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ABSTRACT 21 

 22 

This study was carried out to investigate the ability of hyperspectral imaging 23 

technique in the NIR spectral region of 900–1700 nm for the prediction of water and 24 

protein contents in Spanish cooked hams. Multivariate analyses using partial least-25 

squares regression (PLSR) and partial least squares-discriminant analysis (PLS-DA) 26 

were applied to the spectral data extracted from the images to develop statistical 27 

models for predicting chemical attributes and classify the different qualities.  28 

Feature-related wavelengths were identified for protein (930, 971, 1051, 1137, 1165, 29 

1212, 1295, 1400, 1645 and 1682 nm) and water (930, 971, 1084, 1212, 1645 and 30 

1682 nm) and used for regression models with fewer predictors. The PLS-DA model 31 

using optimal wavelengths (966, 1061, 1148, 1256, 1373 and 1628 nm) successfully 32 

classified the examined hams in different quality categories. The results revealed the 33 

potentiality of NIR hyperspectral imaging technique as an objective and non-34 

destructive method for the authentication and classification of cooked hams. 35 

 36 

 37 

Keywords: Chemical image; chemical attributes; PLSR; PLS-DA; Spanish cooked 38 

ham; hyperspectral imaging. 39 

40 
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1. INTRODUCTION 41 

Cooked ham is a meat product with high levels of consumption in Spain and other 42 

countries. In 2009, the consumption of cooked meat products including different 43 

categories of cooked ham resulted in total expenses of 185.77 million Euros and a 44 

consumption of 4.05 kg per capita in Spain (MARM, 2010). The main stages in the 45 

processing of cooked hams are the brine injection, which is different according to the 46 

desired final quality; the tumbling and massaging step, which is useful to distribute 47 

the brine solution through the entire piece and to extract the proteins from the fibers; 48 

the cooking step, which requires a rigorous temperature and time control to assure 49 

the wholesomeness of the product; and finally, the cooling step, after which hams are 50 

taken out of the mold and packaged (Frentz, 1982; Toldrá et al., 2010). The salt 51 

added in the brine solution reaches a final content of around 2% in the ham. Nitrite is 52 

also added at levels of 120-150 mg/kg as a contributor to color formation, 53 

antioxidant, and to preserve against pathogens. In order to avoid risks of nitrosamine 54 

formation, the addition of ascorbates at levels of 200-400 mg/kg is recommended. 55 

Phosphates given as P2O5 at a maximum concentration of 7500 ppm are also allowed 56 

in Spain in all type of cooked ham as a contributor to ham’s water retention. Sugar in 57 

dextrose form is also added for taste purposes (Toldrá et al., 2010) 58 

The final quality of the product depends on the raw material used (pH, microbial 59 

content, or fat) and the processing conditions. There is a broad range of types of 60 

cooked ham, which generally are classified depending on different characteristics. 61 

Therefore, Spanish Government has established quality regulations for cooked meat 62 

products with the aim to define the conditions and characteristics that must be 63 

complied by all Spanish cooked hams (BOE, 1983). This quality regulation also 64 
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classifies and categorizes the cooked ham in three main categories: ‘extra cooked 65 

ham’ (or extra category), ‘first class cooked ham’ (or first category), and ‘second 66 

class cold cut ham’ (or second category). Main differences among these categories 67 

are based on the protein and water contents of the cooked hams. In fact, according to 68 

the legislation, the water/protein ratio in ‘Extra category’ should be less than 4.13, 69 

whereas 4.65 would be the allowed ratio for ‘First category’ cooked ham. In ‘Second 70 

category’, a minimum of 14% of meat protein in the total product is allowed, 71 

although it is possible to add up to 1% of external proteins. 72 

In the industry, the quality of ham in terms of chemical composition is generally 73 

assessed by experienced personnel using analytical techniques that are time 74 

consuming and sample-destructive such as the gravimetric measurements of water or 75 

the most commonly used nitrogen determination methods that include Kjeldahl 76 

(AOAC, 1999a), Dumas (AOAC, 1999a), and combustion (AOAC, 1999b) methods. 77 

In this sense, the hyperspectral imaging system is an emerging technique that 78 

integrates both conventional imaging and spectroscopy technologies for attaining 79 

spatial and spectral information of the product (ElMasry et al., 2012). This technique 80 

has been proved to be useful in quality evaluation and classification of different types 81 

of products such as raw meat (Prevolnik et al, 2004; Qiao et al., 2007; Liu et al., 82 

