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Abstract

Let G be a finite group and let N be a normal subgroup of G. We
attach to N two graphs ΓG(N) and Γ∗

G(N) associated to the conjugacy
classes of G contained in N and to the set of primes dividing the sizes of
these classes respectively. We prove that the number of connected compo-
nents of both graphs is at most 2, determine the diameter of these graphs
and characterize the structure of N when these graphs are disconnected.
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1 Introduction

Let G be a finite group and let N be a normal subgroup of G, we denote N �G.
For each element x ∈ N the G-conjugacy class is xG = {xg | g ∈ G}. We will
denote by ConG(N) the set of conjugacy classes in G of elements of N and by
csG(N) the set of G-conjugacy classes sizes of N .
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Definition 1.1 Let G be a finite group and N a normal subgroup in G,
we define the graph ΓG(N) in the following way: the set of vertices are the
non-central elements of ConG(N), and two vertices xG and yG are joined by
and edge if and only if |xG| and |yG| have a common prime divisor, what is the
same, (|xG|, |yG|) 6= 1. We call this graph the ordinary graph of G-conjugacy
classes of N .

If G = N then ΓG(N) = Γ(G) where Γ(G) is the graph defined in [4] by
Bertram, Herzon and Mann.

Notice that Γ(N) is not subgraph of ΓG(N) because the set of vertices of
Γ(N) not necessarily have to be included in the set of vertices of ΓG(N). For
instance, if G = S3 and N = A3, Γ(N) is empty because N is abelian, whereas
it is not true in the case of ΓG(N) and it has a single vertex, the G-conjugacy
class {(1, 2, 3), (1, 3, 2)}.

The first property that we can prove is that ΓG(N) is a subgraph of Γ(N).
Then, at first we can think that the number of connected components of ΓG(N)
is unbounded. We denote this number as n(ΓG(N)) and we prove the following
theorem.

Definition 1.2 Let G be a finite group and N a normal subgroup in G, we
define the “dual” graph of ΓG(N) denoted Γ∗G(N) as it follows: the set of vertex
are de elements of the set:

σG(N) = {q | q is prime that divides |B| with B ∈ ConG(N)}

Two vertex r and q are joined by an edge if there exists a non-central G-
conjugacy class C ∈ ConG(N) such that rq divides |C|. We call this graph
the dual graph of G-conjugacy classes of N .

In case of N = G we have Γ∗G(N) = Γ∗(G). Furthermore, its easy to prove
that Γ∗G(N) is subgraph of Γ∗(G).

Theorem A. Let G a finite group and N a normal subgroup of G then
n(ΓG(N)) ≤ 2.

Theorem B. Let G a finite group and N a normal subgroup of G.

1. If n(ΓG(N)) = 1 then d(ΓG(N)) ≤ 3.

2. If n(ΓG(N)) = 2, each connected component is a complete graph.

Also for Γ∗G(N) we prove that de number of connected components is at most
2 and the number of connected components of ΓG(N) and Γ∗G(N) is exactly the
same.
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Theorem C. If G is a finite group and N � G then, n(Γ∗G(N)) ≤ 2 and
n(Γ∗G(N)) = n(ΓG(N)).

Theorem D. Let G a finite group and N a normal subgroup of G.

1. If n(Γ∗G(N)) = 1 then d(Γ∗G(N)) ≤ 3.

2. If n(Γ∗G(N)) = 2, each connected component is a complete graph.

We give a characterization of normal subgroups whose associated graph has
exactly two connected components.

Theorem E. Let G a finite group and N a normal subgroup of G. If ΓG(N)
has two connected components then, either N is quasi-Frobenius with abelian
kernel and complement, or N = P ×A where P is a p-group and A 6 Z(G).

If A is a finite group, π(A) denotes the set of primes that divide the order
of A.

2 Number of connected components of ΓG(N)
and Γ∗G(N)

In this section we prove Theorems A and C. We start with the following lemma,
which is basic for our development.

