Document downloaded from:
http://hdl.handle.net/10251/64387
This paper must be cited as:
Beltrán, A.; Felipe Román, MJ.; Melchor, C. (2015). Graphs associated to conjugacy classes of normal subgroups in finite groups. Journal of Algebra. 443:335-348. doi:10.1016/j.jalgebra.2015.06.040.

The final publication is available at
http://dx.doi.org/10.1016/j.jalgebra.2015.06.040

Copyright Elsevier

Additional Information

GRAPhS ASSOCIATED TO CONJUGACY CLASSES OF NORMAL SUBGROUPS IN FINITE GROUPS

Antonio Beltrán
Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain
e-mail: abeltran@mat.uji.es
María José Felipe
Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain
e-mail: mfelipe@mat.upv.es
Carmen Melchor
Departamento de Educación, Universidad Jaume I, 12071 Castellón, Spain
e-mail: cmelchor@uji.es

Abstract

Let G be a finite group and let N be a normal subgroup of G. We attach to N two graphs $\Gamma_{G}(N)$ and $\Gamma_{G}^{*}(N)$ associated to the conjugacy classes of G contained in N and to the set of primes dividing the sizes of these classes respectively. We prove that the number of connected components of both graphs is at most 2 , determine the diameter of these graphs and characterize the structure of N when these graphs are disconnected.

Keywords. Finite groups, conjugacy classes, normal subgroups, graphs. Mathematics Subject Classification (2010): 20E45, 20 D15.

1 Introduction

Let G be a finite group and let N be a normal subgroup of G, we denote $N \unlhd G$. For each element $x \in N$ the G-conjugacy class is $x^{G}=\left\{x^{g} \mid g \in G\right\}$. We will denote by $\operatorname{Con}_{G}(N)$ the set of conjugacy classes in G of elements of N and by $\operatorname{cs}_{G}(N)$ the set of G-conjugacy classes sizes of N.

Definition 1.1 Let G be a finite group and N a normal subgroup in G, we define the graph $\Gamma_{G}(N)$ in the following way: the set of vertices are the non-central elements of $\operatorname{Con}_{G}(N)$, and two vertices x^{G} and y^{G} are joined by and edge if and only if $\left|x^{G}\right|$ and $\left|y^{G}\right|$ have a common prime divisor, what is the same, $\left(\left|x^{G}\right|,\left|y^{G}\right|\right) \neq 1$. We call this graph the ordinary graph of G-conjugacy classes of N.

If $G=N$ then $\Gamma_{G}(N)=\Gamma(G)$ where $\Gamma(G)$ is the graph defined in [4] by Bertram, Herzon and Mann.

Notice that $\Gamma(N)$ is not subgraph of $\Gamma_{G}(N)$ because the set of vertices of $\Gamma(N)$ not necessarily have to be included in the set of vertices of $\Gamma_{G}(N)$. For instance, if $G=S_{3}$ and $N=A_{3}, \Gamma(N)$ is empty because N is abelian, whereas it is not true in the case of $\Gamma_{G}(N)$ and it has a single vertex, the G-conjugacy class $\{(1,2,3),(1,3,2)\}$.

The first property that we can prove is that $\Gamma_{G}(N)$ is a subgraph of $\Gamma(N)$. Then, at first we can think that the number of connected components of $\Gamma_{G}(N)$ is unbounded. We denote this number as $n\left(\Gamma_{G}(N)\right)$ and we prove the following theorem.

Definition 1.2 Let G be a finite group and N a normal subgroup in G, we define the "dual" graph of $\Gamma_{G}(N)$ denoted $\Gamma_{G}^{*}(N)$ as it follows: the set of vertex are de elements of the set:

$$
\sigma_{G}(N)=\left\{q \quad \mid q \text { is prime that divides }|B| \text { with } B \in \operatorname{Con}_{G}(N)\right\}
$$

Two vertex r and q are joined by an edge if there exists a non-central G conjugacy class $C \in \operatorname{Con}_{G}(N)$ such that $r q$ divides $|C|$. We call this graph the dual graph of G-conjugacy classes of N.

In case of $N=G$ we have $\Gamma_{G}^{*}(N)=\Gamma^{*}(G)$. Furthermore, its easy to prove that $\Gamma_{G}^{*}(N)$ is subgraph of $\Gamma^{*}(G)$.

Theorem A. Let G a finite group and N a normal subgroup of G then $n\left(\Gamma_{G}(N)\right) \leq 2$.

Theorem B. Let G a finite group and N a normal subgroup of G.

1. If $n\left(\Gamma_{G}(N)\right)=1$ then $d\left(\Gamma_{G}(N)\right) \leq 3$.
2. If $n\left(\Gamma_{G}(N)\right)=2$, each connected component is a complete graph.

Also for $\Gamma_{G}^{*}(N)$ we prove that de number of connected components is at most 2 and the number of connected components of $\Gamma_{G}(N)$ and $\Gamma_{G}^{*}(N)$ is exactly the same.

Theorem C. If G is a finite group and $N \unlhd G$ then, $n\left(\Gamma_{G}^{*}(N)\right) \leq 2$ and $n\left(\Gamma_{G}^{*}(N)\right)=n\left(\Gamma_{G}(N)\right)$.

Theorem D. Let G a finite group and N a normal subgroup of G.

1. If $n\left(\Gamma_{G}^{*}(N)\right)=1$ then $d\left(\Gamma_{G}^{*}(N)\right) \leq 3$.
2. If $n\left(\Gamma_{G}^{*}(N)\right)=2$, each connected component is a complete graph.

We give a characterization of normal subgroups whose associated graph has exactly two connected components.

Theorem E. Let G a finite group and N a normal subgroup of G. If $\Gamma_{G}(N)$ has two connected components then, either N is quasi-Frobenius with abelian kernel and complement, or $N=P \times A$ where P is a p-group and $A \leqslant \mathbf{Z}(G)$.

If A is a finite group, $\pi(A)$ denotes the set of primes that divide the order of A.

2 Number of connected components of $\Gamma_{G}(N)$ and $\Gamma_{G}^{*}(N)$

In this section we prove Theorems A and C. We start with the following lemma, which is basic for our development.