2010; Barbin et al., 2012; Kamruzzaman et al., 2011; ElMasry et al., 2011a), meat 83 

products (ElMasry et al., 2011b), or fruits and vegetables (Karimi et al., 2009; 84 

Cubero et al., 2011; Rajkumar et al., 2012). This technique is considered as low time-85 

consuming, non-destructive, and requiring a minimum of human intervention. 86 

Hyperspectral imaging technique has the ability to capture internal constituent 87 

gradients within the product, which is a useful tool for non-homogeneous multi-88 
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component products. The main objective of the present work was to investigate the 89 

potential application of the NIR hyperspectral imaging technique for evaluating the 90 

quality of Spanish cooked hams. The specific objectives were to (a) predict water 91 

and protein contents in Spanish cooked ham and (b) classify the ham according to its 92 

initial quality. These objectives were achieved by (1) establishing a NIR 93 

hyperspectral imaging system with a spectral region of 910-1700 nm, (2) building 94 

robust calibration models using partial least-squares regression (PLSR) to 95 

quantitatively predict protein and water contents and partial least-squares 96 

discriminant analysis (PLS-DA) to classify the different ham qualities, (3) 97 

identifying the most informative wavelengths for prediction and classification 98 

purposes, and (4) building chemical images by developing image processing 99 

algorithms for mapping the concentration of protein and water contents in the ham 100 

slices. 101 

 102 

2. MATERIALS AND METHODS  103 

2.1. Cooked ham samples 104 

Four types (Ham 1, Ham 2, Ham 3 and Ham 4) of Spanish cooked ham of different 105 

categories of quality (extra category, first category, and second category), were 106 

studied. Ham 1 (H1) and ham 2 (H2) were both ‘extra category’, but H1 had a lower 107 

fat content than H2. Ham 3 (H3) and ham 4 (H4), represent the ‘first category’ and 108 

the ‘second category’, respectively. Samples from cooked hams labeled according to 109 

the Spanish Quality Regulation were purchased from a local retailed market. A total 110 

of sixty-three slices, 1cm thick, of Spanish cooked ham were analyzed. All cooked 111 

hams were accurately labeled according to their categories of quality and stored in a 112 
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fridge at 4oC. Before image acquisition, cooked hams were removed from the fridge 113 

and kept for 30 min at room temperature (22 ºC) to be acclimatized with the 114 

surrounding environment. Each slice was then imaged individually in the 115 

hyperspectral imaging system. Three cylindrical subsamples from each cooked ham 116 

slice were cored using a 2.5 cm diameter cylindrical hollow drill with a sharp cutting 117 

edge. The subsamples were chosen from different locations in the slice, comprising a 118 

broad range of protein (n=126), water (n=126) and fat (n=63) concentrations. 119 

2.2. Chemical Analysis 120 

2.2.1. Fat and water contents 121 

The intramuscular fat and water contents for each sample were determined using the 122 

CEM analysis system described by Bostian et al., (1985). The subsamples were 123 

blended and subsequently analyzed on a Smart Trac System (CEM Corporation, 124 

Matthews, NC, USA) which consists of two modules: the Smart System 5 to 125 

determine water content, and the Smart Trac module for fat content determination. A 126 

sample between 2 to 3 grams of blended cooked ham was weighted in the Smart 127 

System 5, where its water content was gravimetrically analyzed by determining the 128 

weight loss. Then, the same dried samples were rolled in CEM’s Trac FilmTM and 129 

placed in the Smart Trac (Rapid Flow Analyzer,), which is a nuclear magnetic 130 

resonance (NMR) module. In this equipment, the sample is pulsed with radio 131 

frequency (RF) energy while within a static magnetic field. The resulting signal is 132 

recorded and analyzed for the total proton activity of fat present in the sample. 133 

Results of water and fat contents are given in percentage. 134 

2.2.2. Protein content 135 
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Protein content was measured according to the method of Sweeney and Rexroad 136 