Lemma 2.1 Let G be a finite group and N a normal subgroup of G. Let
B = bG y C = cG non-central elements in ConG(N). If (|B|, |C|) = 1. Then

1. CG(b)CG(c) = G.

2. BC = CB is a non-central element of ConG(N) and |BC| divides |B||C|.

3. Suppose that d(B,C) ≥ 3 and |B| < |C|. Then |BC| = |C| and CBB−1 =
C. Furthermore, C〈BB−1〉 = C, 〈BB−1〉 ⊆ 〈CC−1〉 and |〈BB−1〉| di-
vides |C|.

Proof. It is enough to mimic the proof of Lemma 1 of [9] taking into account
that the product of two classes of ConG(N) is contained in N again. 2

Proof of Theorem A. Suppose that ΓG(N) has at least three connected com-
ponents and take three non-central classes B = bG, C = cG and D = dG in
ConG(N) each of which belongs to a different connected component. Then, it
holds that (|B|, |C|) = 1, (|B|, |D|) = 1 and (|C|, |D|) = 1. We can assume with-
out loss of generality |B| < |C| < |D|. Therefore, by applying Lemma 2.1, we
get that |〈BB−1〉| divides |D| and |〈BB−1〉| divides |C|. Then, (|C|, |D|) > 1,
which is a contradiction. 2
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Proof of Theorem C. Suppose that n(Γ∗G(N)) ≥ 3. We take three primes r, s
and l each of which belongs to a different connected component and let A,B
and C be elements of ConG(N) such that r divides |A|, s divides |B| and l
divides |C|. Without loss of generality we suppose that |C| < |B| < |A|. We
have d(A,C) ≥ 3 and d(A,B) ≥ 3 and by applying Lemma 2.1, we obtain that
|〈CC−1〉| divides |A| and also |〈CC−1〉| divides |B|, and this leads to a contra-
diction, because A and B would have a common prime divisor and d(r, s) would
be less or equal than 2. This proves that n(Γ∗G(N)) ≤ 2.

Suppose now that n(ΓG(N)) = 1 and n(Γ∗G(N)) = 2. Let r and s be primes
such that each of them belongs to a distinct connected component of Γ∗G(N).
Then there exist Br, Bs ∈ ΓG(N) such that r divides |Br| and s divides |Bs|.
Let us consider the following path in ΓG(N) that joins Br and Bs, which exists
because n(ΓG(N)) = 1:

Br B1 B2
. . . Bs

p1 p2 p3 pl

This leads to a contradiction, because r and s are connected in Γ∗G(N) by the
following path:

r p1 p2 . . . ps s
Br B1 B2 Bl−1 Bl

So, we have proved that n(ΓG(N)) = 1 implies that n(Γ∗G(N)) = 1. Now, if
n(ΓG(N)) = 2 and n(Γ∗G(N)) = 1 we can get a contradiction by arguing in a
similar way. This shows that n(ΓG(N)) = n(Γ∗G(N)). 2

3 Diameter of ΓG(N)

The following two lemmas, one for the disconnected case and the other for
the connected case, summarize important structural properties of the normal
subgroup concerning the graph ΓG(N), which will be needed for determining
the diameters of the graphs. We start with the disconnected case.

Lemma 3.1 Let G a finite group and let N be a normal subgroup of G.
Suppose that n(ΓG(N)) = 2 and let X1 and X2 be the connected components
of ΓG(N). Let B0 be a non-central element of ConG(N) of maximal size and
assume that B0 ∈ X2. We define

S = 〈C | C ∈ X1〉 and T = 〈CC−1 | C ∈ X1〉.

Then

1. S is a normal subgroup of G and every element in S, either is central, or
its G-conjugacy class is in X1.

2. If C is a G-conjugacy class of N out of S, then |T | divides |C|.
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3. T is normal in G, T = [S,G] and T ≤ Z(S).

