, we will offer the final

user a solution that can be adopted at a low cost. The objective is to quickly reach a

significant number of users that can justify a more important investment to cover a

bigger area.

 18

An aftermarket product normally follows a built-in feature that has already

become popular among drivers. Moreover the initial market price for new aftermarket

technology usually exceeds what an average driver is willing to pay for an add-on. On

the other hand, smartphones have become a commodity of widespread adoption, and

most of current models offer a complete set of wireless interfaces: NTC, Bluetooth, Wi-

Fi, LTE (4G), etc. Hence we propose the smartphone as an excellent substitute platform

that can easily bring the user into the wireless communications applied to TSR.

There are some examples in the literature that have addressed the use of

smartphones on TSR from different perspectives. One example is [12], which proposes a

camera-based system using the build-in camera from the smartphone. The smartphone

captures video and then extracts the images at a certain frame-rate, and then these

pictures are transmitted to the car computer, which will process them and interact with

the user. Wireless assets are here used for in-vehicle computer and smartphone data

exchange.

In the previous chapter we have also cited some other examples where UHF

radio waves, like Bluetooth [10] or RFID [9], were used to get location-aware

information. A mid-range smartphone is also equipped with the technology to exploit

this sort of wireless communication. However its short-range capability makes this

technology not the most appropriate one for a vehicle environment, where high degree

of mobility and short time responses are critical targets. For this reason the initiative of

using this technology on smartphones has been generally discarded. Moreover since the

802.11p standard was adopted by most of entities working on the connected vehicle

concept.

In [5] and [6], the idea of smartphone on Ad-hoc networks applied to the

connected car concept is addressed. They both extend the idea of the 802.11p standard

to the smartphone domain. The main issue is that current network adapters on

smartphones do not implement the physical and medium access layers standards. Choi

studied in [6] the possibility of attaching a RF front-end module to the device that could

provide 802.11p capabilities. The results show that the standard could be implemented

within the stringent power and area budgets of a smartphone.

On the other hand, Vandenberghe analyzed the idea of implementing an Ad-hoc

network using 802.11a or 802.11g protocols instead [5]. The intention is making the

smartphone a “mid-way solution” between today’s technology and the major updates

that the vehicle fleet requires to provide an appropriate scenario for the connected car.

Although the conclusions show that either protocol is not delivering as good results as

 19

802.11p does, it is an important step forward, and could pave the way to the adoption of

wireless vehicular communication on road and safety applications.

Nevertheless there is still a major constrain on smartphones, which these two

papers do not reflect. Ad-hoc networks, like the ones based on the 802.11p standard,

are the best approach for situations where high degree of mobility should be supported.

However, Google official Android distributions are not compatible with Ad-hoc networks

where there is no infrastructure set up or network administrator. Neither the other

major operation system in the market, iOS [30], is an option, as its official distribution

does not fully support this sort of decentralized network topologies.

This situation does not seem to be different in the near future. Each company has

already developed its own customized solution to offer peer-to-peer wireless

communications based on Wi-Fi standards. For example Android implements the Wi-Fi

P2P specification under the name of “Wifi Direct”, which basically is a traditional

infrastructure network, where the Access Point role is negotiated among nodes before

communication starts.

The P2P standard is supported by most of new smartphones and might be an

interesting case of study on vehicle-to-vehicle (V2V) communications. Although this is

not the main topic of the present document, the code included in this project has been

prepared to be compatible with Wifi-Direct just implementing a minor modification.

3.3 The low cost approach

Previous sections have revealed the benefits of wireless technologies adapted to

traffic sign detection and recognition. We have also uncovered the requirement of a

large number of users to get the system implementation feasible in a real environment.

These two circumstances make the smartphone a perfect platform to attract potential

users due to high availability with no additional cost.

Most of the smartphones in the market come with a complete asset of wireless

technologies, however we will need to use a standard that fulfills requirements from a

road environment: long-range communications and high degree of mobility. Although

active RFID or 802.11p are the most appropriate standards that we have mentioned in

this document, they are not implemented on mid-range smartphones. Also we consider

that the use of add-on peripherals deviates the implementation from its original

purpose and turn away potential users.

 20

Despite its limitations, we propose a traditional Wi-Fi infrastructure topology as

a substitute for other specific protocols. The objective of this project is studding TSR

performance of a real smartphone implementation in order to evaluate its feasibility in

road environments. It is based on the idea that equipping traffic signs and vehicles with

wireless technology at a low cost will pave the way to more efficient solutions that

involve a more important investment.

3.4 The most extended Human Machine Interface

Most of solutions proposed on the previous chapter require specific technology

and customized protocol standards. This approach achieves normally better final results

than trying to implement a similar idea using general-purpose devices. However they

are also more expensive solutions because general-purpose products are generally

cheaper and can a reach a larger public.

In our particular case, we will take the advantage of a widespread platform that

offers the general public the opportunity to get into the system without spending money

on additional hardware. That brings another significant benefit: the final user is already

familiar with the Human Machine Interface, which makes possible an earlier adoption.

Figure 2: World-wide smartphone sales - 4Q13 update.

 21

Because of the intention of this project is to be able to reach as many potential

users as possible, we have based our decision about which mobile operating system to

use on the number of users. In 2014, more than a billion smartphones were sold and

global market share was 80.7% for Android [30]. Hence Android is the best mobile

operating system option for an application that has the objective of reaching the highest

number of users in a short period of time.

Android is a mobile operating system based on the Linux kernel and currently

developed by Google. Its design is lead by the aim of providing a user-friendly interface

for primarily touchscreen devices.

Google distributes Android under open source licenses, although most of devices

ultimately ship with a combination of open source and proprietary software. On top of

the Linux kernel, we can find middleware, libraries and finally the Android APIs.

3.5 A general-purpose transceiver.

Following the same reasons we want to provide a low cost equipment that allow

us a certain flexibility for implementing wireless communications on the traffic sign

side. The objective is to develop a network interface with the following characteristics:

- High compatibility with other standards. We should bear in mind that the

proposal from this document is a temporary solution to attract potential

users. Assuming the proposal become popular and easy the access to an

infrastructure extension and an aftermarket cost-effective product, we will

then revisit the complete design to improve the user experience. That might

require other standards or technology to enroll the game.

- Quick reaction to data updates. In order to provide a good maintainability

and integrity, digital traffic signs should quickly react to changes on the

environment information. We propose an optional secondary network

interface that will allow full control over the information sent to the driver at

any time. Furthermore each sign is labeled with a priority class. That allows

temporary traffic signs or police to broadcast indications to the driver that

will override any other information.

- Live updates. Following the machine learning approach on camera-based

systems, we want to allow the client not only recognize previously

 22

downloaded traffic sign models, but also others that are not stored in the

local database. For this purpose, we should be able to support different kinds

of information exchange upon the client request.

- Low cost solution. One more time we remark the importance of staying at a

low cost implementation to cover the biggest area and therefore the highest

number of potential users.

Based on these four fundamentals, we have opted for a general-purpose board

and an external wireless interface, which connects to the board by a USB port. Among

the products that offer these capabilities in the market, we have chosen the Raspberry Pi.

Its wide range of connectors along with the fact that it uses Linux-kernel-based

operating systems makes it a versatile and robust solution for our objective.

The price was also a key-factor on this election; the basic pack (board + wireless

USB adapter) does not exceed the 30 Euros per traffic sign. The price increase slightly

when we think about solutions where the board interacts with the environment beyond

the wireless communications, for example traffic lights control, alarms sounding for

pedestrians, etc.

Although this sort of general-purpose embedded system offers a wide range of

possibilities, we have focused this document on the use of network communications.

Hence apart from the wireless USB adapter, we will only exploit the on-board Ethernet

adapter, which will be used for software and data updates.

3.6 Benefits of using widespread standards and

technology

As it has been previously exposed on this chapter, the selection criteria followed

on each step of this project is based on applying well-proven technologies, highly

developed standards and popular platforms. The main reason is that the system can

reach as many potential users as possible. However the high availability is not the only

benefit.

Although the first Android device was developed seven years ago, Google has

already released six major versions of operation system and it is an on-going project.

Our client application not only has a public of 80% of the mobile device users, but also

 23

will benefit from potential improvements on the operating system and hardware

enhancements coming with future devices.

On the other hand although our initial digital sign implementation is presented

on a low cost hardware platform, it is deployed on top of a Linux distribution (Raspbian)

and therefore compatible with most of Linux-based platforms.

The transport layer has also been chosen upon this principle. TCP/IP standard is

implemented using well-proven libraries on each side of the system. At the application

layer we have used popular programming languages with a very helpful community

behind. Although Android systems are more and more supporting different

programming languages, the most efficient one is still Java. On the other side, we have

used a Python script for the digital sign implementation. Python is cross operating

system developed, which means that our application only requires the Python

interpreter to run on a different platform like a Windows machine.

All these decisions and others that will be described on the next chapter make

our system able to adapt to potential enhancements automatically or with a very small

effort, which reinforces the idea of a transition solution towards a standard vehicle to

infrastructure technology.

 24

Chapter 4.

Design & Development methodology

The previous chapters have emphasized the importance of a general public

solution for the reliability of wireless digital signs. We have not been able to find a

product in the market that fulfils the requirements to allow users start benefiting today

from wireless technologies applied to traffic sign recognition. The motivation of this

project is the one of understanding the reliability and limitations of using a widespread

platform, such as the smartphone, to implement a low-cost and efficient traffic sign

recognition device. For this purpose we have developed an Android application that

allows the driver exchanging information from a customized digital traffic post.

In this chapter we will first explain the server solution that we propose to

commit with the low-cost approach. The model that we have designed is platform and

operating system independent, however for the implementation we have mainly used

open source software and inexpensive hardware.

Later it is described how we achieved an efficient Android-based solution at the

application level without using additional hardware. The main idea we followed was to

provide the potential user with a ready-to-use application, which does not disturb other

processes running on the smartphone, e.g. in-coming calls, instant message services, etc.

4.1 A wireless digital traffic sign model.

The communication system we have designed is based on a server-client model,

where the road information is normally owned and distributed by the server. The server

main purpose is providing a particular service to more than one client at the same time.

On the other hand, the client shall explicitly request a connection to establish the

communication and make use of the service.

In this document we propose to apply the server-client model at a traffic sign

level, in other words, each traffic sign or post acts as the server that supplies a service to

 25

its clients, the vehicles. The idea is that the information displayed on the physical traffic

sign should be always available for the TSR clients over a wireless connection.

With this intention each traffic sign is equipped with a piece of hardware, which

main component is a Wireless LAN (WLAN) network adapter. For the prototype we are

using a single-chip USB network interface, which is included in most of Raspberry

developer kits. The operating systems that the Raspberry Foundation distributes

integrate drivers to support this USB wireless adapter. However we need additional

software packages to implement the connection manager, authenticators, etc. Hostapd

and dnsmasq Linux libraries will be installed to accomplish this function.

Figure 3: Simplified Server Communication Stack Proposal.

The fundamental idea is to setup each Raspberry Pi as an IEEE 802.11 access

point and run a daemon application that offers different sort of road information

depending on what the client requests. The communication between server and client

applications is established based on the TCP/IP standard, which is implemented by the

SocketServer package at the server side. Figure 3 shows a simplified communication

stack of the server proposed.

LWire is the Python application that we use as a daemon to serve client

information requests. Apart from the SorcketServer Package, it imports the ConfigParser

 26

class that reads the traffic sign specific information from the station.ini file stored on

each Raspberry Pi.

4.1.1 The Raspberry Pi

On the previous chapter we advanced that a general-purpose hardware solution

will be used to equipped traffic signs with wireless interface. We chose Raspberry Pi

because of its price and versatility. It provides the benefits of a well-proved operating

system on a single board prepared with plenty of interface possibilities, including analog

and digital input/output pins.

Figure 4: Traffic sign equipped with 802.11 wireless interface

Raspberry Pi has been manufactured in several board configurations. In our case,

we will use the model B, which is based on the Broadcom BCM 2835 system on a chip

 27

(SoC). It includes an ARM1176JZF-S 700 MHz processor and 512 megabyte of RAM. The

board is shipped with a Secure Digital (SD) socket for boot media and persistent storage.

This is a benefit for the distribution of our application since we do not need the actual

board to load the software.

This model of SoC from Broadcom does not support native Wi-Fi. However as the

drawing on figure 5 shows, there are two USB 2.0 ports available that we will use to

equip the board with a Wi-Fi interface. There is an additional USB port attached to the

hub that is used by an Ethernet adapter. We propose to use this LAN interface to update

software and calibration files, leaving the WLAN fully dedicated to TSR.

Figure 5: Drawing of Raspberry Pi model B rev2 [31]

Although Raspberry has not been designed for industrial or urban projects, it fits

our requirements for a hardware platform prototype: mobile, versatile and inexpensive.

However Raspberry Pi is not the only product that can provide these characteristics,

there are alternatives in the market that we will not analyze in this document; some

examples are Galileo 2, Beaglebone, Banana Pi or Odroid-U3. All these microcomputers

run Linux distributions among other operating systems, which makes them fully

compatible with the solution proposed in this section.

4.1.2 Hostapd

Hostapd is a daemon program distributed under the BSD license for access

points and authentication servers. It is designed to run in the background and acts as

the backend component controlling access and authentication. The package distribution

that we can get from the official Linux repository, implements IEEE 802.11 access point

 28

management, IEEE 802.1X/WPA/WPA2/EAP Authenticators, RADIUS client, EAP server,

and RADIUS authentication server.

The design goal for hostapd was to provide a hardware, driver, and OS

independent, solution for all WPA functionality. The basic idea is to implement a driver

wrapper that parses the operating system calls to the driver for controlling WLAN

devices and the other way around. All hardware and driver dependent functionalities

are implemented in separate C files that can be replaced or updated with upcoming

device drivers.

Although this package is the most widespread solution for IEEE 802.11 wireless

access point implementations on Linux, the official distribution is not updated with

some of the wireless dongles available in the market, and the one chosen for this project,

RTL8188CUS-GR, is not an exception. Fortunately the device manufacturer, Realtek,

maintains a customized version of Hostapd on its website which is compatible with this

specific chipset. Therefore we just need to download the driver package and compile the

file to be able to execute the program on the Raspberry Pi.

Hostapd uses a configuration file that offers the user different setup options

regarding authentication, encryption, signal strength, etc. We have chosen a rather

common configuration, as we understand the reliability of wireless data exchange

relaying on the 802.11 standard.

The Appendix I explains how to compile and setup the downloaded file on a

Raspberry in order to use it as traffic sign wireless interface.

4.1.3 Dnsmasq

Hostapd provides the system with a full 802.11 access point management,

however we will need an additional packet to identify the clients within the network.

Since the identity of the clients is unknown at this stage we cannot rely on static Internet

Protocol (IP) addresses. A mechanism should be implemented to handle dynamic

addresses for each client that aims to exchange information with the access point.