Lemma 2.1 Let G be a finite group and N a normal subgroup of G. Let $B=b^{G}$ y $C=c^{G}$ non-central elements in $\operatorname{Con}_{G}(N)$. If $(|B|,|C|)=1$. Then

1. $\mathbf{C}_{G}(b) \mathbf{C}_{G}(c)=G$.
2. $B C=C B$ is a non-central element of $\operatorname{Con}_{G}(N)$ and $|B C|$ divides $|B||C|$.
3. Suppose that $d(B, C) \geq 3$ and $|B|<|C|$. Then $|B C|=|C|$ and $C B B^{-1}=$ C. Furthermore, $C\left\langle B B^{-1}\right\rangle=C,\left\langle B B^{-1}\right\rangle \subseteq\left\langle C C^{-1}\right\rangle$ and $\left|\left\langle B B^{-1}\right\rangle\right|$ divides $|C|$.

Proof. It is enough to mimic the proof of Lemma 1 of [9] taking into account that the product of two classes of $\operatorname{Con}_{G}(N)$ is contained in N again.

Proof of Theorem A. Suppose that $\Gamma_{G}(N)$ has at least three connected components and take three non-central classes $B=b^{G}, C=c^{G}$ and $D=d^{G}$ in $\operatorname{Con}_{G}(N)$ each of which belongs to a different connected component. Then, it holds that $(|B|,|C|)=1,(|B|,|D|)=1$ and $(|C|,|D|)=1$. We can assume without loss of generality $|B|<|C|<|D|$. Therefore, by applying Lemma 2.1, we get that $\left|\left\langle B B^{-1}\right\rangle\right|$ divides $|D|$ and $\left|\left\langle B B^{-1}\right\rangle\right|$ divides $|C|$. Then, $(|C|,|D|)>1$, which is a contradiction.

Proof of Theorem C. Suppose that $n\left(\Gamma_{G}^{*}(N)\right) \geq 3$. We take three primes r, s and l each of which belongs to a different connected component and let A, B and C be elements of $\operatorname{Con}_{G}(N)$ such that r divides $|A|, s$ divides $|B|$ and l divides $|C|$. Without loss of generality we suppose that $|C|<|B|<|A|$. We have $d(A, C) \geq 3$ and $d(A, B) \geq 3$ and by applying Lemma 2.1, we obtain that $\left|\left\langle C C^{-1}\right\rangle\right|$ divides $|A|$ and also $\left|\left\langle C C^{-1}\right\rangle\right|$ divides $|B|$, and this leads to a contradiction, because A and B would have a common prime divisor and $d(r, s)$ would be less or equal than 2 . This proves that $n\left(\Gamma_{G}^{*}(N)\right) \leq 2$.

Suppose now that $n\left(\Gamma_{G}(N)\right)=1$ and $n\left(\Gamma_{G}^{*}(N)\right)=2$. Let r and s be primes such that each of them belongs to a distinct connected component of $\Gamma_{G}^{*}(N)$. Then there exist $B_{r}, B_{s} \in \Gamma_{G}(N)$ such that r divides $\left|B_{r}\right|$ and s divides $\left|B_{s}\right|$. Let us consider the following path in $\Gamma_{G}(N)$ that joins B_{r} and B_{s}, which exists because $n\left(\Gamma_{G}(N)\right)=1$:

$$
B_{r} \stackrel{p_{1}}{\longleftrightarrow} B_{1} \stackrel{p_{2}}{\longleftrightarrow} B_{2} \stackrel{p_{3}}{\longleftrightarrow} \cdots \stackrel{p_{l}}{\longleftrightarrow} B_{s}
$$

This leads to a contradiction, because r and s are connected in $\Gamma_{G}^{*}(N)$ by the following path:

$$
r \stackrel{B_{r}}{\longleftrightarrow} p_{1} \stackrel{B_{1}}{\longleftrightarrow} p_{2} \stackrel{B_{2}}{\longleftrightarrow} \cdots \stackrel{B_{l-1}}{\longleftrightarrow} p_{s} \stackrel{B_{l}}{\longleftrightarrow} s
$$

So, we have proved that $n\left(\Gamma_{G}(N)\right)=1$ implies that $n\left(\Gamma_{G}^{*}(N)\right)=1$. Now, if $n\left(\Gamma_{G}(N)\right)=2$ and $n\left(\Gamma_{G}^{*}(N)\right)=1$ we can get a contradiction by arguing in a similar way. This shows that $n\left(\Gamma_{G}(N)\right)=n\left(\Gamma_{G}^{*}(N)\right)$.

3 Diameter of $\Gamma_{G}(N)$

The following two lemmas, one for the disconnected case and the other for the connected case, summarize important structural properties of the normal subgroup concerning the graph $\Gamma_{G}(N)$, which will be needed for determining the diameters of the graphs. We start with the disconnected case.

Lemma 3.1 Let G a finite group and let N be a normal subgroup of G. Suppose that $n\left(\Gamma_{G}(N)\right)=2$ and let X_{1} and X_{2} be the connected components of $\Gamma_{G}(N)$. Let B_{0} be a non-central element of $\operatorname{Con}_{G}(N)$ of maximal size and assume that $B_{0} \in X_{2}$. We define

$$
S=\left\langle C \mid C \in X_{1}\right\rangle \text { and } T=\left\langle C C^{-1} \mid C \in X_{1}\right\rangle .
$$

Then

1. S is a normal subgroup of G and every element in S, either is central, or its G-conjugacy class is in X_{1}.
2. If C is a G-conjugacy class of N out of S, then $|T|$ divides $|C|$.
3. T is normal in $G, T=[S, G]$ and $T \leq \mathbf{Z}(S)$.
4. S is abelian.
5. $\mathbf{Z}(G) \cap N \subseteq S$ and $\pi(S /(\mathbf{Z}(G) \cap N)) \subseteq \pi(T) \subseteq \pi\left(B_{0}\right)$.
6. Let $b^{G}=B \in X_{1}$. Then $\mathbf{C}_{G}(b) / S$ is a q-group for some prime $q \in \pi\left(B_{0}\right)$.