(1987) on the LECO FP-328 total nitrogen determinator (LECO R Corporation, St. 137 

Joseph, MI, USA) calibrated with ethylene diamine tetraacetic acid (EDTA) 138 

calibration solutions. This method is based on the measurement of nitrogen by 139 

combustion. For the analysis, a sample of 0.25±0.05 g was weighted in tin foil cups 140 

(LECO R Corporation, St. Joseph, MI, USA) in triplicate and loaded in the 141 

autoloader of the system. The factor used to convert the amount of detected nitrogen 142 

to a percent of crude protein was 6.25.  143 

2.3. Image acquisition 144 

A line-scan hyperspectral imaging system in the NIR range of 890-1750 nm with 256 145 

spectral bands, described previously by ElMasry et al., 2011b, was used for acquiring 146 

hyperspectral images of ham slices (Figure 1). During image acquisition, each slice 147 

of each ham was placed on the translation stage and moved at a constant speed of 2.8 148 

cm/s. The speed of the translation stage was synchronized with the image acquisition 149 

by the SpectralCube software to obtain a spectral image with a spatial resolution of 150 

0.58 mm/pixel. The system scans the sample line by line and the reflected light is 151 

dispersed by the spectrograph and captured by the CCD array detector of the camera 152 

in spatial-spectral axes. The camera has 320×256 (spatial × spectral) pixels and the 153 

spectral increment between the contiguous bands was 3.36 nm in the spectral range 154 

of 890-1750 nm yielding 256 bands. Once the hyperspectral image has been 155 

acquired, it was sent to the computer for storage in a raw format before being 156 

processed. The main key steps for the whole procedure of image analysis are 157 

presented in Figure 2 and briefly described in the following section.  158 

2.4. Image processing 159 
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The raw images were processed using the Environment for Visualizing Images 160 

(ENVI) software (ENVI 4.6.1) (Research Systems Inc., Boulder Co., USA). Because 161 

the response of the CCD detector in the ranges of 897–910 and 1700–1753 nm was 162 

rather low and the resulting spectral images at these two particular ranges were rather 163 

noisy, the hyperspectral images were resized to the spectral range of 910 nm to 1700 164 

nm with a total of 237 bands.  165 

To remove the effect of dark current of the camera sensor from the acquired images 166 

(R0), white and dark reference images were concurrently captured. The white 167 

reference image (RW) was acquired from a white Teflon calibration tile and the dark 168 

reference image (RD) was obtained by turning off the light source along with 169 

completely closing the lens of the camera with its opaque cap. A relative reflectance 170 

image (R) was then calculated using the following equation: 171 

 
Dw

D0

RR

RR
R




  (eq. 1) 172 

Final images with a dimension of 320 pixels × 500pixels × 237 bands were obtained 173 

and subsequently used to extract the spectral information. 174 

2.5. Region of interest selection and spectral data extraction 175 

Two different regions of interest were selected in each slice to establish the spectral 176 

data sets. Figure 3 shows the procedure for selecting the regions of interest for the 177 

spectral datasets used for water, protein and fat prediction (Figure 3a) and for the 178 

spectral dataset used for classification of cooked hams (Figure 3b-f). For predicting 179 

protein, water and fat contents, the spectral data were extracted from the image pixels 180 

corresponding to the circular areas shown in Figure 3a where the reference 181 

subsamples had been collected. Pixel spectra within each circular region were 182 

averaged and saved in three matrices (X1, X2 and X3). The extraction of this spectral 183 
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information was carried out manually using ENVI software (Research Systems Inc., 184 

Boulder, CO, USA).  185 

For classification purposes of the examined ham qualities, the spectral data were 186 

extracted from the lean region of each ham slice. Therefore, a segmentation routine 187 

was applied before extracting spectral data to separate the lean part of ham from the 188 

background and the fat or gelatin covering layer. The process started by subtracting a 189 

low-reflectance band from a high-reflectance band (Figure 3c) followed by a simple 190 

thresholding. This step produces a segmented image for the whole ham sample 191 

including the lean part, gelatin and fat portions of the sample (Figure 3d). Again, 192 

segmentation was performed for detecting the gelatin and fat by simple thresholding 193 

to produce a binary image of fat and gelatin pixels (Figure 3e). The lean portion was 194 

isolated by subtracting the second segmented image (Figure 3e) from the first 195 

segmented image (Figure 3d) to produce a mask containing only the lean part in a 196 

black background (Figure 3f). The isolated lean portion was then used as the main 197 

region of interest (ROI) to extract the average spectral data from only the lean part of 198 

the ham samples and avoid fat and other undesired components that can affect the 199 

prediction values. The extracted spectral data were then arranged in another matrix 200 