4. S is abelian.

5. Z(G) ∩N ⊆ S and π(S/(Z(G) ∩N)) ⊆ π(T ) ⊆ π(B0).

6. Let bG = B ∈ X1. Then CG(b)/S is a q-group for some prime q ∈ π(B0).

Proof. 1. The fact that S is normal is elementary. Let C ∈ X2 and B ∈ X1.
We know that BC is a G-conjugacy class of ConG(N) of maximal size between
|B| and |C| by Lemma 2.1. Assume that |BC| = |B|. By Lemma 2.1 again, it
follows that |〈CC−1〉| divides |B| and that 〈CC−1〉 ⊆ 〈BB−1〉. On the other
hand, |B0B| = |B0| again by Lemma 2.1, and also |〈BB−1〉| divides |B0|. From
these facts, we deduce that (|B|, |B0|) > 1, which is a contradiction. Thus,
|BC| = |C| for all C ∈ X2 and B ∈ X1. Now, let A be the union of all G-
conjugacy classes of size |C| in S and assume that A 6= ∅. We have that if
B ∈ X1, then BA ⊆ A. Hence, SA = A, and consequently, since A is a nor-
mal subset, |S| divides |A|. This is not possible because A ⊆ S − {1}. This
contradiction shows that A = ∅ and hence S does not contain any class of size
|C|. Therefore, since S is normal in G, then S does not contain elements whose
classes are in X2.

2. Let B ∈ X1. Since C is in X2, it follows by Lemma 2.1 that CB is a G-
conjugacy class. If we suppose that CB ∈ X1, as B−1 ∈ X1, then CBB−1 ⊆ S,
so in particular C ⊆ S, which contradicts (1). Thus, CB ∈ X2 and its size
must be |C| by Lemma 2.1. Again by this lemma, we have C〈BB−1〉 = C, and
consequently, CT = C. Therefore, |T | divides |C|, as wanted.

3. By definition, T = [S,G] and so, it is a normal subgroup ofG. Let us prove
that T ≤ Z(S). Indeed, if B = bG ∈ X1, then (|T |, |G : CG(b)|) = (|T |, |B|) = 1,
because |T | divides every class size in X2 by (1). Now, since |T : CT (b)| divides
(|T |, |B|) = 1, we deduce that T = CT (b). As the classes in X1 generate S, we
conclude that T is central in S.

4. Since T = [S,G], then [S/T,G/T ] = 1 and S/T ⊆ Z(G/T ). In particular,
S/T is abelian and as a result, S is nilpotent. We can write S = R×Z where Z
is the largest Hall subgroup of S which is contained in Z(G). Let p be a prime
divisor of |R| and let P be a Sylow p-subgroup of R. It follows that P �G and
T = [S,G] = [R,G] > [P,G] > 1. Hence p divides |T | and by applying (1) and
(2), |T | divides |B0|. Thus, we have π(R) ⊆ π(T ) ⊆ π(B0). We can show now
that R ≤ Z(S). In fact, let bG = B ∈ X1. Since (|B|, |B0|) = 1, we obtain in
particular, (|B|, |R|) = 1. Thus, |R :CR(b)| = 1 since this index trivially divides
|R| and |B| because R � G. This means that R = CR(b) for every generating
element b of S. So, R is contained in Z(S) as wanted, and S is abelian.

5. Let z ∈ Z(G) ∩ N and let B = bG ∈ X1. Note that bGz = (bz)G.
Moreover bz ∈ N , because both elements lie in N . As |(bz)G| = |Bz| = |B|,
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then bz ∈ S and so z ∈ S. This proves that Z(G) ∩N ⊆ S. Let us prove now
that π(S/(Z(G) ∩ N)) ⊆ π(T ) ⊆ π(B0). First, let p ∈ π(T ). We know that
B0 is out of S by (1) and that |T | divides |B0| by (2), so p ∈ π(B0). On the
other hand, let q be a prime divisor of |S : Z(G) ∩ N |. As we have proved in
(4), that S = R×Z and π(R) ⊆ π(T ), we conclude that q divide |R|, so q ∈ π(T ).