Proof. 1. The fact that S is normal is elementary. Let $C \in X_{2}$ and $B \in X_{1}$. We know that $B C$ is a G-conjugacy class of $\operatorname{Con}_{G}(N)$ of maximal size between $|B|$ and $|C|$ by Lemma 2.1. Assume that $|B C|=|B|$. By Lemma 2.1 again, it follows that $\left|\left\langle C C^{-1}\right\rangle\right|$ divides $|B|$ and that $\left\langle C C^{-1}\right\rangle \subseteq\left\langle B B^{-1}\right\rangle$. On the other hand, $\left|B_{0} B\right|=\left|B_{0}\right|$ again by Lemma 2.1, and also $\left|\left\langle B B^{-1}\right\rangle\right|$ divides $\left|B_{0}\right|$. From these facts, we deduce that $\left(|B|,\left|B_{0}\right|\right)>1$, which is a contradiction. Thus, $|B C|=|C|$ for all $C \in X_{2}$ and $B \in X_{1}$. Now, let A be the union of all G conjugacy classes of size $|C|$ in S and assume that $A \neq \emptyset$. We have that if $B \in X_{1}$, then $B A \subseteq A$. Hence, $S A=A$, and consequently, since A is a normal subset, $|S|$ divides $|A|$. This is not possible because $A \subseteq S-\{1\}$. This contradiction shows that $A=\emptyset$ and hence S does not contain any class of size $|C|$. Therefore, since S is normal in G, then S does not contain elements whose classes are in X_{2}.
2. Let $B \in X_{1}$. Since C is in X_{2}, it follows by Lemma 2.1 that $C B$ is a G conjugacy class. If we suppose that $C B \in X_{1}$, as $B^{-1} \in X_{1}$, then $C B B^{-1} \subseteq S$, so in particular $C \subseteq S$, which contradicts (1). Thus, $C B \in X_{2}$ and its size must be $|C|$ by Lemma 2.1. Again by this lemma, we have $C\left\langle B B^{-1}\right\rangle=C$, and consequently, $C T=C$. Therefore, $|T|$ divides $|C|$, as wanted.
3. By definition, $T=[S, G]$ and so, it is a normal subgroup of G. Let us prove that $T \leq \mathbf{Z}(S)$. Indeed, if $B=b^{G} \in X_{1}$, then $\left(|T|,\left|G: \mathbf{C}_{G}(b)\right|\right)=(|T|,|B|)=1$, because $|T|$ divides every class size in X_{2} by (1). Now, since $\left|T: \mathbf{C}_{T}(b)\right|$ divides $(|T|,|B|)=1$, we deduce that $T=\mathbf{C}_{T}(b)$. As the classes in X_{1} generate S, we conclude that T is central in S.
4. Since $T=[S, G]$, then $[S / T, G / T]=1$ and $S / T \subseteq \mathbf{Z}(G / T)$. In particular, S / T is abelian and as a result, S is nilpotent. We can write $S=R \times Z$ where Z is the largest Hall subgroup of S which is contained in $\mathbf{Z}(G)$. Let p be a prime divisor of $|R|$ and let P be a Sylow p-subgroup of R. It follows that $P \unlhd G$ and $T=[S, G]=[R, G] \geqslant[P, G]>1$. Hence p divides $|T|$ and by applying (1) and (2), $|T|$ divides $\left|B_{0}\right|$. Thus, we have $\pi(R) \subseteq \pi(T) \subseteq \pi\left(B_{0}\right)$. We can show now that $R \leq \mathbf{Z}(S)$. In fact, let $b^{G}=B \in X_{1}$. Since $\left(|B|,\left|B_{0}\right|\right)=1$, we obtain in particular, $(|B|,|R|)=1$. Thus, $\left|R: \mathbf{C}_{R}(b)\right|=1$ since this index trivially divides $|R|$ and $|B|$ because $R \unlhd G$. This means that $R=\mathbf{C}_{R}(b)$ for every generating element b of S. So, R is contained in $\mathbf{Z}(S)$ as wanted, and S is abelian.
5. Let $z \in \mathbf{Z}(G) \cap N$ and let $B=b^{G} \in X_{1}$. Note that $b^{G} z=(b z)^{G}$. Moreover $b z \in N$, because both elements lie in N. As $\left|(b z)^{G}\right|=|B z|=|B|$,
then $b z \in S$ and so $z \in S$. This proves that $\mathbf{Z}(G) \cap N \subseteq S$. Let us prove now that $\pi(S /(\mathbf{Z}(G) \cap N)) \subseteq \pi(T) \subseteq \pi\left(B_{0}\right)$. First, let $p \in \pi(T)$. We know that B_{0} is out of S by (1) and that $|T|$ divides $\left|B_{0}\right|$ by (2), so $p \in \pi\left(B_{0}\right)$. On the other hand, let q be a prime divisor of $|S: \mathbf{Z}(G) \cap N|$. As we have proved in (4), that $S=R \times Z$ and $\pi(R) \subseteq \pi(T)$, we conclude that q divide $|R|$, so $q \in \pi(T)$.
6. By considering the primary decomposition of b, it is clear that we can write $b=b_{q} b_{q^{\prime}}$ where b_{q} and $b_{q^{\prime}}$ are the q-part and the q^{\prime}-part of b, and q is a prime such that $b_{q} \notin \mathbf{Z}(G) \cap N$. Hence, $q \in \pi\left(B_{0}\right)$ by (5). Furthermore, it is elementary that $\mathbf{C}_{G}(b) \subseteq \mathbf{C}_{G}\left(b_{q}\right)$, and as a result, $\left|\left(b_{q}\right)^{G}\right|$ divides $|B|$. We claim that any element $x S \in \mathbf{C}_{G}(b) / S$ is a q-element. For any $x \in \mathbf{C}_{G}(b)$, write $x=x_{q} x_{q^{\prime}}$ (it is possible $x_{q}=1$). It is clear that x_{q} and $x_{q^{\prime}}$ belong to $\mathbf{C}_{G}(b)$. We consider $a=b_{q} x_{q^{\prime}}$ and observe that $\mathbf{C}_{G}(a)=\mathbf{C}_{G}\left(b_{q}\right) \cap \mathbf{C}_{G}\left(x_{q^{\prime}}\right) \subseteq \mathbf{C}_{G}\left(b_{q}\right)$, so $\left|\left(b_{q}\right)^{G}\right|$ divides $\left|a^{G}\right|$. Since $\left(b_{q}\right)^{G} \in X_{1}$, this forces that $a^{G} \in X_{1}$, and we conclude that $x_{q^{\prime}} \in S$, that is, $x S$ is a q-element, as wanted. This shows that $\mathbf{C}_{G}(b) / S$ is a q-group.