Dnsmasq is a free software package that provides Domain Name System (DNS)

and Dynamic Host Configuration Protocol (DHCP) services for small networks. Although

we are only interested on the second service, DHCP, this software is designed to be

lightweight and have a small footprint; hence it is a good solution for resource-

constrained devices.

 29

Regarding the size of the network, we can expect a reduced number of clients

connected at the same time because the connection range, as we will see on the

following chapter, is not greater than 30/50 meters. The mid-size sedan is roughly 4.5

meters long and less than 1.8 meters width, hence the density of nodes cannot be very

high considering one device per vehicle. Nevertheless, as any other part of the model,

there is always the possibility of replacing the piece of software in the future if required.

Like Hostapd, this package is not included in the Linux distributions offered by

the Raspberry Pi foundation. The installation and setup process is also described in the

appendix I of this document.

4.1.4 LWire

The highest communication layer of the server is basically a daemon that attends

any request from the client, if it is compliant with the protocol we propose. The

communication is established over the TCP/IP standard, which is implemented by the

SocketServer Python library.

As we have previously mentioned, the Raspberry foundation provides different

Linux distributions adapted to get the best performance on a Raspberry board. These

distributions come with tools for Python as the main programming language. Python is

operating system independent and there is an extensive collection of high quality

libraries, like the SocketServer, for helping to solve almost any programming task on

Raspberry. These are the reason for choosing Python for the high-level application of our

model.

The task manager, as part of the rc.local file description, launches the LWire right

after the operating system has completed the boot up process. The application will then

load the station.ini file, which contains all specific information about the traffic sign. The

appendix II describes the content of this file.

Once the configuration file is parsed, the application starts serving requests until

the Raspberry shuts down or an administrator user terminates the process. The current

application version supports three different requests; nevertheless the objective is to

extend this functionality upon different needs of the system.

The client first requests the data related with the visual information of the traffic

sign. This is a four characters symbol that in our example is based on the codification

that is proposed by the circulation code [29]. More than one symbol could be expressed

 30

by a unique response if the ‘\1’ character joins them. The string should always end with

a ‘\0’ character.

Additionally the client has the possibility of requesting extra information by

sending a second request. The information received may or may not be related with the

traffic sign, but it is always with its location. For example, if a certain street is scheduled

to be inaccessible the following day because of a social event, the driver will have a

notification with the information available on his smartphone once he arrives to the

destination. Thus, the driver is getting additional location-aware information without

increasing the cost of the system.

Finally, applying a similar concept as the one proposed by Viola on [18], our

system should be able to react to unknown traffic symbols by downloading the complete

set of data from the station.ini file. This feature is handled by a special request, which

requires some more time for the transmission because of the amount of data to be

transmitted. The objective is providing the system with a method to “learn” unknown

traffic signs that do not belong to the database until this request is completed. This

method is not intended to be the usual process for updating the smartphone database;

the client will receive periodic software updates when the phone is connected to the

Internet.

The last two requests have a lower priority than the first one and are only served

in a good network state. At any signs of data traffic congestion, low battery level, etc. the

second and third request should be ignored.

The script receives its name in honor to the inventor of the electric traffic light.

The original traffic lights, based on a semaphore system, gas lit, had been invented in

London in 1868 with a very little success. Forty-four years later, Lester Wire, an

American policeman, installed the first 4-way electrical traffic light in Detroit, Michigan,

based on the railroad sign concept. He had observed that railroad traffic was

automatically controlled and thought about adapting it for street use. Within a year,

Detroit had installed a total of fifteen of the new automatic lights [34].

 31

4.2 Android client implementation.

In this section we will describe the client implementation, which is based on the

Android operating system. We propose in this chapter a minimal installation that should

be compatible with any Android device equipped with a WLAN network interface.

Figure 6 shows the communication stack of the client solution we propose. One

of the requirements we set at the beginning of the project was to avoid deviations from

the typical installation process on the client side. The reason is that a complicated

installation can dissuade potential users from adopting the system. Therefore we are

limited to work only at the application layer. The rest of stack is expected to come

preinstalled on the device to facilitate a WLAN interface. Only kernel driver and

hardware may change from one device to another.

Figure 6: Simplified Android Client Communication Stack Proposal.

One of the reasons for the popularity of Android is its versatility to run on

different hardware architectures and chipsets. In some devices we can find a dedicated

chip for the radio stack, for example in one of the best sellers ever, the HTC Dream; while

in others, a single chip is used containing both the processor for the radio stack and the

 32

processor(s) for the application layer. These differences are overcome on higher layers

making the operating system easy to be installed on different types of devices.

First the kernel network drivers used on Android phones are typically common

for several chipsets. For example wext, or its modern replacement nl80211, are used on

most of Linux-based operating systems as a standard driver. However there are still

chipsets not supported by these drivers. Again, taking the HTC Dream as an example, we

can find a custom driver designed specifically for the Texas Instruments chipset.

At the user space we have the wpa_supplicant, which acts as a wrapper for the

previously mentioned drivers. This supplicant is the standard Linux process responsible

for the discovery of, and the authentication with access points. The only way for the

Android applications to interact with the supplicant is through the WifiManager class

from the Android Application Programming Interface (API).

At the application layer the Java class TrafficSignMonitor requests a sequence of

services through the WifiManager to establish communication with the access points. In

the interim it also monitors different events through a broadcastReceiver. This way, the

application is always aware of the communication state. Once the connection is ready, a

second thread is created to set up a TCP/IP connection that demands the information

stored on the traffic sign. The TCPClient and Socket classes handle this process at the

communication layer.

Beside the message, the client has also available the received signal strength

(RSSI) of the signal, which can indicate the distance between the smartphone and the

antenna. The RSSI value decreases proportionally when the vehicle approaches the

traffic sign.

4.2.1 The Android application

Android applications aim to extend the functionality of the mobile devices. The

devices are shipped with the operating system pre-installed as well as a whole set of

API’s, which allow developers to exploit the hardware capabilities of the device. The first

decision we had to make before starting to develope our application was the

programming language. We chose Java because Android API’s have been developed in

this language and it is the only language that provides complete access to them. With

this purpose we have downloaded and installed the Android Software Development kit

(SDK) in the laptop that we will use to develop and evaluate the system.

 33

The Android operating system is also distributed with a process virtual machine

(VM). In our case, the experiments will be performed on the Android version 4.4.2, also

known as KitKat. This version and earlier ones come with Dalvik, a VM designed for

Android under the conditions of battery constrains, low availability of machine

resources, etc. Our application, as the others installed on the device, runs on its own

process, with a dedicated instance of the Dalvik VM. The virtual machine will process the

requests originated by our application and processed by middleware. We should also

consider its performance when analyzing the CPU and memory usage data from the

tests that will be conducted in the next chapter.

4.2.2 WifiManager

The WifiManager class is a java package that provides the primary API to handle

Wi-Fi connectivity. As the only available option in Android for performing Wi-Fi specific

operations, it will be our interface with the wireless adapter.

The TrafficSignMonitor service creates an instance of the class at an early stage

of the runtime. The objective is interacting with the supplicant during the application

lifecycle. One of the most important methods for our objective is startScan. This method

requests a scan for access points and returns a Boolean result immediately; according to

the to the Android reference website [35], the value represents whether the operation

has been successfully initiated or not. The completion of the scan operation is made

known later by means of an asynchronous event.

In order to receive this sort of notifications, we need to register a

BroadcastReceiver, which will alert the application with any change on the network

adapter. Other strategies to get information about the network state, for example a

direct request to the API, do not appear to be efficient for several reasons: the main

thread needs to be stalled while monitoring the application state, the results are not

linked to any particular request, the request could delay the completion of the

operation, etc.

As we will see on the next chapter, the Android API is perhaps the main

limitation we have found when putting our proposal into practice. Probably one of the

main disadvantages that might affect the performance and definitely increase the

latency of the traffic sign detection is the 802.11 scan phase. WifiManager does only

offer this one method, which is not overloaded and does not accept any argument. The

Android Framework Layer receives the call from this method and executes the

 34

respective commands in the Java Native Interface (JNI) layer, which in turns transmits

this to the Hardware Abstraction layer (HAL). An event is fired upon completion of the

scan; the application then is able to retrieve the scan results form the WifiManager class.

From the wpa_supplicant documentation [38], we have learnt that every time the

application calls the startScan method, the driver performs a full scan and tries first to

find the known access points. Empirically we have concluded that the event is registered

after the supplicant has not been able to find any known BSSID along all available

channels. However if a known one is detected during the scanning phase, the connection

process starts before the scan is completed. This observation made us reconsider the

original implementation, where the connection attempt was initialized only after

receiving the scan results event.

Another limitation we have observed while comparing the solution with other

proposals is the wide range of channels. The startScan method requests a passive scan,

where the client listens to the wireless medium for beacon. These frames contain the

relevant information that can be used in the association phase with the Access Point

(AP). The 802.11b/g standards define 13 channels in the 2.4GHz frequency range,

spaced 5 MHz apart. The client must listen to the medium in all channels, for an amount

of time greater or equal to the interval, which is typically 100 ms [37], but can be

different. The number of channels and the maximum beacon interval on the AP

determines the scan latency.

We should be able to modify each of these variables on the server solution based

on our requirements. However, on the one hand the time that the client is listening on

each channel is not setup at the application layer, but at the kernel driver. On the other

hand chipset, firmware, kernel drivers, supplicant drivers and the supplicant itself all

have support for scanning a specific channel or set of channels [36], but, as we

mentioned before, the startScan method from the WifiManager class takes no

arguments, and there is currently no way to submit a reduced list of channels from the

application layer.

This is, indeed, an important inefficiency of our system compared to other

solutions. For example the 802.11p standard offers two dedicated channels to discover

other devices in the network [3], like traffic signs. While there is no on-going

communication, the network device in the vehicle does only listen to those channels,

which reduces significantly the discovery latency. Browers proposed something similar

on [36] for the traditional infrastructure network based on the 802.11a/b/g/n standard.

He suggested a change at the user-space level to overcome the WifiManager limitations.

 35

This solution is not adopted in our system because the implementation goes beyond the

application layer, however it is later mentioned in this document for further analysis.

We consider that it is interesting to understand the side effects in regards to the device

usability and performance of Browers’ proposal if it is be applied to the vehicular

environment and specifically to TSR.

4.2.3 Multi-thread application

We have mentioned that Android has been designed as an operating system for

touchscreen devices; hence the importance of the user interfaces. The activity is the

main class and the entry point for most of the Android applications. In our case the key

piece of code is not the user interface, but the network monitor and interaction.

This fact would be a potential problem on our implementation if we intend to

run the TSR routine in the same thread as the user interface (UI). The reason is that

operations, like a TCP request, hold the thread and makes the user interaction

unavailable until their completion. In the practice, the result is very often a system

exception; hence we will avoid running any network interaction in the same thread as

the user interface.

Figure 7: Example of TSR client application lifecycle.

 36

We have chosen the Android service as an efficient solution to this issue. The

interaction with the network API will not only run in a separate thread, but also will be

independent from the user interface. The first time the activity is launched it will create

the service and even if the user chooses to close de activity the service will keep running

in the background until the user or the operating system explicitly requests to stop it.

Apart from that, we have also decided to manage the TCP/IP protocol on a

separate thread. In this case the thread is created once the 802.11 connection has been

completed, and destroyed when the client has received all the information requested to

the server. The benefit is that the Android service can keep monitoring the network state

while a separate thread exchanges information with the server. If an unexpected event

occurs during the server interaction, the application might be able to decide the best

strategy to close de connection based on the information registered by the event.

On figure 7 we can see a time diagram that illustrate the lifecycle of each thread

and how they interact between each other.

4.2.4 The TrafficSignMonitor State Machine

As we have seen on the previous section, the implementation of our client

proposal requires several processes and threads running in parallel. Thus, the events

that could potentially trigger some routines on our application cannot only occur

internally on the application itself. For instance the application needs to abort the

scanning routine if the Wi-Fi adapter has been disabled. This event occurs at the kernel

space and it is registered by a broadcastReceiver. Another example is the user interface,

which is implemented in a different java class and runs in a separate thread.

It is clear that in order to reach a certain degree of efficiency in the code, we

need to centralize all the asynchronous requests in a single process, which should able

to control the flow of the sequence and dismissed unrelated events. Following this

determination we have chosen the implementation of a finite-state machine (FSM).

The conception of the runtime sequence as a model made of states and

transitions greatly simplifies the multithread challenge. In order to get the information

from a wireless traffic sign the client should discover the sign, establish a connection,

make a TCP/IP request and after the data is received it should handle the disconnection.

Each of these steps should be taken in a sequence and one at a time. The different events

are either asynchronously registered by the broadcastReceiver, a listener or even

created by the main process itself, however all will ultimately be linked to a FSM

 37

transition. Hence, they are all processed by the same method, regardless the source of

the request.

Figure 8 shows the FSM diagram implemented in the Android application, which

covers the main workload of the client. After the service is started (srv_start) the state

machine runs continuously unless an external request stops the service. The service

were the FSM implemented is independent from the user interface, therefore the

application will keep running although the graphic activity is destroyed or is sent to the

background.

Figure 8: TrafficSignMonitor state machine diagram.

Another important benefit about the state machine is that we are adding one

more abstract layer. This makes the application easier to implement to a different OS or

API. Porting the code will be just a matter of linking the current transitions to different

events and keeping the current states.

 38

Chapter 5.

Experimental Analysis

The design and the implementation of the solution were explained in the

previous chapters. We tested the proposal in a real environment to analyze the results

and assess whether the system is a reliable option. This chapter presents the

experimental analysis at three stages of the project. Each set of results obtained from

the experiments has motivated changes on the implementation, which leaded us to the

final product: an efficient and inexpensive solution for wireless technologies applied to

traffic sign recognition.

In this chapter we will first describe the different setups we have used during

the experiments. After that, it explains the evolution of the implementation based on the

experience from the trials; and finally presents the results obtained with the latest

version of the system implementation. In addition we have added a section where we

perform an empirical analysis on other TSR solutions also implemented in smartphone

platforms.

5.1 Experimental set-up

In order to test the solution we got hold of a Raspberry Pi model B, which

operates at 700MHz. No modifications to the processor configuration have been

required, so we assume that the operating frequency is constant and the chip is not

overclocked while our application is running. The board is shipped with 512 megabyte

of RAM, which is dynamically assigned to the CPU and GPU, depending on the load on

each of them [32]. Although, our application will not make an extensive usage of the

GPU, we have not disabled it, so we can use the display output for debugging purposes.

The server application is actually writing one line per request/response on the screen,

however such a little load can be disregarded. We will assume that the CPU can make

entirely use of the memory. The operating system installed on the machine is Raspbian,

a Debian distribution, which has been optimized for the Raspberry Pi hardware (ARMv6)

and is now distributed by the Raspberry Foundation.