(X). All extraction routines were performed using the software Matlab 201 

7.11.0.584(R2010b) (The Mathworks Inc., Natick, MA, USA). 202 

2.6. Spectral data analysis and wavelength selection  203 

The extracted spectral data were then arranged in two matrices where the rows 204 

represent the number of samples and the columns represent the number of variables 205 

(237 wavelengths). Partial least-squares regression (PLSR) was applied to the first 206 

matrix to develop separate models for each chemical constituent. PLSR technique is 207 
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particularly useful when it is necessary to predict a set of dependent variables from a 208 

large set of independent variables (Abdi, 2010). In such case, the values of one 209 

attribute (protein, water or fat content) of the dataset (Y1, Y2 and/or Y3) were used to 210 

represent the dependent variable and the reflectance values at 237 wavelengths (X1, 211 

X2 and/or X3) represented the independent variables. Performance of the prediction 212 

models was evaluated using the root-mean-square error of calibration (RMSEC), the 213 

root-mean-square error of cross-validation (RMSECV), the coefficients of 214 

determination (R2), and the numbers of the latent variables required (#LV). The 215 

number of latent variables was determined using the minimum value of predicted 216 

residual error sum of squares (PRESS) (ElMasry et al., 2007; Esquerre et al., 2009). 217 

When the number of latent factors in the model increased, the value of PRESS 218 

decreased until its lowest value corresponding to the ideal number of latent factors. 219 

Leave-one-out cross-validation method was used to validate the prediction models. 220 

Moreover, partial least-squares discriminant analysis (PLS-DA) (Prats-Montalban et 221 

al., 2006; Berrueta et al., 2007; Gaston et al., 2010), developed with leave-one-out 222 

cross-validation, was applied to the second matrix(X-Matrix) to build a qualitative 223 

model for ham classification. For this purpose, a dummy Y-variable (Y-Matrix) was 224 

assigned to each ham class, 1 for H1, 2 for H2, 3 for H3 and 4 for H4. Performance 225 

of the classification model was evaluated using the same parameters used for the 226 

prediction models (RMSEC, RMSECV, R2, and the #LV). Samples for which the 227 

difference between actual and predicted values exceeded three times of the standard 228 

deviation were considered as outliers (Brimmer and Hall, 2001; Chen et al., 2005). In 229 

order to reduce the high dimensionality of the extracted spectral data, to avoid the 230 

presence of noise or information that is not related to the chemical features, and to 231 
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make the PLSR model more robust, the most important wavelengths for the 232 

prediction of the chemical attributes and classification were selected (ElMasry et al., 233 

2007). Weighted -coefficients resulting from the PLSR models established using 234 

the whole spectral range consisting of 237 wavelengths were used for identifying the 235 

optimal wavelengths. 236 

2.7. Mapping of water and protein content  237 

The PLS regression models were used to predict water and protein concentrations in 238 

each pixel of the spectral image. This was done by multiplying the model regression 239 

coefficients by the spectrum of each pixel in the image at selected wavelengths. The 240 

resulting prediction image (called ‘chemical image’) was displayed in colors, where 241 

different colors represent different concentrations of protein or water within the 242 

sample. Thus, the prediction was done by developing a calibration model and then an 243 

interpolation was applied to extend the model to all pixels in the image. 244 

2.8. Statistical Analysis 245 

Analysis of variance (ANOVA) was conducted to determine significant differences 246 

in the measured protein, water, and fat contents, as well as the ratio water/protein 247 

among the analyzed cooked ham samples (see Table 1) and for the predicted values 248 