6. By considering the primary decomposition of b, it is clear that we can
write b = bqbq′ where bq and bq′ are the q-part and the q′-part of b, and q is
a prime such that bq 6∈ Z(G) ∩ N . Hence, q ∈ π(B0) by (5). Furthermore, it
is elementary that CG(b) ⊆ CG(bq), and as a result, |(bq)G| divides |B|. We
claim that any element xS ∈ CG(b)/S is a q-element. For any x ∈ CG(b), write
x = xqxq′ (it is possible xq = 1). It is clear that xq and xq′ belong to CG(b).
We consider a = bqxq′ and observe that CG(a) = CG(bq) ∩CG(xq′) ⊆ CG(bq),
so |(bq)G| divides |aG|. Since (bq)G ∈ X1, this forces that aG ∈ X1, and we
conclude that xq′ ∈ S, that is, xS is a q-element, as wanted. This shows that
CG(b)/S is a q-group. 2

Lemma 3.2 Let G be a finite group and N �G with ΓG(N) connected. Let
B0 be a G-conjugacy class of ConG(N) of maximal size. Let

M = 〈D | D ∈ ConG(N) and d(B0, D) = 2〉

K = 〈D−1D | D ∈ ConG(N) and d(B0, D) = 2〉

Then

1. M and K are normal subgroups of G. Furthermore, K = [M,G], K ≤
Z(M).

2. M is abelian.

3. Z(G) ∩N ⊆M and π(M/(Z(G) ∩N)) ⊆ π(K) ⊆ π(B0).

4. Let B = bG ∈ ConG(N) such that d(B,B0) ≥ 3. Then CG(b)/M is a
q-group for some q ∈ π(B0).

Proof. 1. We easily see that M and K are normal subgroups of G and
K = [M,G]. Let us prove that K ≤ Z(M). If C ∈ ConG(N) satisfies that
d(B0, C) = 2, we have (|B0|, |C|) = 1 and then, |B0| = |B0C|. Moreover, by
Lemma 2.1, it follows that B0CC

−1 = B0 and as a result |K| divides |B0|.
Now, since d(B0, C) = 2 and |K| divides |B0|, then (|K|, |C|) = 1. We have
that |K : CK(c)| divides (|K|, |C|) = 1. Thus, K = CK(c) and consequently,
K ≤ Z(M).

2. We show first that M is nilpotent. As K = [M,G], then M/K ≤ Z(G/K)
and since K ≤ Z(M) by (1), hence M is nilpotent. We can write M = R × Z
where Z is the largest Hall subgroup of M that is contained in Z(G). Let q be
a prime divisor of |R| and let Q be the Sylow q-subgroup of R. Then Q � G
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and K = [M,G] > [R,G] > [Q,G]. We have [Q,G] 6= 1, so, q divides |K|.
We conclude that π(R) ⊆ π(K). On the other hand, let C ∈ ConG(N) such
that d(B0, C) = 2. Then (|B0|, |C|) = 1 and by Lemma 2.1 (2), |B0C| divides
|B0||C|. The maximality of |B0| and the fact that d(B0, C) = 2 imply that
|B0C| = |B0|, and we obtain B0CC

−1 = B0. We deduce that that |〈CC−1〉|
divides |B0|. This implies that π(K) ⊆ π(B0). Thus, q ∈ π(B0). Hence, given
B = bG a generating class of M , we know that d(B,B0) = 2. Thus, we have
(|B|, |B0|) = 1. Hence (|Q|, |B|) = 1. Since |Q : CQ(b)| divides (|Q|, |B|) = 1,
we have CG(b) = Q and Q ≤ Z(M). Thus, R ≤ Z(M) and M is abelian.

3. We prove that Z(G) ∩ N ⊆ M . Let z ∈ Z(G) ∩ N and let C = cG ∈
ConG(N) such that d(B0, C) = 2. Notice that cGz = (cz)G. Moreover cz ∈ N ,
because C ⊆ N and z ∈ N . As |(cz)G| = |cGz|, then d(B0, |(cz)G|) = 2. Thus,
cz ∈ M and Z(G) ∩N ⊆ M . We only have to show that π(M/(Z(G) ∩N)) ⊆
π(K), because we know π(K) ⊆ π(B0) by the proof of (2). Let q be a prime
divisor of |M : Z(G)∩N |. Then there is a q-element y ∈M \ (Z(G)∩N). Since
M = R×Z we have that q divides |R| and thus q ∈ π(K) because π(R) ⊆ π(K).