 39

The WLAN adapter we have chosen is the single-chip USB2.0 network interface

controller RTL8188CUS. This USB dongle is compatible with 802.11a/b/g/n

specification and is included on most of Raspberry Pi development kits. The device is an

inexpensive and complete solution for 2.4GHz band and according to the datasheet [33]

its maximum communication range outdoors is 300 meters. Although for the

experiment results we have determined a lower figure to establish a safe and durable

connection.

To provide the Raspberry with mobility we attached an external battery to the

hardware solution. In the decision of what sort of power supply is the most appropriate

one, we must consider not only the board, but also the WLAN adapter. Per the

RTL8188CUS specification the device needs 600 milliamps [33], while the

recommendation for the Raspberry board is 1 to 1.2 amps [32]. We have acquired an

Sveon SAC 330 power supply, which offers a 6600 milliamp-hour cell. Although this

battery has two outputs 1A/2.1A available, we have only used the USB port that supplies

1 ampere for the Raspberry because it should be enough for our current implementation.

This solution provides us with autonomy of approximately 7 hours.

Figure 9: Development setup used during the simulation sessions

 40

On the vehicle side, we have installed our Android application on a GT-I9195, also

known as Samsung Galaxy S4 mini. This smartphone with a dual core at 1.73 GHz and

1331 megabyte of RAM belongs to the Samsung lower cost lineup that reached a certain

degree of popularity because of its price. The device features a Qualcomm snapdragon

S4, which is based on the ARMv7 instruction set, but with a high performance for

multimedia-related operations. This smartphone is shipped with a Li-Ion battery, which

offers autonomy of 1900 milliamp-hour.

The operating system running on the device is Android 4.4.2, labeled as KitKat.

This version of the system is the last one that Google released with the virtual machine

Dalvik, however it is still the most extended one among the Android users. According to

the data published by Google, 87.6% of the devices are still running KitKat or previous

versions of the operating system [35].

Figure 10: Smartphone car mount in a Renault Scenic

During the design time, the application layer was developed on a MacBook

where we installed some tools from the Android Software Development Kit (SDK) and

the Oracle VirtualBox application. When the software packages were ready, we used this

laptop to retrieve the first results as figure 9 shows.

On the one hand we exploit the mini USB interface from the smartphone to

retrieve information with the laptop. The Android Debug Bridge (ADB) tool was running

on both phone and laptop to monitor the events of the application. On the other hand we

 41

created a small local network connecting laptop and Raspberry to a router. We run a

secure shell client on the laptop and installed the server on the Raspberry to monitor any

event during the runtime. This setup allows us to debug server and client applications

from real devices in parallel and live time on single machine. The local network can also

be used for higher number of devices either traffic signs or smartphones; the only

limitation is the number of ports.

For the second experiment we went further and took the device to a real

environment. We installed a smartphone car mount into the vehicle as figure 10 shows.

The vehicle driven was a Renault Scenic from the second half of 2006 model year, which

included no other type of connectivity, but the FM/AM antenna from the audio

equipment.

The Raspberry equipped with the wireless network adapter and the external

battery was placed approximately 1.5 meters from the floor at the end of a road acting

as a stop sign.

Figure 11: Raspberry Pi equipped with external battery during the first driving trial

The third experiment, again in a real environment, was performed driving a

different car at a different location. In this case the vehicle was a Mazda3 from the 2012

model year, equipped with GPS navigation system and audio over Bluetooth, both active

during the trials. The Raspberry was this time attached to a traffic sign approximately

2.5 meters from the floor. On figure 12 we can see a vehicle approaching the traffic sign.

 42

5.2 Empirical analysis of the implementation

In this section we will describe the evolution of our application based on the

results obtained on each experiment. As it has been explained on previous chapters the

Android client is responsible for discovering the traffic sign, requesting the connection

and acquiring the consequent information. Our starting point is an application that does

these three steps in a sequence. One phase does not start until the next one has

completely finished.

The traffic sign implementation should be always available to the client requests

and should reply in a short period of time. We started with a standard setup of the

hostapd, based on one of the configuration file that comes within the installation

package as it is explained on the Appendix I. Basically it builds up a secure WPA2

wireless network, which is encrypted based on a preshared-key and follows the Counter

Mode Cipher Block Chaining Message Authentication Code Protocol (CCMP).

5.2.1 Methodology

The first empirical results have been retrieved using the Android SDK installed

on a computer. We did just slightly modify the code from the Raspberry to simulate that

the smartphone was leaving the range where traffic sign signal is available. As we can

see on figure 9, server and client devices are placed a few centimeters apart. The

simulation method basically turns off the Raspberry radio for some seconds; hence the

Android application enters in the scan phase and stays there until the Raspberry starts

broadcasting beacons again.

The timestamp is retrieved from each event that is considered relevant to the

lifecycle of the application like: start scanning, connected, response received, etc. In

addition we are running the CPU Monitor application [28] that collects information

related to the CPU usage, the allocated memory and the battery status.

While smartphone and Raspberry are connected to a computer we can use

debugging tools like the ADB shell to monitor the execution of the application and get

results from different experiments very quickly. However a critical factor in the road

environment that we are missing in this setup is the vehicle speed. Also, we should

consider one of the disadvantages of the smartphone solution: the antenna will be inside

the vehicle, which does not help on the quality of wireless communications. These are

 43

just a couple of the reasons for the importance of getting results from a real

environment.

Figure 12: Raspberry Pi attached to a zebra crossing sign during the second trial

With this purpose we have modified the Android application to register all these

events that we were collecting through the ADB shell. The user interface implemented

on the AndroidTrafficSign java class, allows us view this information on the smartphone

screen and export the data to a text file. Moreover, this class will also query the

LocationManager from the Android API to retrieve GPS coordinates on each registered

event.

All the information from the driving experiments has been retrieved from the

logs stored on the smartphone. As mentioned on the previous section, the Raspberry

gets installed on a fixed location at a certain distance from the floor, while the

 44

smartphone is attached to the vehicle windscreen, right below the rear mirror. Each set

of results corresponds to the experience of driving the vehicle towards the Raspberry Pi

at a constant speed, until the car overtakes the sing. After that, the vehicle returns to the

initial position to repeat the operation at the same or different speed.

Figure 13: Satellite image from Google earth obtained after introducing data results
from one of the trials during the first driving experiment.

5.2.2 Mesurable factors

The implementation that we are analyzing in this chapter is based on a complex

system, which defines plenty of parameters and can be studied from different

perspectives. We have decided to take the advantage of the smartphone, which is fitted

all different sort of sensors and data ready for analysis. Therefore all data studied on

this section has been collected by the smartphone while running different tests.

Among the parameters that define our system we have selected six factors that

might compromise the performance of the whole implementation. In this section we are

giving a brief explanation of each of these factors.

- Detection time: period required to complete one cycle of the operation since

the device starts a scan for traffic signs until the information retrieved from the

 45

RX22 command is displayed to the user. The maximum vehicle speed to obtain

the information from a traffic sign depends directly on this parameter. Long

detection times lead us to a non-reliable system at high vehicle speeds.

- CPU usage: amount of time for which the smartphone central processing unit

(CPU) is used to process the instructions of a computer program or the

operating system. A high usage can affect the general OS performance and slow

down the response of some applications.

- Memory allocation: The amount of computer memory used at the system level

is essential on the smartphones where physical memory is often constrained.

Dalvik implements a garbage collection routine that avoids situations where the

system runs at a full memory condition. This routine allows Dalvik to kill

processes that are no longer in used or consuming many resources.

- Battery power consumption: The battery life is also an important factor on the

final solution. The general public often rejects applications that make an

extensive use of the battery resources. Hence we have to escape from using too

much smartphone resources unless it is really necessary.

- Vehicle speed: In a real environment this parameter is not controlled by the

system internally, hence we should be ready to support low and high values. Our

objective is to provide the user with a system able to detect signs at least the

highest speed allowed by the circulation code at the traffic sign location.

- Distance to the traffic sign: This is probably the most important factor that we

face on this project. The traffic sign should be detected always before the vehicle

overtakes it. On the analysis we have studied this parameter indirectly as a

result of vehicle speed divided by the detection time.

5.2.3 Results: cycle time

For the first experiment we used a simulation setup as it is shown on figure 9.

The application was running for one hour without interruption. During this time the

smartphone has detected 74 times the traffic sign, approximately one every 48 seconds.

The simulation code we run on the Raspberry turns the radio off for more or less 40

seconds, however we should consider a couple of seconds more for the kernel driver to

perform the operation after the code is executed. Hence the first number of the analysis

is a rough detection time of 5 seconds.

 46

If we assume that the vehicle is moving at the maximum speed allowed in urban

areas, 50 kph [29], the smartphone would cover approximately 69 meters in 5 seconds

before the information is prompted to the user. This initial calculation showed a huge

limitation on the system; moreover after we realized that when the smartphone is inside

the car, it is only able to keep a safe connection if it is within a range of 40 meters from

the traffic sign.

We analyzed the data results logged by the computer, which is attached to the

smartphone, and we prepared a breakdown of the cycle time. The figures below show

the average times that we calculated separately for each stage of the cycle:

 SCAN PHASE 2859 ms.

 AUTHENTICATION PHASE . . . 134 ms.

 ASSOCIATION PHASE830 ms.

 TCP DATA EXCHANGE483 ms.

 DISSASOCIATION PHASE18 ms.

The scan, authentication and association phases represent the 88% of the cycle

time, 52 out of the 69 meters. These results made clear that we had to think on a

different strategy for detecting the traffic sign. The problem is that the Android API is

limited in this area, and poorly documented.

Once the application calls the startScan method, it loses entirely the control until

the results of the scan are available and the wpa_supplicant generates an event. When

the supplicant receives the scan request, it executes the respective command to notify

the device driver with the operation. The driver performs then a full scan, which in the

2.4 GHz band consists of 13 channels spaced 5 MHz apart. The driver is designed to stay

on each channel a certain amount of time before switching to the next one. The reason is

that access points send periodically a beacon with relevant information for the

connection, without that beacon the communication cannot be established. This period

is typically 100 milliseconds [37], however most of drivers use a more conservative

value to ensure the beacon does not get missed if the antenna is within the

communication range.

 47

Figure 14: Client-server data exchange process.

For some smartphones, where the driver source code has been released to the

public, it is possible to find the particular parameter that defines temporal constants to

control the scanning phase. This is the case of the wireless extension (WEXT), where we

have found a constant named WEXT_CSCAN_PASV_DWELL_TIME with a value set to 250.

In our implementation, we have not been able to find a similar parameter, however

trying not to fall in the idea that every Android smartphone will perform at least as well

as the one used during the experiments, we will use the value found in WEXT on the next

calculation.

Theoretically the scan phase should then follow the next equation:

����_������		 � �����	��	�ℎ������	�	�����_��������

, therefore the scan phase will take at least 3250 milliseconds.

 Another fact we have learnt reviewing the open source code for the different

components involved on the wireless communication is that the list of known Basic

Service Set Identifications (BSSIDs) is handled at a user space level by the

wpa_supplicant. This fact provides us with an important advantage: the association with

a known BSSID is attempted right after it has been detected by the scan service.

 48

In order to benefit from this feature, we provide the wpa_supplicant with all the

connection details of our digital traffic sign before the scan phase starts. If the device is

out the range of traffic sign, the full scan is completed like on the previous

implementation. However if the device is within the range, the supplicant will not wait

for the results and establish the connection as soon as the beacon is received.

After modifying the code of the application to support this sort of parallel

execution, the results from the simulation show two benefits: The first one is that the

maximum cycle time was reduced almost by one second. The reason is that now the

association time has been absorbed by the scan phase. There has been no case

registered where the association phase took longer than a full scan, hence we can

simplify the equation of the detection time:

���������_���� � ����_������		 � ���_����_���ℎ����

The second benefit is based on the probability of finding the beacon before the

full scan has been completed. If we assume that the listener has exactly the same

chances of finding the beacon on any channel, a simple statistical analysis can determine

that the scan average time should be 7/13 less than a sequential execution of the phases.

Considering the conservative value that we have adopted, 250 milliseconds, the final

result will be an average scan latency of 1750 milliseconds.

We decided to take this setup to a real environment and run six tests

approaching the traffic sign at a certain speed. We placed the Raspberry pi at a fix

location, and attached the smartphone to the vehicle windscreen. The results are

displayed on table 1.

Table 1: Position and timestamp registered during the first driving trial.

 49

The communication appears to be established just a few milliseconds after the

traffic sign is discovered, between 95 and 1063 milliseconds. The smartphone receives

the response after approximately an average of 120 milliseconds. The traffic sign was in

none of the cases overtaken after it got discovered. In other words, although the TCP

implementation of sign-vehicle communication could be improved, it is good enough for

the application goal.

However we can observe that on some cases the sign is discovered just a few

meters before the vehicle reaches the traffic sign location, or even when the sign has

been already overtaken as it is the case of the last test. The reason is that we still have a

maximum detection time of 3250 milliseconds, where the vehicle can cover up to 45

meters at 50 kph.

We were relying on the maximum range value from the device specification [33],

where the traffic sign would be detected up to 300 meters away in an outdoors context.

From the first experiment in a real environment we realized that this figure was much

less reaching a maximum of 40 meters when the receiver device is inside the vehicle.

This value effectively limits the maximum speed to 38.4 kph for our system to be

reliable, and therefore explains the bad results of the sixth test.

We have studied different possibilities with the intention of reducing the scan

latency of the application. Some of them are: using active instead passive scan, applying

a selective scan per channels and the Android scan only lock. In all cases we have always

ended up finding limitations within the Android API. For example the idea of listening

only on a reduced number of channels to discover other nodes in the surroundings is

typically used on ad hoc networks to reduce the discovery overhead. The firmware,

kernel driver and supplicant of our implementation support this functionality; however

the API reference does not offer any possibility to enter the channel information from

the application layer.

There have been some attempts to overcome this limitation by modifying the

Android software at a lower layer, for example the one proposed by Browers on [36]

where the wpa_supplicant is set up to scan on a particular channel based on a coded

SSID, which is passed through the WifiManager as a known network. This sort of

solutions requires specific privileges that only a root user receives. One of the

requirements of the present project was that the smartphone solution should be offered

to the user as an application, which only requires a typical installation. Otherwise we

 50

will lose potential users that are reluctant to root their phones, hence we cannot adopt

Browers proposal on our implementation.

The restrictions imposed by the Android API limit the performance of the final

solution, however before starting with the next experiment we wanted to increase the

maximum speed where the system is still reliable. With this purpose the

implementation at the traffic sign was reviewed. The idea was to increase the

communication range in order to allow the vehicle more distance to complete the scan

phase with successful results.

 � !" �	
#$ %&'(!)'$&_*!&+,

-(!&_.!),&(/_012		 3	4#5_6!)!_,"(ℎ!&+,

After trying different options we decided to upgrade the hostapd configuration

to support 802.11n capabilities. The measurements showed an important improvement:

the mobile device was now able to establish a reliable connection in an open space 100

meters away even if it is attached to the windscreen inside the vehicle. This range

increases the reliable maximum vehicle speed to approximately 96 kph.