Lemma 3.2 Let G be a finite group and $N \unlhd G$ with $\Gamma_{G}(N)$ connected. Let B_{0} be a G-conjugacy class of $\operatorname{Con}_{G}(N)$ of maximal size. Let

$$
\begin{gathered}
\left.M=\langle D| D \in \operatorname{Con}_{G}(N) \text { and } d\left(B_{0}, D\right)=2\right\rangle \\
\left.K=\left\langle D^{-1} D\right| D \in \operatorname{Con}_{G}(N) \text { and } d\left(B_{0}, D\right)=2\right\rangle
\end{gathered}
$$

Then

1. M and K are normal subgroups of G. Furthermore, $K=[M, G], K \leq$ $\mathbf{Z}(M)$.
2. M is abelian.
3. $\mathbf{Z}(G) \cap N \subseteq M$ and $\pi(M /(\mathbf{Z}(G) \cap N)) \subseteq \pi(K) \subseteq \pi\left(B_{0}\right)$.
4. Let $B=b^{G} \in \operatorname{Con}_{G}(N)$ such that $d\left(B, B_{0}\right) \geq 3$. Then $\mathbf{C}_{G}(b) / M$ is a q-group for some $q \in \pi\left(B_{0}\right)$.

Proof. 1. We easily see that M and K are normal subgroups of G and $K=[M, G]$. Let us prove that $K \leq \mathbf{Z}(M)$. If $C \in \operatorname{Con}_{G}(N)$ satisfies that $d\left(B_{0}, C\right)=2$, we have $\left(\left|B_{0}\right|,|C|\right)=1$ and then, $\left|B_{0}\right|=\left|B_{0} C\right|$. Moreover, by Lemma 2.1, it follows that $B_{0} C C^{-1}=B_{0}$ and as a result $|K|$ divides $\left|B_{0}\right|$. Now, since $d\left(B_{0}, C\right)=2$ and $|K|$ divides $\left|B_{0}\right|$, then $(|K|,|C|)=1$. We have that $\left|K: \mathbf{C}_{K}(c)\right|$ divides $(|K|,|C|)=1$. Thus, $K=\mathbf{C}_{K}(c)$ and consequently, $K \leq \mathbf{Z}(M)$.
2. We show first that M is nilpotent. As $K=[M, G]$, then $M / K \leq \mathbf{Z}(G / K)$ and since $K \leq \mathbf{Z}(M)$ by (1), hence M is nilpotent. We can write $M=R \times Z$ where Z is the largest Hall subgroup of M that is contained in $\mathbf{Z}(G)$. Let q be a prime divisor of $|R|$ and let Q be the Sylow q-subgroup of R. Then $Q \unlhd G$
and $K=[M, G] \geqslant[R, G] \geqslant[Q, G]$. We have $[Q, G] \neq 1$, so, q divides $|K|$. We conclude that $\pi(R) \subseteq \pi(K)$. On the other hand, let $C \in \operatorname{Con}_{G}(N)$ such that $d\left(B_{0}, C\right)=2$. Then $\left(\left|B_{0}\right|,|C|\right)=1$ and by Lemma 2.1 (2), $\left|B_{0} C\right|$ divides $\left|B_{0}\right||C|$. The maximality of $\left|B_{0}\right|$ and the fact that $d\left(B_{0}, C\right)=2$ imply that $\left|B_{0} C\right|=\left|B_{0}\right|$, and we obtain $B_{0} C C^{-1}=B_{0}$. We deduce that that $\left|\left\langle C C^{-1}\right\rangle\right|$ divides $\left|B_{0}\right|$. This implies that $\pi(K) \subseteq \pi\left(B_{0}\right)$. Thus, $q \in \pi\left(B_{0}\right)$. Hence, given $B=b^{G}$ a generating class of M, we know that $d\left(B, B_{0}\right)=2$. Thus, we have $\left(|B|,\left|B_{0}\right|\right)=1$. Hence $(|Q|,|B|)=1$. Since $\left|Q: \mathbf{C}_{Q}(b)\right|$ divides $(|Q|,|B|)=1$, we have $\mathbf{C}_{G}(b)=Q$ and $Q \leq \mathbf{Z}(M)$. Thus, $R \leq \mathbf{Z}(M)$ and M is abelian.
3. We prove that $\mathbf{Z}(G) \cap N \subseteq M$. Let $z \in \mathbf{Z}(G) \cap N$ and let $C=c^{G} \in$ $\operatorname{Con}_{G}(N)$ such that $d\left(B_{0}, C\right)=2$. Notice that $c^{G} z=(c z)^{G}$. Moreover $c z \in N$, because $C \subseteq N$ and $z \in N$. As $\left|(c z)^{G}\right|=\left|c^{G} z\right|$, then $d\left(B_{0},\left|(c z)^{G}\right|\right)=2$. Thus, $c z \in M$ and $\mathbf{Z}(G) \cap N \subseteq M$. We only have to show that $\pi(M /(\mathbf{Z}(G) \cap N)) \subseteq$ $\pi(K)$, because we know $\pi(K) \subseteq \pi\left(B_{0}\right)$ by the proof of (2). Let q be a prime divisor of $|M: \mathbf{Z}(G) \cap N|$. Then there is a q-element $y \in M \backslash(\mathbf{Z}(G) \cap N)$. Since $M=R \times Z$ we have that q divides $|R|$ and thus $q \in \pi(K)$ because $\pi(R) \subseteq \pi(K)$.
4. By considering the primary decomposition of b, we can write $b=b_{q} b_{q^{\prime}}$ where b_{q} and $b_{q^{\prime}}$ are the q-part and the q^{\prime}-part of b, and q is a prime such that $b_{q} \notin \mathbf{Z}(G) \cap N$. Hence, $q \in \pi\left(B_{0}\right)$ by (3). Also, $\mathbf{C}_{G}(b) \subseteq \mathbf{C}_{G}\left(b_{q}\right)$, implies that $\left|\left(b_{q}\right)^{G}\right|$ divides $|B|$ and then any class which is connected to $\left(b_{q}\right)^{G}$ must be connected to B. This implies that $d\left(\left(b_{q}\right)^{G}, B_{0}\right) \geq 3$ too. We claim that any element $x \in \mathbf{C}_{G}\left(b_{q}\right) \backslash M$ satisfies that $x M$ is a q-element in $\mathbf{C}_{G}\left(b_{q}\right) / M$. Write $x=x_{q} x_{q^{\prime}}$ and suppose that $x_{q^{\prime}} \notin M$. Set $a=x_{q^{\prime}} b_{q}$ and notice that $a \notin M$. By definition of M, we have $d\left(a^{G}, B_{0}\right) \leq 1$ and since $\mathbf{C}_{G}(a)=\mathbf{C}_{G}\left(x_{q^{\prime}}\right) \cap \mathbf{C}_{G}\left(b_{q}\right)$, it follows that $\left|\left(b_{q}\right)^{G}\right|$ divides $\left|a^{G}\right|$. These facts show that $d\left(\left(b_{q}\right)^{G}, B_{0}\right) \leq 2$, a contradiction. Therefore, $x_{q^{\prime}} \in M$ and $x M$ is a q-element. In conclusion, $\mathbf{C}_{G}\left(b_{q}\right) / M$ is a q-group.