for protein and water using the PLS model (see Table 3), using the software 249 

Statgraphics Plus for Windows 5.1 (Manugistics Corp., Rockville, Md.). All 250 

multivariate analyses (PLS and PLS-DA) were conducted using The Unscrambler 251 

v9.7 (CAMO Software AS, OSLO, Norway). 252 

 253 

3. RESULTS AND DISCUSSION 254 

3.1. Cooked ham analysis 255 
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The protein, water, and fat contents (Y1, Y2 and Y3) of the tested Spanish hams 256 

determined by instrumental methods are shown in Table 1. According to Spanish 257 

quality regulations for cooked meat products, the examined ham samples could be 258 

easily classified as extra category class (H1 and H2), first category (H3), and second 259 

category (H4). Water/protein ratio values of the analyzed H1 and H2 were under 4.13 260 

whereas H3 showed a value of water/protein ratio above 4.13 but below 4.68. The 261 

protein concentration of H4 was 15.15 ± 1.87 (Table 1). This result agrees with the 262 

minimum protein amount of 14% required in second category cooked hams 263 

considering the addition of 1% extra protein. The content of fat is not considered in 264 

the quality regulations but a considerable difference between H1 (low fat content) 265 

and the rest of the hams was observed. Significant differences (p<0.01) between 266 

extra category (H1 and H2), first category (H3) and second category (H4) were 267 

detected in protein and water content. 268 

3.2. Spectral characteristics of hams  269 

Figure 4 shows the average reflectance spectra in the spectral range of 910–1700 nm 270 

of the four examined hams. In general, all recorded spectra had the same shape and 271 

showed characteristic bands of water at 970 nm and 1440 nm, and characteristic 272 

bands of fat at 1200 nm (Leroy et al., 2004; Barlocco et al., 2006; Cen and He, 2007; 273 

Andres et al., 2008; Prieto et al., 2008). Although the spectral curves show a similar 274 

pattern, small differences can be observed among the spectral profiles of the samples 275 

in terms of reflectance magnitude. It can be observed that H4 had the lowest 276 

reflectance values (higher absorbance) throughout the whole spectral range. Also, it 277 

was clear to notice that H2 had highest reflectance values compared with the other 278 

ham categories. These differences are clearly observed in the entire spectral range 279 
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especially in the range between 900 nm and 1400 nm and could be attributed to the 280 

differences observed on the water/protein ratio among the hams (Table 1). As can be 281 

observed in Figure 4, when the water content of ham samples increased (H4) the 282 

reflectance values decreased. In the same manner, when the water content decreased 283 

(H2) the reflectance values increased. In this sense it is interesting to try to correlate 284 

the spectral data and the chemical attributes measured in order to see if the NIR 285 

hyperspectral imaging technique can be used for classifying different ham qualities. 286 

3.3. Prediction of protein, water and fat contents 287 

Multivariate analyses, developed with leave-one-out cross-validation, were used to 288 

find the most accurate PLSR models for the prediction of protein, water and fat 289 

contents. This analysis involves using a single observation from the original sample 290 

as the validation data, and the remaining observations as the training data. This is 291 

repeated such that each observation in the sample is used once as the validation data. 292 

Thus, using this validation procedure, one sample was left out and the multivariate 293 

model was constructed by the rest of the samples using exactly the same process as 294 

the modelling procedure for feature selection and model construction. The obtained 295 

model was used for the prediction of protein, water and fat contents in the sample. 296 

Table 2 shows the root-mean-square error of calibration (RMSEC), the root-mean-297 

square error of cross-validation (RMSECV), the coefficients of determination (R2), 298 

and the numbers of the latent variables required (#LV) for protein, water and fat 299 

contents in ham samples by using the full spectral and the important wavelengths for 300 

protein and water contents. The results indicated that PLSR models for protein and 301 

water exhibited low values of RMSEC and RMSECV and high values of coefficients 302 

of determination (R2), indicating good performance of the models for predicting 303 
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protein and water. Regarding fat results, a bad performance of the predicting model 304 

was obtained probably due to the narrow range of fat contents observed in the 305 

cooked ham samples. Figure 5 shows the efficiency of PLRS models for predicting 306 

protein, water and fat contents of all ham samples. 307 

Wavelengths corresponding to the highest absolute values of weighted -coefficients 308 

were considered as optimal wavelengths. Ten individual wavelengths (930, 971, 309 