4. By considering the primary decomposition of b, we can write b = bqbq′

where bq and bq′ are the q-part and the q′-part of b, and q is a prime such that
bq 6∈ Z(G) ∩ N . Hence, q ∈ π(B0) by (3). Also, CG(b) ⊆ CG(bq), implies
that |(bq)G| divides |B| and then any class which is connected to (bq)G must
be connected to B. This implies that d((bq)G, B0) ≥ 3 too. We claim that any
element x ∈ CG(bq) \M satisfies that xM is a q-element in CG(bq)/M . Write
x = xqxq′ and suppose that xq′ /∈M . Set a = xq′bq and notice that a /∈M . By
definition of M , we have d(aG, B0) ≤ 1 and since CG(a) = CG(xq′) ∩CG(bq),
it follows that |(bq)G| divides |aG|. These facts show that d((bq)G, B0) ≤ 2,
a contradiction. Therefore, xq′ ∈ M and xM is a q-element. In conclusion,
CG(bq)/M is a q-group. 2

The following consequence, which has interest on its own, is the key to bound
the diameter of ΓG(N), which we denote by d(ΓG(N)).

Theorem 3.3. Let G a finite group and N a normal subgroup of G and sup-
pose that ΓG(N) is connected. Let B0 a non-central conjugacy class of ConG(N)
with maximal size. Then d(B,B0) ≤ 2 for every non-central B ∈ ConG(N).

Proof. Let B = bG ∈ ConG(N) such that d(B0, B) = 3 and let

B0 B1 B2 B

be a shortest chain linking B and B0 of length 3. As Z(G) ∩ N ⊆ CG(c)
for any class cG ∈ ConG(N), then the size of any class of ConG(N) divides
|G : Z(G) ∩N |. Specifically, if M is the subgroup defined in Lemma 3.2, then
|B2| divides

|G : Z(G) ∩N | = |G : CG(b)| |CG(b) : M | |M : Z(G) ∩N |.
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Also, we know by Lemma 3.2(3) and (4) that π(M/Z(G) ∩ N) ⊆ π(B0) and
that CG(b)/M is a q-group for some q ∈ π(B0). Thus, |B2| must divide |B|.
This is a contradiction, since B1 and B would be joined by an edge. 2

Proof of Theorem B. 1. Suppose that D1 and D2 are classes of ConG(N)
such that d(D1, D2) = 4. Let B0 be a class of maximal size in ConG(N). By
Theorem 3.3 we know that d(B0, Di) ≤ 2 for i = 1, 2. We can suppose then that
d(B0, Di) = 2 for i = 1, 2. Furthermore, without loss of generality, |D1| > |D2|.
Then, by Lemma 2.1 it is true that |〈D2D

−1
2 〉| divides |D1|. In addition, B0D2

is a conjugacy class of ConG(N) and |B0D2| = |B0| by Lemma 2.1(2) and maxi-
mality of B0. It follows that B0D2D

−1
2 = B0 and |〈D2D

−1
2 〉| divides |B0|. Thus,

B0 and D1 are joined by an edge, which is a contradiction.

2. Let B1 = bG1 and B2 = bG2 in X1. Notice that b1, b1 ∈ S where S is the
subgroup defined in Lemma 3.1. Then |bG2 | divides

|G : Z(G) ∩N | = |G : CG(b1)||CG(b1) : S||S : Z(G) ∩N |

and we know by Lemma 3.1 that the primes dividing |CG(b1) : S| and |S : Z(G)∩
N | are in π(B0). So, we have that |bG1 | divides |bG2 |. By arguing symmetrically
we get that |bG2 | divides |bG1 |, so we conclude that all classes in X1 have the
same size. Therefore, X1 is a complete graph. Now, we show that X2 is also
a complete graph. Let us consider again S and T defined in Lemma 3.1 and
observe that every C ∈ X2 is out of S and that |T | divides |C| by Lemma 3.1
(1) and (2). This proves that X2 is a complete graph. 2