The following consequence, which has interest on its own, is the key to bound the diameter of $\Gamma_{G}(N)$, which we denote by $d\left(\Gamma_{G}(N)\right)$.

Theorem 3.3. Let G a finite group and N a normal subgroup of G and suppose that $\Gamma_{G}(N)$ is connected. Let B_{0} a non-central conjugacy class of $\operatorname{Con}_{G}(N)$ with maximal size. Then $d\left(B, B_{0}\right) \leq 2$ for every non-central $B \in \operatorname{Con}_{G}(N)$.

Proof. Let $B=b^{G} \in \operatorname{Con}_{G}(N)$ such that $d\left(B_{0}, B\right)=3$ and let

$$
B_{0} \longleftrightarrow B_{1} \longleftrightarrow B_{2} \longleftrightarrow B
$$

be a shortest chain linking B and B_{0} of length 3 . As $\mathbf{Z}(G) \cap N \subseteq \mathbf{C}_{G}(c)$ for any class $c^{G} \in \operatorname{Con}_{G}(N)$, then the size of any class of $\operatorname{Con}_{G}(N)$ divides $|G: \mathbf{Z}(G) \cap N|$. Specifically, if M is the subgroup defined in Lemma 3.2, then $\left|B_{2}\right|$ divides

$$
|G: \mathbf{Z}(G) \cap N|=\left|G: \mathbf{C}_{G}(b)\right|\left|\mathbf{C}_{G}(b): M\right||M: \mathbf{Z}(G) \cap N|
$$

Also, we know by Lemma 3.2(3) and (4) that $\pi(M / \mathbf{Z}(G) \cap N) \subseteq \pi\left(B_{0}\right)$ and that $\mathbf{C}_{G}(b) / M$ is a q-group for some $q \in \pi\left(B_{0}\right)$. Thus, $\left|B_{2}\right|$ must divide $|B|$. This is a contradiction, since B_{1} and B would be joined by an edge.

Proof of Theorem B. 1. Suppose that D_{1} and D_{2} are classes of $\operatorname{Con}_{G}(N)$ such that $d\left(D_{1}, D_{2}\right)=4$. Let B_{0} be a class of maximal size in $\operatorname{Con}_{G}(N)$. By Theorem 3.3 we know that $d\left(B_{0}, D_{i}\right) \leq 2$ for $i=1,2$. We can suppose then that $d\left(B_{0}, D_{i}\right)=2$ for $i=1,2$. Furthermore, without loss of generality, $\left|D_{1}\right|>\left|D_{2}\right|$. Then, by Lemma 2.1 it is true that $\left|\left\langle D_{2} D_{2}^{-1}\right\rangle\right|$ divides $\left|D_{1}\right|$. In addition, $B_{0} D_{2}$ is a conjugacy class of $\operatorname{Con}_{G}(N)$ and $\left|B_{0} D_{2}\right|=\left|B_{0}\right|$ by Lemma 2.1(2) and maximality of B_{0}. It follows that $B_{0} D_{2} D_{2}^{-1}=B_{0}$ and $\left|\left\langle D_{2} D_{2}^{-1}\right\rangle\right|$ divides $\left|B_{0}\right|$. Thus, B_{0} and D_{1} are joined by an edge, which is a contradiction.
2. Let $B_{1}=b_{1}^{G}$ and $B_{2}=b_{2}^{G}$ in X_{1}. Notice that $b_{1}, b_{1} \in S$ where S is the subgroup defined in Lemma 3.1. Then $\left|b_{2}^{G}\right|$ divides

$$
|G: \mathbf{Z}(G) \cap N|=\left|G: \mathbf{C}_{G}\left(b_{1}\right)\right|\left|\mathbf{C}_{G}\left(b_{1}\right): S\right||S: \mathbf{Z}(G) \cap N|
$$

and we know by Lemma 3.1 that the primes dividing $\left|\mathbf{C}_{G}\left(b_{1}\right): S\right|$ and $\mid S: \mathbf{Z}(G) \cap$ $N \mid$ are in $\pi\left(B_{0}\right)$. So, we have that $\left|b_{1}^{G}\right|$ divides $\left|b_{2}^{G}\right|$. By arguing symmetrically we get that $\left|b_{2}^{G}\right|$ divides $\left|b_{1}^{G}\right|$, so we conclude that all classes in X_{1} have the same size. Therefore, X_{1} is a complete graph. Now, we show that X_{2} is also a complete graph. Let us consider again S and T defined in Lemma 3.1 and observe that every $C \in X_{2}$ is out of S and that $|T|$ divides $|C|$ by Lemma 3.1 (1) and (2). This proves that X_{2} is a complete graph.