However an open space is probably one of the best possible scenarios, therefore

similar data was collected at the city in a couple of narrow streets were vehicles were

parked at both sides of it. The results show a 40% shorter communication range, which

still allows a maximum speed of 58 kph, a valid range considering that the limit inside

the city is 50 kph.

 Another interesting fact we observed is that although we are using an isotropic

antenna for the experiments the communication range is not homogeneous when the

hardware solution is attached to a real sign. The signal strength appears to be much

higher on the traffic sign side where our hardware is installed. The reason seems to be

that the physical sign acts like a major obstacle for the AP signal; hence the antenna

should be always installed at the front side of the post or at higher point than the sign if

we want to avoid short communication ranges.

We took this setup to a real context and record GPS data as well as the events

timestamp. The test was conducted twenty five times at different vehicle speeds. The

results were not far from previous conclusions, however there is a major difference.

Although the cycle time is similar to the previous tests, now the vehicle has longer

distance available to discover the traffic sign, therefore the communication gets

established earlier, which improves the user experience.

 51

Figure 15: Distance to the traffic sign where the information is received.

Compared with the data collected at the simulation environment, the results

show a slight increase on the detection times. We expected this difference because the

node is now trying to communicate from inside a metal structure, which can act as a

Faraday cage. Also a moving node will suffer the so-called Doppler effect, missing in

some cases part of the information sent by the sign.

One more thing we studied is the influence that the vehicle speed causes on the

detection time. The idea was to determine whether a higher speed would increase the

time that the smartphone needs to complete any of the communication phases. On table

2 we cannot observe a clear trend as we increase the vehicle speed. In fact, if there is any

impact, it seems to be shadowed by the variability introduced by the scan phase of the

device, which could in some cases perform much better at 60 kph than statically.

Therefore we can conclude that the speed is not a major factor on the whole system

performance at this stage.

Table 2: Detection time brake down at different vehicle speeds.

98.00

76.94 78.82
74.36

70.23

0

20

40

60

80

100

120

140

160

20 30 40 50 60 (kph)

(m)

 52

5.2.4 Results: CPU usage and memory allocation

The constrained resources of a smartphone device make critical the usage that

applications do of the CPU and memory of the device. The operating system has its own

mechanisms to prevent that an extensive usage of these resources causes any effect on

the user experience. These mechanisms are a key factor to achieve a good operating

system for mobile devices, however they can affect the performance of specific

applications. Therefore it is essential to have at least an overview of our application

performance.

During some of the trials we have collected data from the system with the help of

a third-party application that register CPU usage and memory allocation every 20

milliseconds. This data has been validated with the values registered by the tools that

come preinstalled on the device, showing both very similar results. These tools are

useful to have an idea of the whole system performance, but they are not sufficient to

study a specific application.

Figure 16: CPU usage breakdown from one-hour simulation sample

After one hour simulation the maximum CPU usage registered by both systems is

99%. The breakdown shows a slightly different figure, we have assumed that this

0%

10%

20%

30%

40%

50%

60%

70%

80%

0
0

:0
0

:0
0

0
0

:0
2

:3
2

0
0

:0
5

:0
3

0
0

:0
7

:3
8

0
0

:1
0

:1
3

0
0

:1
2

:4
4

0
0

:1
5

:1
9

0
0

:1
7

:5
2

0
0

:2
0

:2
6

0
0

:2
2

:5
9

0
0

:2
5

:3
2

0
0

:2
8

:0
6

0
0

:3
0

:4
2

0
0

:3
3

:1
5

0
0

:3
5

:5
2

0
0

:3
8

:2
5

0
0

:4
1

:0
0

0
0

:4
3

:3
3

0
0

:4
6

:0
6

0
0

:4
8

:3
8

0
0

:5
1

:1
0

0
0

:5
3

:4
3

0
0

:5
6

:1
7

0
0

:5
8

:5
0

com.bigbro.ProcessProfilerP

kworker/0:3

kworker/0:2

kworker/0:1

kworker/0:0

/system/bin/netd

com.samsung.klmsagent

com.sec.android.daemonapp

com.vlingo.midas

com.android.contacts

com.whatsapp

com.google.android.googlequicksearchbox:sear

ch
com.google.android.gms.persistent

com.google.android.apps.maps

com.android.systemui

com.sec.android.app.launcher

/system/bin/mm-qcamera-daemon

 53

difference is used by the operating system itself and it is not included in the process list.

The trafficsign process does not register more than a 2% during the whole simulation,

however we cannot fall into the error of assuming this is the only usage that our

application is adding to the system during the execution. As we explained in previous

chapters, Dalvik creates a virtual machine instance each time an application gets

launched. The process that covers the virtual machine is called system_server. We can

observe on figure 16 how the system_server process is loading the CPU in cycles, each

peak coincides with a startScan request, and hence we understand that this process is

responsible to transmit the application requests to the user space, where the

wpa_supplicant belongs.

Figure 17: Memory allocation breakdown from one-hour simulation sample

Regarding the memory usage, we have not observed a direct relation between

the events registered by our application and the memory that is allocated. As Figure 16

shows, trafficsign process allocates an average of 64 megabytes, less than a 5% of the

memory available on our case. We can determine that the application is not prone to

cause issues related with memory shortage.

5.2.5 Results: battery power consumption

Since our application is meant to run in the background for long periods of time,

the battery power consumption is an important factor that will influence on the user

0

128

256

384

512

640

768

896

1024

1152

1280

0
0

:0
0

:0
0

0
0

:0
2

:3
2

0
0

:0
5

:0
3

0
0

:0
7

:3
8

0
0

:1
0

:1
3

0
0

:1
2

:4
4

0
0

:1
5

:1
9

0
0

:1
7

:5
2

0
0

:2
0

:2
6

0
0

:2
2

:5
9

0
0

:2
5

:3
2

0
0

:2
8

:0
6

0
0

:3
0

:4
2

0
0

:3
3

:1
5

0
0

:3
5

:5
2

0
0

:3
8

:2
5

0
0

:4
1

:0
0

0
0

:4
3

:3
3

0
0

:4
6

:0
6

0
0

:4
8

:3
8

0
0

:5
1

:1
0

0
0

:5
3

:4
3

0
0

:5
6

:1
7

0
0

:5
8

:5
0

com.bigbro.ProcessProfilerP

/system/bin/netd

com.samsung.klmsagent

com.sec.android.daemonapp

com.vlingo.midas

com.android.contacts

com.whatsapp

com.google.android.googlequicksearchbox:searc

h
com.google.android.gms.persistent

com.google.android.apps.maps

com.android.systemui

com.sec.android.app.launcher

/system/bin/mm-qcamera-daemon

/system/bin/surfaceflinger

com.cgollner.systemmonitor:notifProcess

com.google.android.gms.unstable

(MB)

 54

satisfaction. Previous chapters expose a strong emphasis on the importance of a good

reception of the client solution. We cannot fail in providing a battery-efficient

application; otherwise we might loose potential users.

We have performed a test recording the battery state of charge every 20

milliseconds on two different situations. During the first test the smartphone was

running our application at the simulated scenario, which has been described on the

previous section. The screen was on all the time as per a lock implemented at the

application user interface. Also the Wi-Fi radio was running all the time because we

force it by the service in charge of discovering traffic signs.

During the second test, the smartphone was running just a few applications also

executed on the first test, which are very popular and might be found in most of

smartphones. Some of them are Twitter, RSS feed, whatsapp, tripadvisor, and others that

come preinstalled on the device.

Figure 18: Battery state of charge from one-hour simulation sample

The results are shown on figure 18. Our application causes the battery to

discharge 46% faster, not much more than leaving the Wi-Fi enabled on the smartphone

by accident. Hence the trafficSign process is able to run on a smartphone with a Li-Ion

battery of 1900 milliamps-hour for more than seven hours.

75%

80%

85%

90%

95%

100%

0
:0

0
:0

0

0
:0

2
:0

0

0
:0

4
:0

0

0
:0

6
:0

0

0
:0

8
:0

0

0
:1

0
:0

0

0
:1

2
:0

0

0
:1

4
:0

0

0
:1

6
:0

0

0
:1

8
:0

0

0
:2

0
:0

0

0
:2

2
:0

0

0
:2

4
:0

0

0
:2

6
:0

0

0
:2

8
:0

0

0
:3

0
:0

0

0
:3

2
:0

0

0
:3

4
:0

0

0
:3

6
:0

0

0
:3

8
:0

0

0
:4

0
:0

0

0
:4

2
:0

0

0
:4

4
:0

0

0
:4

6
:0

0

0
:4

8
:0

0

0
:5

0
:0

0

0
:5

2
:0

0

0
:5

4
:0

0

0
:5

6
:0

0

0
:5

8
:0

0

idle system sample

trafficsign running sample

 55

5.3 Brief comparison with other TSR solutions for

smartphones

In this chapter we have analyzed the behavior of our application in different

scenarios. The results seem promising despite the limitations found on the smartphone

implementation. However we want to go a step further and compare our solution with

other TSR applications that are already available in the market. This will help us to

create a more complete outlook of the efficiency of our application.

Three applications have been chosen to carry out an experiment. The first one,

myDriveAssist, which has been developed by Robert Bosch GmbH [25]. This application is

a camera-based TSR solution, which uses the built-in camera from the smartphone to

detect traffic signs and advice the driver with the speed limit for a certain section of the

road. There is a limit of one sign prompted at a time, which is not an issue because only

speed limit traffic signs are recognized by the system. Apart from the camera, the

application also requires GPS data to retrieve additional information like vehicle speed

and driving direction.

The second application is called aCoDriver, which implements a hybrid TSR

system. Like myDriveAssist it uses the smartphone camera to detect vehicle speed signs

and the GPS sensor for the vehicle speed and direction. However, unlike the previous

application, it also uses the data to query a speed limit database [26], which is not stored

locally. This functionality requires Internet connection; therefore our device should be

always connected through a mobile network to benefit from the hybrid system

advantage. Otherwise it would rely on the information captured by the camera only.

Robert Bosch
myDriveAssist

Evotegra's
aCoDriver

Michelin
Navigation

Detectability (Urban area) 43% 14% 71%

Detectability (Freeway) 96% 64% 48%

Accuracy (Urban area) 67% 100% N/A

Accuracy (Freeway) 57% 50% N/A

Table 3: Empirical detectability and accuracy rates from different TSR applications.

Finally, in order to have a general view of the present situation of TSR solutions

based on smartphones, we have also evaluated a data mapped system, which relies

completely on the database information. This application has been developed by

Michelin and uses the reference of the GPS sensor to retrieve speed limit information

 56

from an external dataset [27]. Unlike aCoDriver, the Internet connection is mandatory to

run the application.

All these applications are available at the Google Play Store and their official

websites, which address can be found on the reference section of this document.

The test consisted of monitoring the applications during approximately one-

hour trip. The itinerary was 30% urban and 70% freeway, covering approximately a

distance of 50 kilometers. The vehicle we used is the same one as per the last

experiments on the previous section. The three applications were installed on the

Galaxy S4 mini from the last trial. In all three cases the smartphone was attached to the

vehicle windscreen in the same way as we did for TrafficSign evaluation. We covered the

urban area within a speed range of 30-40 kph, while on the freeway we reached 100-

120 kph. Considering only the speed limits, in the itinerary we can find up to 7 signs to

discover in the urban area, and 25 in the freeway.

Figure 19: Battery power consumption comparison

Table 3 shows that the camera-based system is the most capable for detecting

speed limits with an 84% of the traffic signs detected. However it seems to perform

better on a freeway than in urban areas. These results are only surpassed in the urban

context by the data-mapped system with a 71% of the speed-limited areas correctly

prompted to the driver.

40%

50%

60%

70%

80%

90%

100%

0
:0

0
:0

0

0
:0

2
:4

0

0
:0

5
:2

0

0
:0

8
:0

0

0
:1

0
:4

0

0
:1

3
:2

0

0
:1

6
:0

0

0
:1

8
:4

0

0
:2

1
:2

0

0
:2

4
:0

0

0
:2

6
:4

0

0
:2

9
:2

0

0
:3

2
:0

0

0
:3

4
:4

0

0
:3

7
:2

0

0
:4

0
:0

0

0
:4

2
:4

0

0
:4

5
:2

0

0
:4

8
:0

0

0
:5

0
:4

0

0
:5

3
:2

0

0
:5

6
:0

0

0
:5

8
:4

0

1
:0

1
:2

0

UPV Traffic Sign

Robert Bosch' myDriveAssist [25]

Evotegra's aCoDriver [26]

Michelin Navigation [27]

 57

Regarding the accuracy, neither the hybrid nor the camera-based system has

great performance. In the case of aCoDriver, the application prompted almost a half of

the signs erroneously. In both cases most of them belonged to a different road that can

be found in parallel to the itinerary. Other false speed limits were prompted while

driving the vehicle close to freeway exit. The only invalid result in the urban area was

registered by myDriveAssist, which detected the speed limit from the rear part of a truck,

where its maximum speed is displayed. We are not able to calculate the accuracy for

data-mapped system because the detection events are not registered by the application;

hence all erroneous speed limits might have been included within the detectability

figures.

While conducting these trials we have also run the CPU Monitor application [28],

which records different values from the processes registered by the operating system. In

this section, instead of preparing the data from these tests in one report per application,

similar to the ones shown at figure 15 and 16, we have only taken the data from the

processes that are relevant to the TSR application and prepared a single graph that we

show in figure 20.

Figure 20: CPU usage by application

From the results the two applications that use the camera for sign detection are

the ones making the most extensive use of the CPU. The other two, Michelin Navigation

and TrafficSign, rely on the network interface as the main element in the smartphone.

Unlike the others, the main component is used based on the application demand, and

0%

10%

20%

30%

40%

50%

60%

70%

0
:0

0
:0

0

0
:0

1
:0

0

0
:0

2
:0

0

0
:0

3
:0

0

0
:0

4
:0

0

0
:0

5
:0

0

0
:0

6
:0

0

0
:0

7
:0

0

0
:0

8
:0

0

0
:0

9
:0

0

0
:1

0
:0

0

0
:1

1
:0

0

0
:1

2
:0

0

0
:1

3
:0

0

0
:1

4
:0

0

0
:1

5
:0

0

0
:1

6
:0

0

0
:1

7
:0

0

0
:1

8
:0

0

0
:1

9
:0

0

0
:2

0
:0

0

0
:2

1
:0

0

0
:2

2
:0

0

0
:2

3
:0

0

0
:2

4
:0

0

UPV TrafficSign

Robert Bosch' myDriveAssist [25]

Evotegra's aCoDriver [26]

Michelin Navigation [27]

 58

not continuously, hence the CPU load should be less uniform, but lower than the camera-

based systems in general.