1051, 1137, 1165, 1212, 1295, 1400, 1645 and 1682 nm) for protein and 6 individual 310 

wavelength (930, 971, 1084, 1212, 1645 and 1682 nm) for water were identified as 311 

important wavelengths. According to the literature, wavelengths at 971 and 1400 nm 312 

are related to the absorbance of O–H bonds and could be associated to water content 313 

(Cozzolino and Murray, 2004; Barlocco et al., 2006), meanwhile, wavelengths at 930 314 

nm and in the range of 1100-1400 nm are related to the absorption of the C–H bonds 315 

of fatty acids and could be associated with fat content (Alomar et al., 2003; Prieto et 316 

al., 2009). Wavelengths at 1645 and 1682 nm could be related to C–H stretching first 317 

overtones (Osborne et al., 1993). 318 

After identifying the optimal wavelengths for each attribute, spectral data were then 319 

reduced from 237 wavelengths to 10 wavelengths in the case of protein and to 6 320 

wavelengths in the case of water (Table 2). For each attribute, the reduced spectral 321 

data were used to build a new PLSR model using the reflectance at these particular 322 

wavelengths as independent variables, and the measured values of protein or water as 323 

dependent variables. As shown in Table 2, the optimized PLSR models had 324 

comparable results to the original PLSR models. Both models had good performance 325 

in predicting protein and water contents in ham samples, indicating that it is possible 326 
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to use fewer wavelengths than 237 wavelengths to predict the chemical compositions 327 

in Spanish cooked hams. 328 

3.4. Distribution maps of protein and water 329 

Although it was possible to predict the contents of protein and water of the examined 330 

ham samples, it was quite vital to see the difference in these chemical attributes 331 

within the same ham samples or even among ham samples in a visualized form 332 

called ‘chemical images’. This could be achieved by applying the resulting PLSR 333 

model in a pixel-wise manner by a simple interpolation to show the distribution of 334 

these chemical attributes and their gradients from point to point in the sample. The 335 

PLS regression coefficients calculated using the optimal wavelengths were used to 336 

create chemical images to show the distribution of protein and water contents in the 337 

ham samples. In the resulting chemical images, pixels having similar spectral 338 

features give the same predicted value of protein or water and will be visualized in a 339 

similar color; whereas pixels having different spectral patterns will exhibit different 340 

values of protein or water contents and will be visualized indifferent colors. Figure 6 341 

shows an example of the resulting chemical images of water and protein contents. In 342 

these figures the changes in protein or water contents were assigned to a linear color 343 

scale and the numbers below each sample are the average protein or water content 344 

predicted (using the PLSR models) in the whole slice of ham. Although it was 345 

impossible to know the distribution of protein or water contents within the ham slices 346 

by the simple visual inspection (by either naked eyes or RGB camera), it was quite 347 

easy using the final chemical images to discern the change in these attributes from 348 

point to point in the same sample or even among ham samples as shown in Figure 6b 349 

and 6c. The contents of protein and water vary among different parts of the ham 350 
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slices and among hams. Differences in protein content and water distribution 351 

observed among categories of ham are mainly due to differences in the quality and 352 

integrity of the ham muscles, as well as the amount and composition of the brine 353 

injected. In general, products of higher quality are made with a low level of injected 354 

brine (Carisaghi et al., 2007) whereas an increase in the amount of retained water in 355 

low quality cooked products is achieved using higher amounts of brine solution. 356 

Thus, compared with those hams that have been injected with higher amounts of 357 

brine solution, extra category cooked hams show lower levels of water and, 358 

subsequently, higher protein content than first and second category cooked hams. 359 

Regarding the differences in protein and water distributions observed in Figure 6 360 

within each slice of cooked ham, it is important to consider that raw ham is a 361 

multiphase system with a hierarchic arrangement of protein fibers from different ham 362 

muscles in its structure. That structure is different in each ham, which makes it very 363 

difficult for the equal distribution of the brine solution through the ham (Toldrá et al., 364 