4 Diameter of $\Gamma_{G}^{*}(N)$

Proof of Theorem D. 1. Suppose that there exist two primes r and s in $\Gamma_{G}^{*}(N)$ such that $d(r, s)=4$ and we will get a contradiction. This means that the primes r and s are connected by a path of length 4, say

$$
r \stackrel{B_{1}}{\longleftrightarrow} p_{1} \stackrel{B_{2}}{\longleftrightarrow} p_{2} \stackrel{B_{3}}{\longleftrightarrow} p_{3} \stackrel{B_{4}}{\longleftrightarrow} s
$$

where $B_{i} \in \operatorname{Con}_{G}(N)$ for $i=1, \ldots, 4$ and $p_{i} \in \Gamma_{G}^{*}(N)$ for $i=1,2,3$. By Theorem 3.3 we know that $d\left(B_{i}, B_{0}\right) \leqslant 2$ for $i=1, \ldots, 4$ where B_{0} is a non-central G-conjugacy class of maximal size. Notice that $d\left(B_{1}, B_{4}\right)=3$. We distinguish two possible cases:

Case 1. $d\left(B_{0}, B_{1}\right)=2=d\left(B_{0}, B_{4}\right)$. By symmetry, we can assume for instance that $\left|B_{1}\right|>\left|B_{4}\right|$. Since $d\left(B_{1}, B_{4}\right)=3$, by Lemma 2.1 we have that $\left|\left\langle B_{4} B_{4}^{-1}\right\rangle\right|$ divides $\left|B_{1}\right|$. Moreover, $B_{0} B_{4}$ is an element of $\operatorname{Con}_{G}(N)$ such that $\left|B_{0} B_{4}\right|=\left|B_{0}\right|$ and by Lemma 2.1, $\left|\left\langle B_{4} B_{4}^{-1}\right\rangle\right|$ divides $\left|B_{0}\right|$. Therefore, $d\left(B_{0}, B_{1}\right)=1$, because their cardinalities have a prime common divisor. This is a contradiction.

Case 2. Either $d\left(B_{0}, B_{1}\right)=2$ and $d\left(B_{0}, B_{4}\right)=1$ or $d\left(B_{0}, B_{1}\right)=1$ and $d\left(B_{0}, B_{4}\right)=2$. Without loss we assume for instance the latter case. We consider the subgroup M defined in Lemma 3.2 and $B_{4}=b^{G}$. Since $d\left(B_{0}, B_{4}\right)=2$, then $b \in M$ by definition of M. Moreover, $\left|B_{1}\right|$ divides

$$
|G: \mathbf{Z}(G) \cap N|=\left|G: \mathbf{C}_{G}(b)\right| \cdot\left|\mathbf{C}_{G}(b): M\right| \cdot|M: \mathbf{Z}(G) \cap N|
$$

Now, notice that $r \notin \pi\left(B_{0}\right)$, otherwise $d(r, s) \leq 3$, a contradiction, and certainly $r \notin \pi\left(B_{4}\right)$. Also, $\pi(M / \mathbf{Z}(G) \cap N) \subseteq \pi\left(B_{0}\right)$, so we have that r (which divides $\left.\left|B_{1}\right|\right)$ must divide $\left|\mathbf{C}_{G}(b): M\right|$. Therefore, there exists an r-element $y \in \mathbf{C}_{G}(b) \backslash$ M. On the other hand, $b \in M$, and by Lemma 3.2 (3) we can assume that b is an r^{\prime}-element, by replacing b by its r^{\prime}-part. Therefore

$$
\mathbf{C}_{G}(y b)=\mathbf{C}_{G}(y) \cap \mathbf{C}_{G}(b) \subseteq \mathbf{C}_{G}(b)
$$

Consequently, $\left|B_{4}\right|$ divides $\left|(y b)^{G}\right|$. Furthermore, since $y b \notin M$, by definition of M we have that $d\left((y b)^{G}, B_{0}\right) \leq 1$. This provides a contradiction because B_{4} and $B_{0} B_{4}$ and B_{0} would be joined by an edge ???? (ESTE FINAL NO ESTA CLARO).
2. Let X_{1} and X_{2} be the connected components of $\Gamma_{G}(N)$ where X_{2} is the component that contains de G-conjugacy class with the biggest size class. Let us prove first that X_{1}^{*}, X_{2}^{*} are the connected components of $\Gamma_{G}^{*}(N)$, where $X_{i}^{*}=\left\{p \in \pi(B) \mid B \in X_{i}\right\}$, and secondly, that X_{1}^{*} y X_{2}^{*} are complete graphs.

Let X be a connected component of $\Gamma_{G}(N)$ and let $r, s \in X^{*}$. Then there exist B_{r}, B_{s} such that r divides $\left|B_{r}\right|$ and s divides $\left|B_{s}\right|$. Let us consider de path in $\Gamma_{G}(N)$ that joins B_{r} and B_{s} :

$$
B_{r} \stackrel{p_{1}}{\longleftrightarrow} B_{1} \stackrel{p_{2}}{\longleftrightarrow} B_{2} \stackrel{p_{3}}{\longleftrightarrow} \cdots \stackrel{p_{l}}{\longleftrightarrow} B_{s}
$$

We have that r and s are connected in $\Gamma_{G}^{*}(N)$ in the following way:

$$
r \stackrel{B_{r}}{\longleftrightarrow} p_{1} \stackrel{B_{1}}{\longleftrightarrow} p_{2} \stackrel{B_{2}}{\longleftrightarrow} \cdots \stackrel{B_{l-1}}{\longleftrightarrow} p_{s} \stackrel{B_{l}}{\longleftrightarrow} s
$$

So X^{*} is contained in a connected component $Y \in \Gamma_{G}^{*}(N)$. Now, we take $q \in Y$ which is connected by an edge to some $r \in X^{*}$. Then there exists $B \in \operatorname{Con}_{G}(N)$ such that $q r \| B \mid$. It follows that $B \in X$ and $q \in X^{*}$. Thus, $X^{*}=Y$ and X^{*} is a connected component of $\Gamma_{G}^{*}(N)$ as wanted.