Figure 21: Memory allocated by application

Figure 21 shows the memory requirements for each of application. On none of

the systems studied we have observed a major usage of the smartphone memory. The

highest figures are registered by our application, however the maximum value recorded

does only represent the 16% of the smartphone RAM.

Finally we have analyzed one of the most critical factors on a smartphone, the

battery usage. Figure 19 shows the state of charge while the application is running. After

one hour the data shows that our application is in the best position with an 86 percent

of the battery load. On the other hand myDriveAssist has already consumed 44 percent of

the capacity; hence the application will be running for another hour and a half before the

device runs out of battery, unless it gets connected to a power supply.

5.4 Summary

In this chapter we have evaluated our proposal for wireless technology applied

to traffic sign recognition in a real environment. Analysis of the data obtained shows

that there are major reasons for further studies about the opportunity of using

0

64

128

192

256

0
:0

0
:0

0

0
:0

1
:0

0

0
:0

2
:0

0

0
:0

3
:0

0

0
:0

4
:0

0

0
:0

5
:0

0

0
:0

6
:0

0

0
:0

7
:0

0

0
:0

8
:0

0

0
:0

9
:0

0

0
:1

0
:0

0

0
:1

1
:0

0

0
:1

2
:0

0

0
:1

3
:0

0

0
:1

4
:0

0

0
:1

5
:0

0

0
:1

6
:0

0

0
:1

7
:0

0

0
:1

8
:0

0

0
:1

9
:0

0

0
:2

0
:0

0

0
:2

1
:0

0

UPV TrafficSign

Robert Bosch' myDriveAssist [25]

Evotegra's aCoDriver [26]

Michelin Navigation [27]

(MB)

 59

smartphones to expand the number of potential users. With a low budget we have

implemented an application that is able run for a long time on any Android device

without potential CPU or memory capacity issues and detect the traffic sign that are

equipped with our wireless solution at any vehicle speed up to 96 kph.

The main limitations we have discovered during the implementation are due the

APIs involved in wireless communication for Android. The WifiManager class, which

handles most of the interaction between the application and the Wi-Fi controllers, is

very limited compared with other operating systems. Moreover the scanning and

association phases are not very well documented in the official Android reference, and

most of premises we have followed during the implementation are based on

descriptions of experiences made by investigation groups and developers.

Nevertheless we have compared our TSR solution with others Android

applications based on different strategies, and it proves the benefits of using wireless

technologies among the other exploit techniques underlined in this document. Our

system does not only offer the possibility of detecting a wider range of traffic signs and

have additional capabilities like providing live information from the area, but also we

have verified that makes a more efficient use of the smartphone resources like battery

or CPU.

 60

Chapter 6.

Conclusions & Future work

The present document introduces a TSR system proposal based on wireless

technology, which has been implemented and tested in an Android smartphone and a

Raspberry Pi. The project makes use of existing initiatives from standards and

researches in the scope of traffic sign recognition and digital signs. However it

introduces the original idea of using the smartphone to offer a complete vehicle-to-

infrastructure solution. This concept is led by the objective of closing the gap between

technology prerequisites on one side and the requirement of potential users to easy an

infrastructure change on the other.

Along with the benefit of using an extended operating system with a network

stack that is available on more than the 80% of the mobile devices, the Android API also

introduces the main constrain to the proposed system. The fact that the WifiManager

class provides limited control over scan and association phases results on a lower-

performance solution than what the hardware and communication standards could

offer. An important part of the work presented in the document has been dedicated to

overcome this limitation with a certain degree of success.

The data obtained from the different experiments showed promising results that

authorize our initial premise: using the smartphone as the opportunity to expand

wireless technology in the traffic sign recognition context. The maximum vehicle speed

where we can ensure the reliability of the system is over ninety kilometer per hour. The

application does moderate battery power consumption, covering long distances without

connecting the device to a power supply.

The Raspberry pi has accomplished our requirements for the outdoor tests with

a simple and robust implementation. Nevertheless for future extensions we do not need

to stick to a unique hardware solution. For example the introduction of directional

antennas or wireless sensor solutions, like waspmote, could be a future case of study.

Ultimately this document proposes a system that should be flexible at different

layers of the designed stack. We pursued the intention of implementing a cost-effective

 61

solution that will be potentially upgraded in the future. Therefore flexibility and

compatibility are important attributes to hold over the time.

6.1 Recommendation for future work

The solution presented on this document has fulfilled our necessities for the

system evaluation. It could also be perfectly used for the initial implementations on real

environments. Nevertheless the present work can be further developed in the future in a

number of ways. In this section we comment some of them.

6.1.1 Peer-to-peer strategy

The present TSR system has been designed upon the fact that the two major

operating systems for smartphones do not currently support ad-hoc network standards.

During the development phase of the Android application we analyzed and tested

different strategies to reduce the discovery and association latencies in an infrastructure

network. We had not much success on this attempts due to some constrains found in the

interaction with the wireless adapter. Essentially we focused our study on the

possibilities offered by the WifiManager class, Android API for infrastructure networks.

However during we also realized about a different java class, WifiP2pManager, which

handles peer-to-peer connectivity over a similar communication stack.

Google offers this solution for wireless communication in a scenario where there

is no network infrastructure. The Wi-Fi Direct or Wi-Fi P2P is not an IEEE standard, but a

Wi-Fi Alliance specification. It allows devices to connect to each other without the use of

a traditional Access Point. From the WifiP2pManager class, there is a particular method

that has drawn our attention; its name is discoverPeers. This method would serve a

similar functionality as the WifiManager.startScan in our application, however it accepts

an argument to select a specific channel, which is used during the discovery phase.

Instead of listening for beacons during a specific amount of time channel by channel, the

device alternately listen and send probe requests on those specific channels, which are

called “social channels”.

Wi-Fi Direct is officially supported by Android since version 4.0, also known as

Ice Cream Sandwich, and has been marketed as a replacement of Ad-hoc mode since

then. Although Ad-hoc and Wi-Fi Direct belong to different types of communication, the

 62

message from Google could be interpreted as Android not supporting the Ad-hoc

standards in the near future. A case of study could be how to apply Wi-Fi Direct on the

traffic sign recognition context. The current TSR system implementation, which has

already been presented in this document, will support peer-to-peer connection with a

slight modification to the TrafficSignMonitor class. If we attach the Wi-Fi Direct events to

the finite state machine and extend WifiP2pManager methods, we should be able to

create a beta version of the code with just a little effort. On the other hand, hostapd does

also support the Wi-Fi Direct specification; we will just need to modify our Raspberry

network configuration to have a complete peer-to-peer solution for evaluation.

6.1.2 Multiple access points

All experiments presented in this document have been carried out with a single

traffic sign and only one smartphone. It allowed us to reduce the system complexity and

focus on the limitations that are implicit in the nature of the implementation. This way,

we have set a clear performance outlook, which will be potentially used as a reference

for future calculations in a scenario where the number of nodes has increased.

We have included in the code a mechanism that avoids the supplicant trying to

exchange information to undesired Access Points. This is to prevent malicious attacks

based on replication, but also to avoid an increase of the detection time by connecting to

a different network. The mechanism uses basically two parameters: (1) Service Set

Identifier (SSID) and (2) Basic Service Set Identifier (BSSID). The first one is passed to

the wpa_supplicant through the WifiConfiguration class, which includes it on the list of

known networks. The device will only attempt to connect to the network if the

information broadcasted by the Access Point matches with an entry from the supplicant

list. The second one has been implemented at the application layer, so that before

sending any TCP request the MAC address is compared against a list, filtering the

negative results.

For a good performance in a scenario with several traffic signs, we should

determine a set of rules that specifies the number of known SSID entries on the

supplicant list and when the application should add or remove them from the list. For

example in a bidirectional street we can use two different SSID, one per direction. When

the device realizes that the vehicle is moving on one direction it will remove the other

SSID entry from the list, so the supplicant stops trying to connect to those Access Points

that are only relevant to vehicles driving on the opposite direction. We could also add a

 63

wild card SSID at both ends of the street that determine when the vehicle enters and

leaves the street as well as the direction of the vehicle.

Also, in order to get a more efficient system, in the future the BSSID filter should

be moved to the OS user space in a similar way to the SSIDs supplicant list. Per the

Android reference, the WifiConfiguration class includes a field called BSSID. Its purpose

is to limit the supplicant entry of known networks to a single Access Point identified by

the MAC address. The smartphone will then apply the filter before the connection has

been established, saving an important amount of time when the traffic sign contains

information that is not relevant to the vehicle itinerary. For example, if we think of a

roundabout connected to four streets, each street might have its own digital traffic sign.

The application is able to detect all four, however we are only interested on the one

placed at the end of the street that we are driving on. This sign is typically the first one

that the device will discover because of its proximity. If the sign is able to provide the

BSSID information of the other three, we can disregard them when driving around the

roundabout.

This mechanism intends to provide a system that can efficiently work without

the use of location information. One of the benefits is that keeps the battery at low

consumption. Nevertheless future works could study the possibility of using the GPS

data to enhance the user experience.

6.1.3 Active safety

Most of built-in traffic sign recognition systems have evolved to a fundamental

part of the active safety concept. The information recorded by the system is not only

displayed to the driver, but also used for functionalities like adaptive cruise control or

audible warnings when the vehicle exceeds the speed limitation.

The importance of collecting traffic sign information through a digital media will

just grow in the future with concepts like the connected vehicle or the self-driving car.

The idea of controlling critical car functions through an interface with our smartphone

has not been studied in the document because we do not believe that such an interface is

under the scope of OEMs. However earlier this year Google released Android Auto, a

standard to allow mobile devices to be operated in automobiles through the dashboard.

The system is already available on recent launched models like the Hyundai Sonata or

the Honda Accord, and has been announced by other automakers.

 64

A similar application to the one we have presented on the present document

would be able to run on this extension of Android. This fact increases the potential of the

smartphone as platform for traffic sign recognition. From the application layer we can

now make use of some of the hardware that is installed on the vehicle, for example the

GPS antenna. Also some vehicles are equipped with Wi-Fi facilities, which might be

accessible by our application. The benefit of using an external antenna instead of the one

embedded in the smartphone will definitely increase the communication range and

therefore the system performance.

Nevertheless the major benefit introduced by this standard is the fact that it is

not unreasonable to assume that certain applications will be able to interact with the

vehicle in the future. In the end, this OS extension might open the doors to safety

applications based on Android solutions.

 65

References.

[1] Abdullah, Dhuhabasheer, and Mohammed M. Al-Hafidh. "Developing Parallel

Application on Multi-core Mobile Phone."

[2] Jiang, Daniel, and Luca Delgrossi. "IEEE 802.11 p: Towards an international standard

for wireless access in vehicular environments." Vehicular Technology Conference, 2008.

VTC Spring 2008. IEEE. IEEE, 2008.

[3] Eichler, Stephan U. "Performance evaluation of the IEEE 802.11 p WAVE

communication standard." Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007

IEEE 66th. IEEE, 2007.

[4] ETSI, TCITS. "Intelligent Transport Systems (ITS); European profile standard on the

physical and medium access layer of 5 GHz ITS." Draft ETSI ES 202.663 (2009): V0.

[5] Vandenberghe, Wim, Ingrid Moerman, and Piet Demeester. "On the feasibility of

utilizing smartphones for vehicular ad hoc networking." ITS Telecommunications

(ITST), 2011 11th International Conference on. IEEE, 2011.

[6] Choi, Pilsoon, et al. "A case for leveraging 802.11 p for direct phone-to-phone

communications." Proceedings of the 2014 international symposium on Low power

electronics and design. ACM, 2014.

[7] http://www.its.dot.gov/safety_pilot/safety_pilot_progress.htm

[8] Yoshimichi, S., and M. Koji. "Development and evaluation of in-vehicle signing system

utilizing RFID tags as digital traffic signs." International Journal of ITS Research 4.1

(2006): 53-58.

[9] Pérez, Joshué, et al. "An RFID-based intelligent vehicle speed controller using active

traffic signals." Sensors 10.6 (2010): 5872-5887.

 [10] Bohonos, S., et al. "Universal real-time navigational assistance (URNA): an urban

bluetooth beacon for the blind." Proceedings of the 1st ACM SIGMOBILE international

workshop on Systems and networking support for healthcare and assisted living

environments. ACM, 2007.

[12] Lai, Ching-Hao, and Chia-Chen Yu. "An efficient real-time traffic sign recognition

system for intelligent vehicles with smart phones." Technologies and Applications of

Artificial Intelligence (TAAI), 2010 International Conference on. IEEE, 2010.

[13] García-Garrido, Miguel A., et al. "Complete vision-based traffic sign recognition

supported by an I2V communication system." Sensors 12.2 (2012): 1148-1169.

[14] World Road Association (PIARC) Road Tunnels Manual

http://tunnels.piarc.org/tunnels/ressources/1/58,2001-05.11.B-Chap-5-EN.pdf

 66

[15] Informe Económico de las Telecomunicaciones y del Sector Audiovisual 2014

http://www.cnmc.es/Portals/0/Ficheros/Telecomunicaciones/Informes/Informes%20

Anuales/2014/Informe%20Telecomunicaciones%20CNMC%202014.pdf

[16] Brkic, Karla. "An overview of traffic sign detection methods." Department of

Electronics, Microelectronics, Computer and Intelligent Systems Faculty of Electrical

Engineering and Computing Unska 3 (2010): 10000.

[17] Zakir, Usman. Automatic road sign detection and recognition. Diss. © Usman Zakir,

2011.

[18] Viola, Paul, and Michael Jones. "Robust real-time object detection." International

Journal of Computer Vision 4 (2001): 51-52.

[19] Par, Kerem, and Oğuz Tosun. "Real-time traffic sign recognition with map fusion on

multicore/many-core architectures." Acta Polytechnica Hungarica 9.2 (2012): 231-250.

[20] Loy, Gareth, and Nick Barnes. "Fast shape-based road sign detection for a driver

assistance system." Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.

2004 IEEE/RSJ International Conference on. Vol. 1. IEEE, 2004.

[21] Gavrila, Dariu M. "Traffic sign recognition revisited." Mustererkennung 1999.

Springer Berlin Heidelberg, 1999. 86-93.

[22] Paulo, Carlos Filipe, and Paulo Lobato Correia. "Automatic detection and

classification of traffic signs." Image Analysis for Multimedia Interactive Services, 2007.

WIAMIS'07. Eighth International Workshop on. IEEE, 2007.

[23] Bénallal, Mohamed, and Jean Meunier. "Real-time color segmentation of road

signs." Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian

Conference on. Vol. 3. IEEE, 2003.

[24] Bahlmann, Claw, et al. "A system for traffic sign detection, tracking, and recognition

using color, shape, and motion information." Intelligent Vehicles Symposium, 2005.

Proceedings. IEEE. IEEE, 2005.