2010). Samples might have been homogenized for the chemical analysis as these 365 

results are in accordance with previously published analysis of homogenized samples 366 

of cooked ham (Jiménez et al, 1980; Del Campo et al, 1998) although in this study 367 

several samples from each slice were taken by separate with the aim to imitate the 368 

on-line procedure used in the processing lines. 369 

As declared in Figure 6, H4 had lower protein content (15.69%) and higher water 370 

content (75.78%); meanwhile H1 and H2 exhibited the highest values of protein 371 

(20.23% and 19.64%, respectively) and the lowest values of water (74.65% and 372 

74.70%, respectively) than H3 that has intermediate protein and water values 373 

(16.87% and 74.91%, respectively) between the extra category hams (H1 and H2) 374 
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and the low category ham (H4). Regarding the distribution of protein and water 375 

contents within the ham slice, H4 shows the highest homogeneity compared to the 376 

rest of the hams. This could be due to the use of smaller pieces of deboned ham legs 377 

for the processing as well as to the higher amounts of brine injection that are used in 378 

low quality cooked products and the important denaturation of the proteins during 379 

cooking (Cheng and Sun, 2006) that results in the welding of the muscles and the 380 

loss of their integrity (Toldrá et al., 2010). 381 

Table 3 shows the average and the standard deviation values of the protein and water 382 

predicted values calculated for all ham analyzed slices. The analysis of variance 383 

revealed no significant differences (p>0.01) in the predicted values of protein and/or 384 

water between H1 and H2 extra category hams using the PLSR. Significant 385 

differences (p<0.01) in the water/protein ratio were observed between extra category 386 

(H1 and H2), first category (H3) and second category (H4) hams. These values are in 387 

agreement with those obtained using traditional analysis (Table 1). In fact, the 388 

analysis of variance of protein and water main values obtained using both 389 

methodologies showed no significant differences (p>0.01) between the two sets of 390 

data. 391 

3.5.Classification 392 

The result of the PLS-DA model, using the whole spectral range consisting of 237 393 

wavelengths is presented in Table 4. It can be seen that the validation test gave 394 

similar result as the calibration set, and present low values of RMSEC and RMSECV 395 

and high R2 indicating good performance of the model for ham classification.he 396 

weighted-coefficients resulting from the PLS-DA model (Figure 7) were used for 397 

identifying the optimal wavelengths responsible for discrimination among ham 398 
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quality classes. These six wavelengths (966, 1061, 1148, 1256, 1373 and 1628 nm) 399 

are close to some of the optimal wavelengths obtained for the protein and water 400 

prediction by the PLSR models and indicate that ham classification by PLS-DA 401 

could be associated with the protein and water content of ham slices.  402 

Once the optimal wavelengths were selected, the spectral dataset was reduced from 403 

237 wavelengths to 6 wavelengths and a new PLS-DA was developed on the 404 

reflectance spectral data using only the optimum wavelengths instead of the full 405 

spectral range (237 wavelengths) (Table 4). Figure 8 shows the score plot of the first 406 

and the second principal components of the optimized PLS-DA using the 6 optimal 407 

wavelengths for all spectra of the tested hams. The first two principal components 408 

(PCs) resulting from PLS-DA, which explained 98.96% (94.81% for the first PC and 409 

4.15% for the second PC) of the total variance among the samples, can be used to 410 

classify the hams. The first principal component evidently separates hams samples 411 

into two main groups, H1 and H2 (extra category) in the negative part of PC1 and H3 412 

and H4 (first and second category) in the positive part of PC1. In addition the second 413 

principal component clearly separates the ham samples into two groups, H1 in the 414 

negative part of PC2 and the other three hams (H2, H3 and H4) in the positive part of 415 