We show now that X_{1}^{*} is a complete graph. If $B, B^{\prime} \in X_{1}$, we have proved in Theorem B that $|B|=\left|B^{\prime}\right|$. Thus $X_{1}^{*}=\pi(B)$ which trivially implies that it is a complete graph. Let us show that X_{2}^{*} is a complete graph too. Suppose that B_{0} is a conjugacy class with maximal size, which is in X_{2} and let $B_{1}=b_{1}^{G} \in X_{1}$. Thus, the subgroup S defined in Lemma 3.1 is abelian, and $S \subseteq \mathbf{C}_{G}\left(b_{1}\right)$. Now,
if $p \in X_{2}^{*}$, then there exists $D \in X_{2}$ such that p divides $|D|$. Notice that $|D|$ divides

$$
|G: \mathbf{Z}(G) \cap N|=\left|B_{1}\right|\left|\mathbf{C}_{G}\left(b_{1}\right): S\right||S: \mathbf{Z}(G) \cap N|
$$

and by Lemma 2.1 we know that $\left|\mathbf{C}_{G}\left(b_{1}\right): S\right|$ is a q-number with $q \in \pi\left(B_{0}\right)$ and $\pi(S /(\mathbf{Z}(G) \cap N)) \subseteq \pi\left(B_{0}\right)$. It follows that all primes in $\pi(D)$ are in $\pi\left(B_{0}\right)$. Therefore, all primes in X_{2}^{*} are in $\pi\left(B_{0}\right)$ and it trivially is a complete graph. it

5 Structure of N in the disconnected case

Proof of Theorem E. Let S the subgroup defined in Lemma 3.1.
Step 1: If $S \leq \mathbf{Z}(N)$ then $N=P \times A$ with $A \leq \mathbf{Z}(G) \cap N$ and P a p-group.

We can take x a p-element and y a q-element of N, for some primes p and q, such that $x^{G} \in X_{1}$ and $y^{G} \in X_{2}$. If $p=q$ for every election of x and y, then $N=P \times A$ with $A \leq \mathbf{Z}(G) \cap N$. We consider that $p \neq q$. Since $x \in S \leq \mathbf{Z}(N)$, we obtain that $N / S=\mathbf{C}_{N}(x) / S$ and this group has prime power order for Lemma 3.1(6). As a consequence, N is nilpotent and $[x, y]=1$. Thus $\mathbf{C}_{G}(x y)=\mathbf{C}_{G}(x) \cap \mathbf{C}_{G}(y)$ and $\left|(x y)^{G}\right|$ divides $\left|x^{G}\right|$ and $\left|y^{G}\right|$, a contradiction.

Notice that we can assume that $S \mathbf{Z}(N)<N$, because if $S \mathbf{Z}(N)=N$ then N is abelian and $S \leq \mathbf{Z}(N)$. For the following, we assume $\mathbf{Z}(N)<S \mathbf{Z}(N)<N$ and we will prove that N is quasi-Forbenius with abelian kernel and complement. We divide the proof into several steps.

We denote by $\pi=\left\{p\right.$ prime $\mid p$ divides $|B|$ with $\left.B \in X_{1}\right\}$.
Step 2: N has a normal π-complement and abelian Hall π-subgroups.
Let us prove that N is p-nilpotent and has abelian Sylow p-subgroups for $p \in \pi$. Let $a \in N \backslash S$, then $a^{G} \in X_{2}$ by Lemma 3.1(1) and $\left|a^{G}\right|$ is a π^{\prime} number. If $P \in \operatorname{Syl}_{p}(N)$, then there exists $g \in N$ such that $P^{g} \subseteq \mathbf{C}_{N}(a)$ and $a \in \mathbf{C}_{N}\left(P^{g}\right)=\mathbf{C}_{N}(P)^{g}$. Thus, we have

$$
N=S \cup \bigcup_{g \in N} \mathbf{C}_{N}(P)^{g}
$$

and it follows that

$$
|N| \leq(|S|-1)+\left|N: \mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right)\right|\left(\left|\mathbf{C}_{N}(P)\right|-1\right)+1
$$

hence

$$
1 \leq \frac{|S|}{|N|}+\frac{\left|\mathbf{C}_{N}(P)\right|}{\left|\mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right)\right|}-\frac{1}{\left|\mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right)\right|}
$$

If $\mathbf{C}_{N}(P)<\mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right.$, as $S<N$, we have

$$
1 \leq \frac{1}{2}+\frac{1}{2}-\frac{1}{\left|\mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right)\right|}
$$

and this is a contradiction. Therefore $\mathbf{C}_{N}(P)=\mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right)$ and

$$
P \leq \mathbf{N}_{N}(P) \leq \mathbf{N}_{N}\left(\mathbf{C}_{N}(P)\right) \leq \mathbf{C}_{N}(P)
$$

Then $\mathbf{C}_{N}(P)=\mathbf{N}_{N}(P)$ and P is abelian. By Burside's Theorem (see for instance 17.9 of [8]) we obtain that N is p-nilpotent for all $p \in \pi$ and N has normal π-complement. In particular, N is π-separable. Let H be a Hall π subgroup of N. Reasoning in the same way that in case of P for H, we obtain that $\mathbf{C}_{N}(H)=\mathbf{N}_{N}(H)$ and H is abelian too.

Let $K / \mathbf{Z}(N)$ be the normal π-complement of $N / \mathbf{Z}(N)$. By Lemma 3.1(5) we have that $S \mathbf{Z}(N) / \mathbf{Z}(N)$ is a normal π^{\prime}-subgroup of $N / \mathbf{Z}(N)$, so $S \leq K$.

Step 3: $K=\mathbf{C}_{N}(x)$ for all $x \in S \backslash \mathbf{Z}(G) \cap N$ and $S \leq \mathbf{Z}(K)$.
Let $x \in S \backslash \mathbf{Z}(G) \cap N$, then $x^{G} \in X_{1}$ and by Lemma 3.1(1) and $\mathbf{C}_{G}(x) / S$ is a π^{\prime}-group by Lemma 3.1(6. Since $\left|x^{N}\right|$ is a π-number, we obtain that $\mathbf{C}_{N}(x) / \mathbf{Z}(N)$ is a π^{\prime}-Hall of $N / \mathbf{Z}(N)$. Thus $K=\mathbf{C}_{N}(x)$ for all $x \in S \backslash \mathbf{Z}(G) \cap N$ and, in particular, $S \leq \mathbf{Z}(K)$.