[25] Robert Bosch GmbH myDriveAssist

http://mydriveassist.bosch.com/mydriveassist/

[26] Evotegra GmbH aCoDriver http://www.acodriver-shop.com/

[27] Michelin Navigation http://mn.viamichelin.com/fr/

[28] ECNApps CPU Monitor http://androidlookup.org/default.aspx

[29] Reglamento General de Circulación para la aplicación y desarrollo del texto

articulado de la Ley sobre Tráfico, Circulación de Vehículos a Motor y Seguridad Vial

[30] Gartner, Inc. “Market Share: Devices, All Countries, 4Q14 Update.”

http://www.gartner.com/document/2985017

 67

[31] "Drawing of Raspberry Pi model B rev2" by Efa - OpenOffice Draw and Inkscape.

Licensed under CC BY-SA 3.0 via Wikipedia

[32] Raspberry Pi official website help section and forums.

https://www.raspberrypi.org/forums/

[33] Realtek WLAN chipset drivers and utilities

http://152.104.125.41/downloads/downloadsView.aspx?Langid=1&PNid=21&PFid=48

&Level=5&Conn=4&ProdID=277&DownTypeID=3&GetDown=false&Downloads=true

[34] The great idea finder

http://www.ideafinder.com/history/inventions/trafficlight.htm

[35] Java Library for Android Software Reference

http://developer.android.com/reference/packages.html

[36] Brouwers, Niels, Marco Zuniga, and Koen Langendoen. "Incremental wi-fi scanning

for energy-efficient localization." Pervasive Computing and Communications (PerCom),

2014 IEEE International Conference on. IEEE, 2014.

[37] Ishwar Ramani and Stefan Savage. Syncscan: practical fast handoff for 802.11

infrastructure networks. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, volume 1, pages 675–684.

IEEE, 2005.

[38] wpa_supplicant reference https://w1.fi/cgit/hostap/plain/wpa_supplicant/

68

Digital traffic sign setup

This document explains how to configure a Raspberry Pi as a digital traffic sign. The

commands used on our example are for Raspbian 3.18, however most of them are fairly common

on most of Linux distributions. The complete hardware solution includes an USB wireless adapter

apart from the Raspberry. During the configuration process you will need Internet connection to

download the driver and applications from the repository.

Installing

Before installing the packets we recommend to execute a system upgrade if it has not been

recently performed.

 1 | sudo apt-get update

Once the system is up-to-date we can install the hostapd and dnsmasq packages from the

official repository.

 1 | sudo apt-get install hostapd dnsmasq

Configuring dnsmasq

The dnsmasq configuration is defined in the /etc/dnsmasq.conf file. We open the file with a

text editor, in our examples we have used nano, which is preinstalled on the Raspbian distributions.

 1 | sudo nano /etc/dnsmasq.conf

We just need the service to run as a DHCP server for the WLAN adapter, so the following

lines should be appended to the file:

 1 | interface=wlan0

 2 | no-dhcp-interface=eth0

 3 | dhcp-range=10.10.10.150,255.255.255.0,12h

 4 | no-resolv

Configuring hostapd

Since our setup is rather common we will use one of the files that come with the package as

starting point to configure the service. We copy the file to the hostapd configuration folder.

 1 | zcat /usr/share/doc/hostapd/examples/hostapd.conf.gz | sudo tee –a

/etc/hostapd/hostapd.conf

69

We now open the file and modify some of the parameters to customize the service for our

solution.

 1 | sudo nano /etc/hostapd/hostapd.conf

With the following modification hostapd will build up a secure WPA2 network based on a

preshared-key authentication and the CCMP encryption algorithm.

 1 | driver=rtl871xdrv

 2 | ssid=WardAP

 3 | country_code=es

 4 | hw_mode=g

 5 | channel=6

 6 | auth_algs=1

 7 | wpa=2

 8 | wpa_passphrase=WardTEST

 9 | wpa_key_mgmt=WPA_PSK

 11 | wpa_pairwise=TKIP

 10 | rsn_pairwise=CCMP

Now we just need to let the service know the configuration file location.

 1 | echo ‘DAEMON_CONF=”/etc/hostapd/hostapd.conf” >>

/etc/default/hostapd

Compiling Realteck hostapd

At this stage, if we try to run hostapd, the service would return a driver not found error. It

means that our hostapd version is not compatible with the chipset of the wireless adapter that we

are using. We could have modified the code, however Realteck, the chipset manufacturer,

distributes a version of the service, which is compatible with the adapter. The following steps

explain how to download and compile the file to overcome the issue.

 1 | wget

http://12244.wpc.azureedge.net/8012244/drivers/rtdrivers/cn/wlan/0001-

RTL819xSU_usb_linux_v2.6.6.0.20120405.zip

 2 | unzip RTL819xSU_usb_linux_v2.6.6.0.20120405.zip

 3 | mv RTL8188C_8192C_USB_linux_v3.4.4_4749.20121105/ rtl

 4 | cd rtl/wpa_supplicant_hostapd

 5 | unzip wpa_supplicant_hostapd-0.8_rtw_20120803.zip

 6 | cd wpa_supplicant_hostapd-0.8/hostapd

 7 | make

The last step might take a while, however once we have the binary file, we do not need to go

through these steps for each Raspberry Pi that we set up. The binary file as well as the

configuration files should be the same for each traffic sign, hence we should be able to create a

repository and save some time copying the files from there.

70

We will rename the current hostapd binary file and replace it with the Realteck version. The

configuration files and rest of the installation remain the same.

 1 | sudo mv /usr/sbin/hostapd /usr/sbin/hostapd_archive

 2 | sudo mv hostapd /usr/sbin

 3 | sudo chmod 755 /usr/sbin/hostapd

Configuring the network interface

We have already downloaded and configure both services required to run a wireless interface

on our digital sign. Now we will disable the adapter and make a slight modification to the network

interfaces configuration file.

 1 | sudo ifdown wlan0

 2 | sudo nano /etc/network/interfaces

If there is already a configuration for wlan0, it should be overwritten. Otherwise we can just

append the following lines to the file.

 1 | iface wlan0 inet static

 2 | metric 0

 3 | address 10.10.10.1

 4 | netmask 255.255.255.0

Please notice that we are keeping the eth0 interface for future use. The parameter metric is set

to give priority to the wireless interface over Ethernet. This solution is simple and very efficient if

we are not making a frequent usage of the Ethernet connection, however if we plan to have all

traffic signs connected to a server for maintenance and data control we recommend the use of IP

tables and rules for a more efficient packet management.

Starting the daemons

At this stage the system is ready to restart the network and begging to use our new services.

 1 | sudo /etc/init.d/networking restart

 2 | sudo service hostapd start

 3 | sudo service dnsmasq start

The client application might be able now to find and connect to the traffic sign, however it

will not receive any response to the traffic information requests. For that, we need to start also the

TCP server daemon, which we have developed in Python.

 1 | python /home/pi/PythonProjects/TCPServer/LWire.py

And finally the last step on this configuration process is preparing the system to get

automatically ready after the Raspberry Pi is rebooted. For services like hostapd and dnsmasq, they

are have been automatically setup to be started with the operation system, however LWire belongs

to the application layer, hence we need to perform a minor modification.

71

 1 | sudo nano /etc/rc.local

We propose to edit the rc.local file, which is automatically executed after the operating system

has booted up. We just need to add the following lines to the file:

 1 | #!/bin/sh -e

 2 | python /home/pi/PythonProjects/TCPServer/LWire.py &

The configuration process explained on this document does not need to be completed on

every Raspberry Pi. Once we get one of them successfully configured and running, we should be

able to copy the following files to replicate the configuration on the rest of traffic signs:

/etc/dnsmasq.conf

/etc/hostapd/hostapd.conf

/default/hostapd

/usr/sbin/hostapd

/etc/network/interfaces

/etc/rc.local

UNIVERSIDAD POLITÉCNICA DE VALENCIA

Station.ini keyword
reference

LWire description file

Latest document revision:

8/23/2015

The present document can be used as a reference to the station.ini configuration file.
The file contains the specific data that defines each traffic sign, which is divided in two
different sections.

73

Document Revision History

Rev # Date By Revision Description

1 24/08/2015 C. Fernández Initial Revision of STATION INI Doc

74

Currently the document is divided in two sections STATION_DATA and TS. The first one

contains information with the coordinates and SSID references of the traffic sign. This

information is intended to be the footprint of the sign, so it can be used to avoid spoofing

attacks. In this section we can find the following keywords:

SSID

Description It identifies the network name, which is defined by the hostapd.conf file. If
there is a mismatch between these two files, we might be facing a spoofing
case.

Section STATION_DATA
Requirement Mandatory

Example WardAP

latitude

Description GPS coordinates where the traffic sign is located.
Section STATION_DATA
Requirement Optional
Example 39.27046

longitude

Description GPS coordinates where the traffic sign is located.
Section STATION_DATA
Requirement Optional
Example -2.78451

altitude

Description Placeholder that identifies the third coordinate where traffic sign is
located.

Section STATION_DATA
Requirement Not yet implemented
Example 234.0323

75

The TS section specifies the information sent to the client. The keywords under this section

are described below:

msg

Description This keyword identifies the traffic sign (TS) by a four characters code follow
by a null digit. For additional information to be sent along with the TS code,
this should be added between the four first characters and the null digit,
e.g a 50kph speed limitation would be represented by "R30150/0". For
more than two TS to be sent at the same time the four-digit codes from
each TS should be sent separated by a '/1' digit, e.g. a right turn prohibited
sign follow by a traffic light indication should be coded as "R302/1P003/0".

Section TS
Requirement Mandatory
Example P021/0

extra

Description The traffic sign is also able to provide extra information that is not
necessarily related to the sign. This is a string parameter that will only be
sent upon a "TX23" request after the information after msg has been
delivered.

Section TS
Requirement Optional
Example This is a message to the drive. Keep calm and carry on.

caption

Description This keyword is a brief indication to the driver, which will be included in the
notification.

Section TS
Requirement Mandatory
Example ESCUELA

notification

Description This keyword contains a more detailed explanation.

Section TS
Requirement Mandatory
Example Peligro por la proximidad de un lugar frecuentado por niños, tales como

escuelas, zona de juegos, etc.

76

severity

Description This parameter is used by the client to decide priorities on a scenario
where more than one TS message needs to be prompted to the driver.

Section TS
Requirement Optional (default severity 0)

Example 4

sdownstrategy

Description Integer value that decides the strategy to cancel the notification to the
user. The strategies supported at the moment are:
0 - SSID is not visible by the client.
1 - RSSI from the current hot spot has started to decrease.
2 - New TS overrides. A new message should invalidate or update the
current one.
3 - Countdown timer. After the fix/variable number of seconds the
notification is cancelled.

Section TS
Requirement Optional (default strategy 0)
Example 0

image

Description Bitmapped image that will be transmitted to the client if the database does
not contain one for the code delivered after the “RX22” request.

Section TS
Requirement Optional
Example … $E QRIT©¤ž–•uÛz-æalÌø-

Œiþ

>ÌÛ<qÞzÌjºLÕÕ--•J¦¢Hq @¬

ÁÄ¾ç¾ß%"ÜÏ<xÜ%!Ö"eJ

Aÿ™ ™…

77

TrafficSignDroid quick start guide

TrafficSignDroid is an application for Android 2.3.3+ that will allow you to detect

and recognize any traffic sign equipped with wireless interface compatible with LWire.

To install the application you just need to download the package from Google Play. The

application will be ready on your smartphone or tablet in a few moments.

Please be aware that the present application requires the following permissions:

android.permission.INTERNET
Required to exchange data through the Wi-Fi interface.

android.permission.ACCESS_NETWORK_STATE
Required to determine the connection state.

android.permission.ACCESS_WIFI_STATE
Required to enable the adapter when it is disabled.

android.permission.CHANGE_WIFI_STATE
Required to determine the state of the adapter (enabled/disabled).

android.permission.WAKE_LOCK
Required to keep the screen on and unlocked.

android.permission.WRITE_EXTERNAL_STORAGE
Only for debugging purposes. To be removed on the final version.

android.permission.ACCESS_FINE_LOCATION
Only for debugging purposes. To be removed on the final version.

Once installed you can launch the application by touching the following icon:

The splash screen will be prompted while the system initializes the service. After

that your device will be ready to receive data from traffic signs.

For better results place your device on a car mount at the vehicle windscreen.

20kph

39.413515 -0.386901 0.687895463

Vehicle

speed(km/h)

Vehicle

speed(m/s)

Number of TS

detected
Time stamp Latitud Longitud Event Distance to hp (m) Time Delta (ms)

N/A N/A 0 11:53:48 39.41310145 -0.3853536 start Scan 140.66 N/A

0 0.05 0 11:53:51 39.41310187 -0.38535153 start Scan 140.82 2836

0 0.00 0 11:53:54 39.41310167 -0.38535152 start Scan 140.82 2793

0 0.00 0 11:53:57 39.41310158 -0.38535147 start Scan 140.83 2809

0 0.00 0 11:53:59 39.41310164 -0.38535146 start Scan 140.83 2808

0 0.00 0 11:54:03 39.41310167 -0.38535151 start Scan 140.82 3906

1 0.19 0 11:54:07 39.41312177 -0.3853521 start Scan 140.06 4030

11 3.17 0 11:54:11 39.41318651 -0.38547908 start Scan 127.50 3961

21 5.96 0 11:54:14 39.4132252 -0.38567353 start Scan 110.26 2891

21 5.96 0 11:54:17 39.41325931 -0.38587597 start Scan 92.53 2973

21 5.85 0 11:54:20 39.41329212 -0.38606572 start Scan 75.92 2840

19 5.23 0 11:54:21 39.41330455 -0.38613238 TS Found 70.05 1120

N/A N/A 0 11:54:21 39.41330455 -0.38613238 TS connected 70.05 12

N/A N/A 0 11:54:21 39.41330455 -0.38613238 TCP connected 70.05 46

N/A N/A 0 11:54:21 39.41330455 -0.38613238 TCP request 70.05 118

N/A N/A 1 11:54:21 39.41330455 -0.38613238 TCP response 70.05 76

N/A N/A 1 11:54:21 39.41330455 -0.38613238 TCP disconnected 70.05 83

20 5.64 1 11:54:44 39.41364279 -0.38756737 TS disassociated -58.98 22898
11:53:41