4 Diameter of Γ∗G(N)

Proof of Theorem D. 1. Suppose that there exist two primes r and s in Γ∗G(N)
such that d(r, s) = 4 and we will get a contradiction. This means that the
primes r and s are connected by a path of length 4, say

r p1 p2 p3 s
B1 B2 B3 B4

where Bi ∈ ConG(N) for i = 1, . . . , 4 and pi ∈ Γ∗G(N) for i = 1, 2, 3. By Theo-
rem 3.3 we know that d(Bi, B0) 6 2 for i = 1, . . . , 4 where B0 is a non-central
G-conjugacy class of maximal size. Notice that d(B1, B4) = 3. We distinguish
two possible cases:

Case 1. d(B0, B1) = 2 = d(B0, B4). By symmetry, we can assume for
instance that |B1| > |B4|. Since d(B1, B4) = 3, by Lemma 2.1 we have
that |〈B4B

−1
4 〉| divides |B1|. Moreover, B0B4 is an element of ConG(N) such

that |B0B4| = |B0| and by Lemma 2.1, |〈B4B
−1
4 〉| divides |B0|. Therefore,

d(B0, B1) = 1, because their cardinalities have a prime common divisor. This
is a contradiction.
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Case 2. Either d(B0, B1) = 2 and d(B0, B4) = 1 or d(B0, B1) = 1 and
d(B0, B4) = 2. Without loss we assume for instance the latter case. We consider
the subgroup M defined in Lemma 3.2 and B4 = bG. Since d(B0, B4) = 2, then
b ∈M by definition of M . Moreover, |B1| divides

|G : Z(G) ∩N | = |G : CG(b)| · |CG(b) : M | · |M : Z(G) ∩N |.

Now, notice that r 6∈ π(B0), otherwise d(r, s) ≤ 3, a contradiction, and certainly
r /∈ π(B4). Also, π(M/Z(G) ∩ N) ⊆ π(B0), so we have that r (which divides
|B1|) must divide |CG(b) : M |. Therefore, there exists an r-element y ∈ CG(b)\
M . On the other hand, b ∈M , and by Lemma 3.2 (3) we can assume that b is
an r′-element, by replacing b by its r’-part. Therefore

CG(yb) = CG(y) ∩CG(b) ⊆ CG(b).

Consequently, |B4| divides |(yb)G|. Furthermore, since yb 6∈M , by definition of
M we have that d((yb)G, B0) ≤ 1. This provides a contradiction because B4

and B0B4 and B0 would be joined by an edge ???? (ESTE FINAL NO ESTA
CLARO).

2. Let X1 and X2 be the connected components of ΓG(N) where X2 is
the component that contains de G-conjugacy class with the biggest size class.
Let us prove first that X∗1 , X∗2 are the connected components of Γ∗G(N), where
X∗i = {p ∈ π(B) |B ∈ Xi}, and secondly, that X∗1 y X∗2 are complete graphs.

Let X be a connected component of ΓG(N) and let r, s ∈ X∗. Then there
exist Br, Bs such that r divides |Br| and s divides |Bs|. Let us consider de path
in ΓG(N) that joins Br and Bs:

Br B1 B2
. . . Bs

p1 p2 p3 pl

We have that r and s are connected in Γ∗G(N) in the following way:

r p1 p2 . . . ps s
Br B1 B2 Bl−1 Bl

So X∗ is contained in a connected component Y ∈ Γ∗G(N). Now, we take q ∈ Y
which is connected by an edge to some r ∈ X∗. Then there exists B ∈ ConG(N)
such that qr||B|. It follows that B ∈ X and q ∈ X∗. Thus, X∗ = Y and X∗ is
a connected component of Γ∗G(N) as wanted.