Step 4: $K=S$.
Let H be an abelian Hall π-subgroup of N. We have seen in the proof of Step 2 that

$$
N=S \cup \bigcup_{g \in N} \mathbf{C}_{N}(H)^{g}
$$

and this implies that

$$
N=\bigcup_{g \in N} S \mathbf{C}_{N}(H)^{g}
$$

Then $N=\mathbf{C}_{N}(H) S$ and $H S \unlhd N$.
Let $a \in K \backslash S$, then $a^{G} \in X_{2}$ by Lemma 3.1(1) and, as $\left|a^{G}\right|$ is a π^{\prime}-number, we have $a \in \mathbf{C}_{K}\left(H^{g}\right)=\mathbf{C}_{K}(H)^{g}$ with $g \in N$. Moreover $S \leq \mathbf{Z}(K)$ by Step 3, so we have the following equalities

$$
\mathbf{C}_{K}\left(H^{g}\right)=\mathbf{C}_{K}\left(H^{g} S\right)=\mathbf{C}_{K}(H S)=\mathbf{C}_{K}(H)
$$

Thus $a \in \mathbf{C}_{K}(H)$ for $a \in K \backslash S$ ande $K=\langle K \backslash S\rangle \subseteq \mathbf{C}_{N}(H)$. As H is abelian and $N=H K$, we have $H \leq \mathbf{Z}(N) \leq K$. This implies that $N=H K=K$ and $S \leq \mathbf{Z}(N)$ by Step 3, a contradiction.

Step 5: N is quasi-Frobenius with abelian kernel and complement.
Let $\bar{N}=N / \mathbf{Z}(N)$ and let $\bar{K}=K / \mathbf{Z}(N)$. If $\bar{K}=\mathbf{C}_{\bar{N}}(\bar{x})$ for all $\bar{x} \in \bar{K} \backslash\{1\}$ then N is quasi-Frobenius with abelian kernel K and abelian complement H. Suppose that $\bar{K}<\mathbf{C}_{\bar{N}}(\bar{x})$ for some $\bar{x} \in \bar{K} \backslash\{1\}$. We can suppose that $o(\bar{x})$ is an r-number for a prime $r \in \pi^{\prime}$. Now, let $\bar{y} \in \mathrm{C}_{\bar{N}}(\bar{x}) \backslash \bar{K}$ such that $o(\bar{y})$ is a q-number for some $q \in \pi$. We can suppose without loss of generality that $o(y)$ is a q-number. We have $[y, x] \in \mathbf{Z}(N)$ because $\bar{y} \in \mathbf{C}_{\bar{N}}(\bar{x})$ and, since $(o(x), o(y))=1$, it follows that $[x, y]=1$. Then $y \in \mathbf{C}_{N}(x)=K$ and $\bar{y} \in \bar{K}$ and this is a contradiction.

We remark that the converse of the previous theorem is false.

Example 5.1

We know that the special linear group $H=S L(2,5)$ acts Frobenius on $K=C_{11} \times C_{11}$. Then, it is clear that any subgroup of H acts Frobenius on K. We consider in particular P be a Sylow 5 -subgroup of H. We know that $\mathbf{N}_{H}(P)$ is a cyclic group of order 20 and also acts Frobenius on K. We define $N=K P$, that is trivially a normal subgroup in $G=K \mathbf{N}_{H}(P)$.

We have N is Frobenius with abelian kernel and abelian complement. Moreover,

$$
N=1 \cup(K-1) \cup\left(\bigcup_{k \in K} P^{k} \backslash\{1\}\right)
$$

and K is decomposed into the trivial class and classes with cardinal 5 , while the elements of $\bigcup_{k \in K}\left(P^{k} \backslash\{1\}\right)$ are decomposed in N-conjugacy classes of cardinal 121. The set of conjugacy class sizes of N is $\{1,5,121\}$.

Now we consider the G-conjugacy classes of N. As $G=K \mathbf{N}_{H}(P)$ is also a Frobenius group with kernel K and complement $\mathbf{N}_{H}(P)$, it follows that K is decomposed exactly in the trivial class and classes with cardinal $\left|\mathbf{N}_{H}(P)\right|=20$. That is, the N-conjugacy classes contained in K have been grouped 4 by 4 to form G-classes. And, on the other hand, the N-conjugacy classes contained in $\bigcup_{k \in K} P^{k} \backslash\{1\}$, which have size 121 , are grouped in pairs, and become two G-conjugacy classes of size 121×2. Then the set of G-conjugacy class sizes of N is $\{1,4 \times 5,2 \times 121\}$ and the graph $\Gamma_{G}(N)$ has only one component.

On the other hand, the following provides an example of the other case about the structure of N in Theorem E.

Example 5.2

Let G be the group of the library of the small groups of GAP (see [7]) with
number $\operatorname{Id}(324,8)$ and with presentation

$$
\left\langle x, y, z \mid x^{3}=y^{4}=z^{9}=1,[x, y]=1, z^{y}=z^{-1}, z^{2}=x z x z x=x^{-1} z x^{-1} z x^{-1}\right\rangle
$$

Using GAP, it is easy to check that G has an abelian normal subgroup $N \cong$ $C_{3} \times C_{3}$ and the set of G-class sizes of N is $\{1,2,3\}$.

Acknowledgements

The research of the first and second authors is supported by the Valencian Government, Proyecto PROMETEO/2011/30 and by the Spanish Government, Proyecto MTM2010-19938-C03-02.

References

[1] Z. Akhlagi, A. Beltrán, M.J. Felipe, M. Khatami, Structure of normal subgroups with three G-class sizes. Monatsh. Math. 167 (2012), 1-12.
[2] A. Beltrán and M.J.Felipe, On the diameter of p-regular conjugacy class graph of finite groups. Comm. Algebra 30(12) (2003), 5861-5873.
[3] A. Beltrán and M.J.Felipe, On the diameter of p-regular conjugacy class graph of finite groups II. Comm Algebra 31(9) (2003), 4393-4403.
[4] E.A. Bertram, M.Herzog and A.Mann, On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22 (6) (1990), 569-575.
[5] D. Chillag, M. Herzog and A. Mann, On the diameter of a graph related to conjugacy classes of groups. Bull. London Math. Soc. 25 (1993), 255-262.
[6] S. Dolfi. Arithmetical conditions on the length of the conjugacy classes of a finite group. J. Algebra 174 (1995), 753-771.
[7] The GAP Group, GAP - Groups, Algorithms and Programming, Vers. 4.4.12 (2008). http://www.gap-system.org
[8] B. Huppert, Character Theory of Finite groups, Vol. 25, De Gruyter Expositions in Mathemathics, Berlin, New York, 1998.
[9] Z. Lu and J. Zhang. On the diameter of a grah related to p-regular conjugacy classes of finite groups. J.Algebra 231 (2000), 705-712.