N/A N/A 1 11:55:17 39.41301886 -0.3853949 start Scan 140.66 N/A

0 0.09 1 11:55:20 39.41305605 -0.3853719 start Scan 140.93 2884

0 0.07 1 11:55:23 39.41306925 -0.38536795 start Scan 140.72 2794

1 0.16 1 11:55:25 39.41306383 -0.38537599 start Scan 140.29 2727

0 0.14 1 11:55:28 39.41306287 -0.38538141 start Scan 139.89 2867

1 0.29 1 11:55:31 39.41306289 -0.38537127 start Scan 140.70 2807

0 0.06 1 11:55:35 39.41306064 -0.38536926 start Scan 140.95 3897

4 1.21 1 11:55:39 39.41313018 -0.38539675 start Scan 136.13 3991

8 2.26 1 11:55:40 39.41314804 -0.38542507 TS Found 133.20 1297

N/A N/A 1 11:55:40 39.41314804 -0.38542507 TS connected 133.20 32

N/A N/A 1 11:55:40 39.41314804 -0.38542507 TCP connected 133.20 41

9 2.56 1 11:55:42 39.41316749 -0.38545266 TCP request 130.29 1136

N/A N/A 2 11:55:42 39.41316749 -0.38545266 TCP response 130.29 327

N/A N/A 2 11:55:42 39.41316749 -0.38545266 TCP disconnected 130.29 19

19 5.19 2 11:56:19 39.41362732 -0.38763021 TS disassociated -63.88 37378

N/A N/A 2 11:59:03 39.41301274 -0.38541526 start Scan 139.32 N/A

3 0.74 2 11:59:06 39.41301944 -0.38538585 start Scan 141.35 2726

1 0.27 2 11:59:09 39.4130393 -0.38538464 start Scan 140.60 2765

0 0.01 2 11:59:12 39.41305158 -0.38537849 start Scan 140.58 2799

3 0.88 2 11:59:15 39.41311822 -0.38537903 start Scan 137.99 2927

12 3.44 2 11:59:18 39.41317847 -0.38547435 start Scan 128.15 2865

10 2.78 2 11:59:19 39.41318711 -0.38551866 TS Found 124.22 1410

N/A N/A 2 11:59:19 39.41318711 -0.38551866 TS connected 124.22 44

128 35.43 2 11:59:19 39.41319852 -0.38557712 TCP connected 119.05 146

N/A N/A 2 11:59:19 39.41319852 -0.38557712 TCP request 119.05 143

N/A N/A 3 11:59:19 39.41319852 -0.38557712 TCP response 119.05 60

N/A N/A 3 11:59:19 39.41319852 -0.38557712 TCP disconnected 119.05 53

20 5.54 3 11:59:53 39.41366085 -0.38763635 TS disassociated -65.22 33242

N/A N/A 3 12:02:12 39.41298038 -0.38543418 start Scan 139.33 N/A

0 0.12 3 12:02:15 39.41302717 -0.3854028 start Scan 139.67 2747

0 0.14 3 12:02:18 39.41308171 -0.38536996 start Scan 140.07 2918

1 0.17 3 12:02:22 39.41310974 -0.38536536 start Scan 139.41 3863

1 0.40 3 12:02:24 39.41312762 -0.38536818 TS Found 138.55 2176

N/A N/A 3 12:02:24 39.41312762 -0.38536818 TS connected 138.55 4

N/A N/A 3 12:02:24 39.41312762 -0.38536818 TCP connected 138.55 10

36 9.96 3 12:02:24 39.41314756 -0.38538656 TCP request 136.37 219

N/A N/A 4 12:02:24 39.41314756 -0.38538656 TCP response 136.37 112

N/A N/A 4 12:02:25 39.41314756 -0.38538656 TCP disconnected 136.37 210

20 5.58 4 12:03:00 39.41364285 -0.38757009 TS disassociated -59.21 35036
-90420

N/A N/A 4 12:04:01 39.41309219 -0.38536469 start Scan 140.10 N/A

4 1.05 4 12:04:05 39.41316728 -0.38539182 start Scan 135.29 4564

14 3.76 4 12:04:08 39.41319202 -0.38551191 start Scan 124.62 2840

18 5.03 4 12:04:11 39.41322659 -0.38567505 start Scan 110.09 2889

18 5.01 4 12:04:14 39.4132611 -0.38583779 start Scan 95.60 2891

22 6.13 4 12:04:17 39.41330533 -0.38603079 start Scan 78.31 2821

21 5.86 4 12:04:20 39.41334881 -0.38621662 start Scan 61.63 2846

20 5.63 4 12:04:23 39.4133869 -0.3864022 start Scan 45.16 2924

17 4.80 4 12:04:24 39.41339832 -0.38646653 TS Found 39.51 1176

N/A N/A 4 12:04:24 39.41339832 -0.38646653 TS connected 39.51 15

N/A N/A 4 12:04:24 39.41339832 -0.38646653 TCP connected 39.51 33

78 21.68 4 12:04:24 39.41340988 -0.3865263 TCP request 34.25 243

N/A N/A 5 12:01:29 39.41340988 -0.3865263 TCP response 34.25 154

N/A N/A 5 12:01:29 39.41340988 -0.3865263 TCP disconnected 34.25 38

21 5.82 5 12:01:29 39.41367522 -0.38769785 TS disassociated -70.74 18052

Traffic Sign location

August 5th 2015 Test results

30kph

39.413515 -0.386901

Vehicle

speed(km/h)

Vehicle

speed(m/s)

Number of TS

detected

Time

stamp
Latitud Longitud Event Distance to hp (m) Time Delta (ms)

N/A N/A 0 80073 39.41294651 -0.38540167 start Scan 143.48 N/A

0 0.06 0 82970 39.41301094 -0.38536569 start Scan 143.31 2897

3 0.76 0 87191 39.41315064 -0.38533963 start Scan 140.12 4221

4 1.19 0 89944 39.41316606 -0.38537344 start Scan 136.84 2753

2 0.48 0 92840 39.41315002 -0.38539686 start Scan 135.44 2896

4 1.25 0 95741 39.41313896 -0.38535716 start Scan 139.06 2901

5 1.37 0 98585 39.41313352 -0.38531186 start Scan 142.96 2844

6 1.61 0 101439 39.41314953 -0.38536153 start Scan 138.36 2854

28 7.75 0 104403 39.4132126 -0.38561601 start Scan 115.40 2964

31 8.57 0 106419 39.41325037 -0.38581128 TS Found 98.13 2016

N/A N/A 0 106454 39.41325037 -0.38581128 TS connected 98.13 35

N/A N/A 0 106528 39.41325037 -0.38581128 TCP connected 98.13 74

N/A N/A 0 106813 39.41325037 -0.38581128 TCP request 98.13 285

N/A N/A 1 107104 39.41325037 -0.38581128 TCP response 98.13 291

N/A N/A 1 107162 39.41325037 -0.38581128 TCP disconnected 98.13 58

28 7.83 1 128015 39.41365177 -0.38763851 TS disassociated -65.16 20853

N/A N/A 1 165487 39.41307138 -0.38535842 start Scan 141.40 N/A

2 0.54 1 168328 39.41310826 -0.38536035 start Scan 139.87 2841

5 1.43 1 171135 39.41313929 -0.3853961 start Scan 135.86 2807

22 6.21 1 172397 39.41317028 -0.38547899 TS Found 128.03 1262

N/A N/A 1 172466 39.41317028 -0.38547899 TS connected 128.03 69

N/A N/A 1 172498 39.41317028 -0.38547899 TCP connected 128.03 32

N/A N/A 1 172619 39.41317028 -0.38547899 TCP request 128.03 121

N/A N/A 2 172768 39.41317028 -0.38547899 TCP response 128.03 149

N/A N/A 2 172822 39.41317028 -0.38547899 TCP disconnected 128.03 54

28 7.79 2 197820 39.41366499 -0.38765191 TS disassociated -66.63 24998

N/A N/A 2 251016 39.4131348 -0.38525108 start Scan 147.91 N/A

13 3.57 2 253883 39.41315458 -0.38536784 start Scan 137.67 2867

42 11.63 2 256731 39.4132289 -0.38574165 start Scan 104.55 2848

31 8.68 2 259515 39.41329649 -0.38600913 start Scan 80.38 2784

17 4.60 2 260811 39.41331492 -0.38607435 TS Found 74.42 1296

N/A N/A 2 260874 39.41331492 -0.38607435 TS connected 74.42 63

N/A N/A 2 260896 39.41331492 -0.38607435 TCP connected 74.42 22

N/A N/A 2 260984 39.41331492 -0.38607435 TCP request 74.42 88

166 46.08 3 261159 39.41334398 -0.38616101 TCP response 66.35 175

N/A N/A 3 261267 39.41334398 -0.38616101 TCP disconnected 66.35 108

29 8.13 3 277767 39.41363771 -0.3876747 TS disassociated -67.85 16500

N/A N/A 3 3587 39.41307438 -0.38531653 start Scan 144.67 N/A

10 2.73 3 7953 39.41316117 -0.3854252 start Scan 132.75 4366

29 7.96 3 12868 39.41326685 -0.38585938 start Scan 93.64 4915

28 7.79 3 13995 39.41328708 -0.3859582 TS Found 84.87 1127

N/A N/A 3 14015 39.41328708 -0.3859582 TS connected 84.87 20

N/A N/A 3 14089 39.41328708 -0.3859582 TCP connected 84.87 74

N/A N/A 3 14374 39.41328708 -0.3859582 TCP request 84.87 285

N/A N/A 4 14537 39.41328708 -0.3859582 TCP response 84.87 163

N/A N/A 4 14582 39.41328708 -0.3859582 TCP disconnected 84.87 45

30 8.26 4 35253 39.41369281 -0.38787288 TS disassociated -85.80 20671

N/A N/A 7 65596 39.41309179 -0.38532073 start Scan 143.68 N/A

10 2.68 8 70746 39.41316133 -0.38545993 start Scan 129.90 5150

27 7.55 9 73665 39.41322001 -0.38570481 start Scan 107.87 2919

29 7.95 10 76563 39.41327412 -0.38596416 start Scan 84.82 2898

28 7.80 11 79427 39.41332852 -0.38621474 start Scan 62.50 2864

26 7.28 12 82258 39.41337536 -0.38644821 start Scan 41.88 2831

26 7.26 13 85043 39.41343531 -0.38667077 start Scan 21.67 2785

26 7.11 14 87799 39.41349629 -0.38690092 start Scan 2.08 2756

N/A N/A 15 88766 39.41349629 -0.38690092 TS Found 2.08 967

N/A N/A 16 88829 39.41349629 -0.38690092 TS connected 2.08 63

339 94.15 17 88929 39.41351073 -0.3869862 TCP connected -7.33 100

N/A N/A 18 89053 39.41351073 -0.3869862 TCP request -7.33 124

N/A N/A 19 89634 39.41351073 -0.3869862 TCP response -7.33 581

N/A N/A 20 89674 39.41351073 -0.3869862 TCP disconnected -7.33 40

28 7.90 21 99303 39.4136807 -0.38784739 TS disassociated -83.36 9629

Traffic Sign location

August 5th 2015 Test results

40kph

39.413515 -0.386901

Vehicle

speed(km/h)

Vehicle

speed(m/s)

Number of TS

detected

Time

stamp
Latitud Longitud Event Distance to hp (m) Time Delta (ms)

N/A N/A 0 3333 39.41305383 -0.38505061 start Scan 167.03 N/A

0 0.03 0 6169 39.41305575 -0.38504888 start Scan 167.11 2836

0 0.12 0 7518 39.41305792 -0.38504596 TS Found 167.27 1349

N/A N/A 0 7520 39.41305792 -0.38504596 TS connected 167.27 2

N/A N/A 0 7574 39.41305792 -0.38504596 TCP connected 167.27 54

1 0.31 0 9091 39.41306081 -0.38505048 TCP request 166.80 1517

21 5.86 1 13877 39.41311904 -0.38536948 TCP response 138.74 4786

N/A N/A 1 13919 39.41311904 -0.38536948 TCP disconnected 138.74 42

33 9.16 1 39187 39.41369508 -0.38795396 TS disassociated -92.65 25268

N/A N/A 1 79719 39.41310989 -0.38521278 start Scan 151.87 N/A

5 1.47 1 84561 39.41313998 -0.38528732 start Scan 144.76 4842

33 9.21 1 88697 39.41322537 -0.38571727 TS Found 106.67 4136

N/A N/A 1 88713 39.41322537 -0.38571727 TS connected 106.67 16

N/A N/A 1 88725 39.41322537 -0.38571727 TCP connected 106.67 12

N/A N/A 1 88885 39.41322537 -0.38571727 TCP request 106.67 160

N/A N/A 2 89127 39.41322537 -0.38571727 TCP response 106.67 242

N/A N/A 2 89163 39.41322537 -0.38571727 TCP disconnected 106.67 36

39 10.84 2 106706 39.41368981 -0.38784714 TS disassociated -83.57 17543

N/A N/A 2 23137 39.41303222 -0.38477823 start Scan 190.10 N/A

0 0.02 2 25883 39.4130276 -0.38478571 start Scan 189.63 25883

0 0.03 2 28641 39.41300159 -0.38479815 start Scan 189.46 5504

1 0.39 2 31494 39.41301262 -0.38482045 start Scan 187.26 5611

13 3.72 2 35422 39.41307523 -0.38510258 start Scan 162.05 6781

16 4.56 2 38184 39.41314709 -0.38544607 start Scan 131.51 6690

21 5.82 2 41124 39.41323127 -0.38581661 start Scan 98.35 5702

19 5.37 2 44009 39.41330264 -0.38617029 start Scan 67.07 5825

9 2.63 2 45113 39.41332621 -0.38628929 TS Found 56.59 3989

N/A N/A 2 45143 39.41332621 -0.38628929 TS connected 56.59 1134

N/A N/A 2 45208 39.41332621 -0.38628929 TCP connected 56.59 95

N/A N/A 2 45431 39.41332621 -0.38628929 TCP request 56.59 288

N/A N/A 3 45598 39.41332621 -0.38628929 TCP response 56.59 390

N/A N/A 3 45709 39.41332621 -0.38628929 TCP disconnected 56.59 278

38 10.56 3 57474 39.41364537 -0.38767 TS disassociated -67.63 11765

N/A N/A 3 94439 39.41304507 -0.38476427 start Scan 190.85 N/A

1 0.42 3 97198 39.41302042 -0.38478756 start Scan 189.71 2759

6 1.53 3 99980 39.41304099 -0.38483136 start Scan 185.45 2782

14 3.89 3 102698 39.41306712 -0.38494968 start Scan 174.87 2718

33 9.16 3 105504 39.41313348 -0.38523614 start Scan 149.18 2806

44 12.21 3 108324 39.41321629 -0.3856223 start Scan 114.76 2820

42 11.67 3 111280 39.41329315 -0.38601182 start Scan 80.27 2956

39 10.71 3 112331 39.41331786 -0.38613928 TS Found 69.01 1051

N/A N/A 3 112342 39.41331786 -0.38613928 TS connected 69.01 11

N/A N/A 3 112373 39.41331786 -0.38613928 TCP connected 69.01 31

N/A N/A 3 112689 39.41331786 -0.38613928 TCP request 69.01 316

341 94.76 4 112806 39.41334407 -0.38626406 TCP response 57.92 117

N/A N/A 4 112831 39.41334407 -0.38626406 TCP disconnected 57.92 25

39 10.83 4 125980 39.41369767 -0.38785626 TS disassociated -84.54 13149

N/A N/A 4 166219 39.41299812 -0.38476476 start Scan 192.31 N/A

2 0.46 4 168957 39.41300282 -0.38477806 start Scan 191.06 2738

20 5.59 4 171738 39.41306431 -0.38494284 start Scan 175.53 2781

25 6.96 4 174621 39.41309178 -0.3851761 start Scan 155.48 2883

46 12.91 4 177495 39.41319174 -0.38558823 start Scan 118.37 2874

44 12.19 4 180404 39.41327133 -0.38598891 start Scan 82.91 2909

38 10.61 4 183225 39.41333564 -0.38632974 start Scan 52.97 2821

25 6.89 4 184557 39.41335533 -0.38643501 TS Found 43.79 1332

N/A N/A 4 184580 39.41335533 -0.38643501 TS connected 43.79 23

N/A N/A 4 184621 39.41335533 -0.38643501 TCP connected 43.79 41

N/A N/A 4 184691 39.41335533 -0.38643501 TCP request 43.79 70

220 61.23 5 184848 39.41337763 -0.38654508 TCP response 34.18 157

N/A N/A 5 184936 39.41337763 -0.38654508 TCP disconnected 34.18 88

30 8.25 5 199270 39.41369243 -0.38785239 TS disassociated -84.08 14334

August 5th 2015 Test results

Traffic Sign location

50kph

39.413515 -0.386901

Vehicle

speed(km/h)