We show now that X∗1 is a complete graph. If B,B′ ∈ X1, we have proved in
Theorem B that |B| = |B′|. Thus X∗1 = π(B) which trivially implies that it is a
complete graph. Let us show that X∗2 is a complete graph too. Suppose that B0

is a conjugacy class with maximal size, which is in X2 and let B1 = bG1 ∈ X1.
Thus, the subgroup S defined in Lemma 3.1 is abelian, and S ⊆CG(b1). Now,
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if p ∈ X∗2 , then there exists D ∈ X2 such that p divides |D|. Notice that |D|
divides

|G : Z(G) ∩N | = |B1||CG(b1) : S||S : Z(G) ∩N |,

and by Lemma 2.1 we know that |CG(b1) : S| is a q-number with q ∈ π(B0)
and π(S/(Z(G)∩N)) ⊆ π(B0). It follows that all primes in π(D) are in π(B0).
Therefore, all primes in X∗2 are in π(B0) and it trivially is a complete graph. 2

it

5 Structure of N in the disconnected case

Proof of Theorem E. Let S the subgroup defined in Lemma 3.1.

Step 1: If S ≤ Z(N) then N = P ×A with A ≤ Z(G)∩N and P a p-group.

We can take x a p-element and y a q-element of N , for some primes p and
q, such that xG ∈ X1 and yG ∈ X2. If p = q for every election of x and
y, then N = P × A with A ≤ Z(G) ∩ N . We consider that p 6= q. Since
x ∈ S ≤ Z(N), we obtain that N/S = CN (x)/S and this group has prime
power order for Lemma 3.1(6). As a consequence, N is nilpotent and [x, y] = 1.
Thus CG(xy) = CG(x)∩CG(y) and |(xy)G| divides |xG| and |yG|, a contradic-
tion.

Notice that we can assume that SZ(N) < N , because if SZ(N) = N then
N is abelian and S ≤ Z(N). For the following, we assume Z(N) < SZ(N) < N
and we will prove that N is quasi-Forbenius with abelian kernel and comple-
ment. We divide the proof into several steps.

We denote by π = {p prime | p divides |B| with B ∈ X1}.

Step 2: N has a normal π-complement and abelian Hall π-subgroups.

Let us prove that N is p-nilpotent and has abelian Sylow p-subgroups for
p ∈ π. Let a ∈ N \ S, then aG ∈ X2 by Lemma 3.1(1) and |aG| is a π′-
number. If P ∈Sylp(N), then there exists g ∈ N such that P g ⊆ CN (a) and
a ∈ CN (P g) =CN (P )g. Thus, we have

N = S ∪
⋃
g∈N

CN (P )g

and it follows that

|N | ≤ (|S| − 1) + |N : NN (CN (P ))|(|CN (P )| − 1) + 1

hence

1 ≤ |S|
|N |

+
|CN (P )|

|NN (CN (P ))|
− 1

|NN (CN (P ))|
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If CN (P ) <NN (CN (P ), as S < N , we have

1 ≤ 1

2
+

1

2
− 1

|NN (CN (P ))|

and this is a contradiction. Therefore CN (P ) =NN (CN (P )) and

P ≤ NN (P ) ≤ NN (CN (P )) ≤ CN (P )

Then CN (P ) =NN (P ) and P is abelian. By Burside’s Theorem (see for
instance 17.9 of [8]) we obtain that N is p-nilpotent for all p ∈ π and N has
normal π-complement. In particular, N is π-separable. Let H be a Hall π-
subgroup of N . Reasoning in the same way that in case of P for H, we obtain
that CN (H) =NN (H) and H is abelian too.

Let K/Z(N) be the normal π-complement of N/Z(N). By Lemma 3.1(5)
we have that SZ(N)/Z(N) is a normal π′−subgroup of N/Z(N), so S ≤ K.

Step 3: K =CN (x) for all x ∈ S\ Z(G) ∩N and S ≤ Z(K).