PC2. In general, the tested ham samples can be obviously distinguished from each 416 

other in the principal component space. These results suggested that PC1 could be 417 

related with the water and protein content whereas PC2 could be related with the fat 418 

content of the hams, indicating that it is possible to classify the Spanish cooked ham 419 

on the basis of the water, protein and fat contents.  420 

 421 

4. CONCLUSIONS 422 
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Chemical images obtained from the experiments explain the robustness of the PLSR 423 

models and the validity of this technique to visualize the water and protein 424 

distribution in the ham slices. Regarding fat composition, a bad performance of the 425 

predicting model was obtained probably due to the narrow range of fat contents 426 

observed in the cooked ham samples. The PLS-DA model developed using some 427 

optimal wavelengths (966, 1061, 1148, 1256, 1373 and 1628 nm) was successfully 428 

used to classify the examined hams to different quality categories. This study 429 

demonstrated the potential capability of NIR hyperspectral imaging as an objective, 430 

rapid, and non-destructive technique for evaluating the physicochemical properties of 431 

meat products as well as the authentication and classification of these products. With 432 

some simple modification and using the most informative wavelengths, this 433 

technique could be adapted in the ham industry for quality evaluation during 434 

processing or for quality control and quality assurance programs.  435 
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Figure 4. 

 

 

0

10

20

30

40

50

60

70

900 1000 1100 1200 1300 1400 1500 1600 1700

R
e

fl
e

ct
an

ce
 (

%
)

Wavelengths (nm)

H1 H2 H3 H4



Figure 5. 
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Figure 6 
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-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 50 100 150 200 250

R
e
g

re
s
s
io

n
 C

o
e
ff

ic
ie

n
t

Wavelength (nm)

1061

1256

1148

1373

1628

966



Figure 8 
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Table 1. Measured water, protein and fat contents (mean ± standard deviation) of the 

examined commercial hams. 

Ham 
Protein (P, %) 

(n=126) 

Water (W, %) 

(n=126) 
W/P ratio 

% Fat 

(n=63) 

H1 19.58a ± 0.74 75.33a ± 0.56 3.85a ± 0.14 1.62a ± 0.50 

H2 19.99a ± 1.70 75.00a ± 0.66 3.75a ± 0.28 3.68b ± 0.93 

H3 17.38b ± 0.96 75.47a ± 0.58 4.34b ± 0.26 3.05b ± 0.88 

H4 15.15c ± 1.87 76.79b ± 0.53 5.07c ± 0.64 3.01b ± 0.58 

a,b,c Different letters in the same column mean significant differences  (p<0.01). 

 



Table 2. Results of the PLSR models for predicting protein, water and fat contents in 

ham samples by using the full spectral range and the important wavelengths. 

 
   

Calibration  Validation 

Attribute #W #LV 
R2 RMSEC  R2 RMSECV 

Protein 

(n=126) 

237 8 0.903 0.885  0.875 1.013 

10 8 0.877 0.994  0.855 1.09 

Water 

(n=126) 

237 6 0.947 0.376  0.925 0.456 

6 5 0.891 0.540  0.868 0.602 

Fat 

(n=126) 
237 7 0.607 0.662  0.396 0.834 

#w: Number of Wavelengths, #LV: Number of Latent Variables, RMSEC: root-mean square error of 

calibration, RMSECV: root-mean square error estimated by cross-validation, R
2
: coefficient of 

determination between the predicted and measured values. 

 



Table 3. Predicted values for protein and water (mean ± standard deviation) using the 

PLS model. 

Ham Protein (P, %) 

(n=126) 

Water (W, %) 

(n=126) W/P ratio 

H1 20.30a ± 0.63 74.57a ± 0.42 3.67a ± 0.10 

H2 20.16a ± 0.74 74.54a ± 0.36 3.70a ± 0.14 

H3 16.95b ± 0.64 75.06a ± 0.34 4.51b ± 0.16 

H4 15.66c ± 1.06 76.01b ± 0.28 4.85c ± 0.32 

a,b,c Different letters in the same column mean significant differences  (p<0.01). 

 



Table 4. Results of the partial least square discriminant analysis PLS-DA model for 

classification of ham samples by using the full spectral range and the important 

wavelengths. 

   
Calibration  Validation 

 
#W #LV R2 RMSEC  R2 RMSECV 

Classification 

(n=63) 

237 5 0.973 0.176  0.966 0.198 

6 3 0.956 0.216  0.952 0.237 

#W: Number of Wavelengths, #LV: Number of latent variables, RMSEC: root-mean square error of 

calibration, RMSECV: root-mean square error estimated by cross-validation, R2: coefficient of 

determination between the predicted and assigned dummy values. 

 