Vehicle

speed(m/s)

Number of TS

detected
Time stamp Latitud Longitud Event Distance to hp (m) Time Delta (ms)

N/A N/A 0 12:38:34 39.41293722 -0.38438397 start Scan 225.57 N/A

2 0.52 0 12:38:37 39.41291674 -0.38440972 start Scan 224.12 2777

0 0.06 0 12:38:39 39.41291655 -0.38441169 start Scan 223.97 2735

13 3.67 0 12:38:42 39.41295304 -0.38452417 start Scan 213.54 2843

23 6.32 0 12:38:45 39.41299333 -0.38472466 start Scan 195.76 2811

42 11.69 0 12:38:48 39.41307146 -0.3850907 start Scan 163.15 2789

48 13.45 0 12:38:51 39.41316678 -0.38552022 start Scan 124.78 2852

41 11.49 0 12:38:53 39.41323128 -0.38581294 TS Found 98.65 2274

N/A N/A 0 12:38:53 39.41323128 -0.38581294 TS connected 98.65 15

N/A N/A 0 12:38:53 39.41323128 -0.38581294 TCP connected 98.65 4

N/A N/A 0 12:38:53 39.41323128 -0.38581294 TCP request 98.65 98

190 52.68 1 12:38:53 39.41326737 -0.38594796 TCP response 86.38 233

N/A N/A 1 12:38:53 39.41326737 -0.38594796 TCP disconnected 86.38 59

36 10.09 1 12:39:10 39.41365828 -0.38780731 TS disassociated -79.47 16441

N/A N/A 1 12:39:58 39.41294363 -0.38444203 start Scan 220.59 N/A

3 0.80 1 12:40:01 39.41295223 -0.38446588 start Scan 218.35 2807

12 3.31 1 12:40:04 39.41297843 -0.38456912 start Scan 209.02 2822

27 7.46 1 12:40:07 39.41301807 -0.38480621 start Scan 188.25 2786

42 11.55 1 12:40:09 39.41308016 -0.38516871 start Scan 156.47 2752

49 13.68 1 12:40:12 39.41316896 -0.38560588 start Scan 117.73 2833

45 12.38 1 12:40:15 39.41326949 -0.3860016 start Scan 81.95 2889

35 9.66 1 12:40:16 39.41330062 -0.38613665 TS Found 69.86 1252

N/A N/A 1 12:40:16 39.41330062 -0.38613665 TS connected 69.86 8

N/A N/A 1 12:40:17 39.41330062 -0.38613665 TCP connected 69.86 104

N/A N/A 1 12:40:17 39.41330062 -0.38613665 TCP request 69.86 218

N/A N/A 2 12:40:17 39.41330062 -0.38613665 TCP response 69.86 139

N/A N/A 2 12:40:17 39.41330062 -0.38613665 TCP disconnected 69.86 35

40 11.09 2 12:40:32 39.41371472 -0.38796626 TS disassociated -94.17 14794

N/A N/A 2 12:42:27 39.41294292 -0.38426127 start Scan 235.53 N/A

0 0.00 2 12:42:30 39.41294156 -0.38426189 start Scan 235.52 2767

1 0.20 2 12:42:33 39.41291035 -0.38428069 start Scan 234.93 2872

1 0.33 2 12:42:36 39.4128996 -0.38429637 start Scan 233.99 2877

7 1.87 2 12:42:39 39.41291748 -0.38435398 start Scan 228.67 2842

27 7.38 2 12:42:42 39.41297387 -0.38459267 start Scan 207.23 2907

40 11.01 2 12:42:45 39.41305006 -0.38494229 start Scan 176.03 2835

51 14.06 2 12:42:47 39.41314446 -0.38538367 start Scan 136.71 2796

49 13.59 2 12:42:50 39.41324063 -0.38581529 start Scan 98.13 2839

35 9.70 2 12:42:52 39.41327022 -0.38596358 TS Found 85.01 1353

N/A N/A 2 12:42:52 39.41327022 -0.38596358 TS connected 85.01 24

N/A N/A 2 12:42:52 39.41327022 -0.38596358 TCP connected 85.01 52

N/A N/A 2 12:42:52 39.41327022 -0.38596358 TCP request 85.01 104

N/A N/A 3 12:42:52 39.41327022 -0.38596358 TCP response 85.01 199

N/A N/A 3 12:42:52 39.41327022 -0.38596358 TCP disconnected 85.01 50

47 12.97 3 12:43:06 39.41372327 -0.38794884 TS disassociated -92.95 13716

N/A N/A 3 12:43:51 39.4129157 -0.38439567 start Scan 225.31 N/A

4 0.98 3 12:43:54 39.41292716 -0.38442498 start Scan 222.53 2834

21 5.73 3 12:43:57 39.41297557 -0.38460714 start Scan 205.99 2884

25 7.05 3 12:44:00 39.4130197 -0.38482666 start Scan 186.52 2763

45 12.58 3 12:44:04 39.41314491 -0.38537954 start Scan 137.03 3933

47 13.13 3 12:44:07 39.41323318 -0.38580167 start Scan 99.50 2859

46 12.90 3 12:44:09 39.41332694 -0.38621696 start Scan 62.37 2879

49 13.59 3 12:44:12 39.41341639 -0.38665681 start Scan 23.67 2848

50 13.92 3 12:44:15 39.41351098 -0.38707455 start Scan -14.92 2773

47 13.06 3 12:44:18 39.41361324 -0.38749717 start Scan -52.37 2868

30 8.43 3 12:44:21 39.41367444 -0.38775821 start Scan -75.74 2774

N/A N/A 3 12:45:56 39.41291144 -0.38438529 start Scan 226.30 N/A

1 0.33 3 12:45:58 39.4129451 -0.38438312 start Scan 225.40 2737

1 0.24 3 12:46:01 39.41291424 -0.38440309 start Scan 224.75 2752

1 0.23 3 12:46:04 39.41291073 -0.38441238 start Scan 224.10 2785

13 3.54 3 12:46:08 39.41295859 -0.3845875 start Scan 208.15 4500

37 10.31 3 12:46:13 39.4130676 -0.38506163 start Scan 165.66 4121

55 15.15 3 12:46:17 39.41324439 -0.3858204 start Scan 97.59 4494

51 14.16 3 12:46:20 39.41333482 -0.38627125 start Scan 57.69 2818

32 8.94 3 12:46:23 39.41339814 -0.38656354 start Scan 31.77 2901

49 13.66 3 12:46:26 39.41350887 -0.38698162 start Scan -6.96 2835

32 9.02 3 12:46:35 39.41366923 -0.38793368 start Scan -90.36 9247

5 1.31 3 12:46:38 39.41357141 -0.38790805 start Scan -86.74 2759

August 5th 2015 Test results

Traffic Sign location

60kph

39.413515 -0.386901

Vehicle

speed(km/h)

Vehicle

speed(m/s)

Number of TS

detected

Time

stamp
Latitud Longitud Event Distance to hp (m) Time Delta (ms)

N/A N/A 0 3723 39.41294181 -0.38430221 start Scan 232.18 N/A

0 0.00 0 6440 39.41294151 -0.38430244 start Scan 232.17 2717

0 0.09 0 9206 39.41293918 -0.38430624 start Scan 231.92 2766

2 0.45 0 11996 39.41292507 -0.38432678 start Scan 230.67 2790

1 0.18 0 14797 39.41292884 -0.3843192 start Scan 231.18 2801

10 2.68 0 17618 39.4129528 -0.3844018 start Scan 223.62 2821

29 8.12 0 20459 39.41300227 -0.38466274 start Scan 200.56 2841

23 6.38 0 23334 39.41304802 -0.38486798 start Scan 182.21 2875

51 14.04 0 31343 39.41331503 -0.38613146 start Scan 69.75 8009

57 15.84 0 33271 39.41338779 -0.38647524 TS Found 39.22 1928

N/A N/A 0 33316 39.41338779 -0.38647524 TS connected 39.22 45

N/A N/A 0 33353 39.41338779 -0.38647524 TCP connected 39.22 37

412 114.42 0 33479 39.4134242 -0.38663733 TCP request 24.80 126

N/A N/A 1 33953 39.4134242 -0.38663733 TCP response 24.80 474

N/A N/A 1 34115 39.4134242 -0.38663733 TCP disconnected 24.80 162

44 12.11 1 42728 39.41367731 -0.38780279 TS disassociated -79.54 8613

N/A N/A 1 91476 39.4129449 -0.38428818 start Scan 233.24 N/A

3 0.75 1 94239 39.41292084 -0.3843225 start Scan 231.16 2763

0 0.06 1 97094 39.41290973 -0.38432478 start Scan 231.32 2855

9 2.48 1 99933 39.41293721 -0.38439982 start Scan 224.27 2839

31 8.56 1 102897 39.41299428 -0.38468589 start Scan 198.91 2964

49 13.48 1 105654 39.41308815 -0.38510118 start Scan 161.74 2757

60 16.75 1 108567 39.41320693 -0.38564802 start Scan 112.96 2913

54 15.11 1 109651 39.41324363 -0.38583305 TS Found 96.58 1084

N/A N/A 1 109659 39.41324363 -0.38583305 TS connected 96.58 8

N/A N/A 1 109720 39.41324363 -0.38583305 TCP connected 96.58 61

N/A N/A 1 110036 39.41324363 -0.38583305 TCP request 96.58 316

N/A N/A 2 110268 39.41324363 -0.38583305 TCP response 96.58 232

N/A N/A 2 110295 39.41324363 -0.38583305 TCP disconnected 96.58 27

43 11.81 2 126429 39.41357983 -0.38799136 TS disassociated -93.95 16134

N/A N/A 2 168951 39.41292501 -0.38431439 start Scan 231.69 N/A

1 0.19 2 171748 39.41289617 -0.38433215 start Scan 231.16 2797

4 1.24 2 174653 39.41291394 -0.38436879 start Scan 227.57 2905

22 5.98 2 177485 39.4129577 -0.38455751 start Scan 210.65 2832

24 6.78 2 180335 39.41300299 -0.38477492 start Scan 191.31 2850

49 13.55 2 183190 39.41310186 -0.38520674 start Scan 152.63 2855

59 16.32 2 186080 39.41321853 -0.38573506 start Scan 105.45 2890

50 13.84 2 187213 39.41325249 -0.3859129 TS Found 89.76 1133

N/A N/A 2 187224 39.41325249 -0.3859129 TS connected 89.76 11

N/A N/A 2 187261 39.41325249 -0.3859129 TCP connected 89.76 37

184 51.07 2 187557 39.41328711 -0.38608368 TCP request 74.65 296

N/A N/A 3 187926 39.41328711 -0.38608368 TCP response 74.65 369

N/A N/A 3 187972 39.41328711 -0.38608368 TCP disconnected 74.65 46

46 12.86 3 200807 39.41368685 -0.38792963 TS disassociated -90.41 12835

N/A N/A 3 247314 39.41292751 -0.38427249 start Scan 235.07 N/A

1 0.28 3 250195 39.41293933 -0.384278 start Scan 234.25 2881

0 0.07 3 253001 39.41291075 -0.38429125 start Scan 234.05 2806

5 1.38 3 255814 39.41291707 -0.38433602 start Scan 230.16 2813

18 5.11 3 258707 39.41295431 -0.38450128 start Scan 215.38 2893

34 9.58 3 261528 39.4130241 -0.38480245 start Scan 188.36 2821

31 8.63 3 264289 39.41308651 -0.38506763 start Scan 164.55 2761

56 15.58 3 267166 39.41319341 -0.38557085 start Scan 119.73 2877

52 14.33 3 268293 39.41323212 -0.3857522 TS Found 103.58 1127

N/A N/A 3 268300 39.41323212 -0.3857522 TS connected 103.58 7

N/A N/A 3 268313 39.41323212 -0.3857522 TCP connected 103.58 13

198 55.01 3 268611 39.41327349 -0.38593541 TCP request 87.19 298

N/A N/A 4 268917 39.41327349 -0.38593541 TCP response 87.19 306

N/A N/A 4 268945 39.41327349 -0.38593541 TCP disconnected 87.19 28

49 13.61 4 281971 39.41369773 -0.38792262 TS disassociated -90.09 13026

N/A N/A 4 33322 39.41293976 -0.38435603 start Scan 227.80 N/A

1 0.16 4 37149 39.41291735 -0.38437237 start Scan 227.17 3827

2 0.58 4 40994 39.41293344 -0.38439341 start Scan 224.92 3845

12 3.37 4 44886 39.41295907 -0.38454277 start Scan 211.81 3892

32 8.78 4 47736 39.41301772 -0.38482425 start Scan 186.78 2850

50 13.85 4 50538 39.41310036 -0.38526438 start Scan 147.96 2802

61 17.08 4 53372 39.4132237 -0.38580504 start Scan 99.57 2834

54 14.91 4 54468 39.41326792 -0.38598656 TS Found 83.22 1096

N/A N/A 4 54499 39.41326792 -0.38598656 TS connected 83.22 31

N/A N/A 4 54562 39.41326792 -0.38598656 TCP connected 83.22 63

N/A N/A 4 54868 39.41326792 -0.38598656 TCP request 83.22 306

98 27.10 5 55433 39.41330611 -0.38615814 TCP response 67.91 565

N/A N/A 5 55525 39.41330611 -0.38615814 TCP disconnected 67.91 92

44 12.19 5 67054 39.4136592 -0.38772505 TS disassociated -72.59 11529

August 5th 2015 Test results

Traffic Sign location