Let x ∈ S\ Z(G) ∩ N , then xG ∈ X1 and by Lemma 3.1(1) and CG(x)/S
is a π′-group by Lemma 3.1(6. Since |xN | is a π-number, we obtain that
CN (x)/Z(N) is a π′-Hall of N/Z(N). Thus K = CN (x) for all x ∈ S\ Z(G)∩N
and, in particular, S ≤ Z(K).

Step 4: K = S.

Let H be an abelian Hall π-subgroup of N . We have seen in the proof of
Step 2 that

N = S ∪
⋃
g∈N

CN (H)g

and this implies that

N =
⋃
g∈N

SCN (H)g

Then N =CN (H)S and HS �N .

Let a ∈ K \ S, then aG ∈ X2 by Lemma 3.1(1) and, as |aG| is a π′-number,
we have a ∈ CK(Hg) = CK(H)g with g ∈ N . Moreover S ≤ Z(K) by Step 3,
so we have the following equalities

CK(Hg) = CK(HgS) = CK(HS) = CK(H)

Thus a ∈ CK(H) for a ∈ K \ S ande K = 〈K \ S〉 ⊆ CN (H). As H is abelian
and N = HK, we have H ≤ Z(N) ≤ K. This implies that N = HK = K and
S ≤ Z(N) by Step 3, a contradiction.
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Step 5: N is quasi-Frobenius with abelian kernel and complement.

Let N = N/Z(N) and let K = K/Z(N). If K = CN (x) for all x ∈ K \ {1}
then N is quasi-Frobenius with abelian kernel K and abelian complement H.
Suppose that K < CN (x) for some x ∈ K \ {1}. We can suppose that o(x)
is an r-number for a prime r ∈ π′. Now, let y ∈CN (x) \ K such that o(y) is
a q-number for some q ∈ π. We can suppose without loss of generality that
o(y) is a q-number. We have [y, x] ∈ Z(N) because y ∈ CN (x) and, since
(o(x), o(y)) = 1, it follows that [x, y] = 1. Then y ∈ CN (x) = K and y ∈ K
and this is a contradiction. 2

We remark that the converse of the previous theorem is false.

Example 5.1

We know that the special linear group H = SL(2, 5) acts Frobenius on
K = C11 × C11. Then, it is clear that any subgroup of H acts Frobenius on
K. We consider in particular P be a Sylow 5-subgroup of H. We know that
NH(P ) is a cyclic group of order 20 and also acts Frobenius on K. We define
N = KP , that is trivially a normal subgroup in G = KNH(P ).

We have N is Frobenius with abelian kernel and abelian complement. More-
over,

N = 1 ∪ (K − 1) ∪ (
⋃
k∈K

P k \ {1})

and K is decomposed into the trivial class and classes with cardinal 5, while the
elements of

⋃
k∈K(P k \ {1}) are decomposed in N -conjugacy classes of cardinal

121. The set of conjugacy class sizes of N is {1, 5, 121}.

Now we consider the G-conjugacy classes of N . As G = KNH(P ) is also a
Frobenius group with kernel K and complement NH(P ), it follows that K is
decomposed exactly in the trivial class and classes with cardinal |NH(P )| = 20.
That is, the N -conjugacy classes contained in K have been grouped 4 by 4 to
form G-classes. And, on the other hand, the N -conjugacy classes contained
in

⋃
k∈K P k \ {1}, which have size 121, are grouped in pairs, and become two

G-conjugacy classes of size 121 × 2. Then the set of G-conjugacy class sizes of
N is {1, 4× 5, 2× 121} and the graph ΓG(N) has only one component.

On the other hand, the following provides an example of the other case about
the structure of N in Theorem E.

Example 5.2

Let G be the group of the library of the small groups of GAP (see [7]) with
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number Id(324,8) and with presentation

〈x, y, z|x3 = y4 = z9 = 1, [x, y] = 1, zy = z−1, z2 = xzxzx = x−1zx−1zx−1〉

Using GAP, it is easy to check that G has an abelian normal subgroup N ∼=
C3 × C3 and the set of G-class sizes of N is {1, 2, 3}.
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