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Abstract

A new tool for the rigorous and efficient design of compensated multiport waveg-

uide junctions, considering the mechanization effects due to low-cost manufac-

ture techniques, is presented. Several new designs for a great variety of key

components, present in modern microwave and millimetre-wave equipment, are

proposed taking into account the introduction of rounded corners in the rectan-

gular waveguide access ports. The new implemented tool permits to control and

compensate for the potential degradation of the wide-band performance of such

components prior to their fabrication, thus achieving an optimal design. All the

presented results have been successfully validated by comparing the obtained

simulated data with the results provided by a commercial software based on the

finite-element method.

Keywords: Multiport waveguide junctions, mechanization effects, full-wave

methods.

1. Introduction

Wide-band multiport rectangular waveguide junctions are a topic of high

interest in the field of modern microwave and millimetre-wave equipment, and

they have been intensively investigated in the recent years [1], [2], [3]. These
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components are widely used in many telecommunication devices, such as beam

forming networks, power dividers or manifold multiplexers, when multiple chan-

nels, low insertion losses, and a broadband operation performance are required.

Traditionally, the usable bandwidth of these multiport junctions has been op-

timized by compensating the structure using metallic insets, such as square

prisms, pyramid tuning stubs, and cylindrical posts [4], [5], [6], [7].

Moreover, it is usual to resort to low-cost waveguide device fabrication tech-

niques, such as computer-controlled milling, electroforming or die-casting, in

order to manufacture these optimized components. A common drawback of

these previous techniques is the introduction of rounded corners in the cross-

section of the waveguide access ports of the cited junctions, thus deteriorating

the expected electrical response of the designed device and, therefore, limiting

its desired wide-band performance [2]. Nevertheless, if computer-aided design

(CAD) tools could accurately consider these negative manufacture effects in

the analysis stage, it would be possible to compensate them and achieve opti-

mum electrical designs of such components easily implementable via low-cost

fabrication techniques. As a consequence, there is an ever-increasing interest

in compensated multiport junctions CAD tools enabling the accurate design of

these components, prior to their final hardware implementation using low-cost

manufacture procedures.

In this letter, a novel full-wave CAD tool is proposed for the accurate and

efficient design of compensated multiport waveguide junctions, taking into ac-

count the mechanization effects introduced by the low-cost production methods

aforementioned. On the one hand, the proposed CAD tool permits the mi-

crowave designer to predict the electrical performance of the final manufactured

device as a function of the radius of the considered rounded corners. On the

other hand, it also enables to compensate for the degradation introduced in the

frequency response of the device by redesigning the junction (i.e. modifying the

position and/or the dimensions of the compensating stub) in order to achieve

an optimum broadband operation.

In order to fully validate the presented CAD tool, new designs for a great
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variety of key components present in many communication satellite subsystems

are provided. In these devices, the effect of the rounded corners is considered,

and partial-height cylindrical metallic posts are used as compensating elements.

The first examples consist of new designs concerning compensated H-plane T-

junctions (see Fig. 1) and right-angled bends. A more complex five-port device,

specifically a compensated turnstile junction, considering these mechanization

effects is also reported.

Figure 1: H-plane T-junction compensated with a partial-height cylindrical metallic post of

radius r and height h. Rounded corners of radius R have been introduced in the waveguide

access ports to take into account the mechanization effects due to low-cost production.

It is important to emphasize that this work provides, for the first time to the

authors’ knowledge, a rigorous combination of 2-D and 3-D Boundary Integral-

Resonant Mode Expansion (BI-RME) techniques [2], [8] for the efficient analysis

and design of compensated multiport waveguide junctions considering mecha-

nization effects. To this respect, note that the novelty of this work lies on

the fact that previous works of the authors did not considered the presence of

rounded corners in the analyzed multiport junctions (i.e. [3], [6], [9]) or did

not deal with the design of compensated multiport junctions using the 3-D BI-

RME technique (i.e. [2]). As a consequence, the work developed in this letter,

not only constitutes a significative extension of previous contributions, but also

provides a novel and very efficient CAD tool aiming at improving the relative

bandwidth of a great variety of compensated waveguide junctions considering

mechanization effects.

3



2. Full-wave analysis of multiport waveguide junctions considering

mechanization effects

The implemented full-wave CAD tool is mainly based on the Boundary

Integral-Resonant Mode Expansion (BI-RME) method. Concretely, the 2-D BI-

RME method [2] is used to characterize a rectangular waveguide with rounded

corners. This multimodal technique has been combined with the 3-D BI-RME

method [8], which yields a generalized admittance matrix of arbitrarily shaped

3-D cavities, to finally provide a wide-band electromagnetic characterization of

the whole structure.

To illustrate this concept in more detail, we start by considering the com-

pensated H-plane T-junction depicted in Fig. 1. In order to analyze this compo-

nent, the 3-D BI-RME method can be first employed to derive the generalized

admittance matrix (GAM) of a rectangular cavity loaded with a partial-height

cylindrical post, and considering standard rectangular waveguide access ports

of dimensions a× b. The elements of the GAM can be obtained as:

Y =
1

jkη
YA +

jk

η
YB +

jk3

η

M∑
i=1

y(i)y
(i)
T

k2i − k2
(1)

where k is the wavenumber; η is the wave impedance; matrices YA and YB

are real, symmetric and frequency-independent; ki (i = 1, . . . ,M) represent the

first M resonant wavenumbers of the shortcircuited cavity, and vectors y(i) are

related to the eigenvectors associated to ki (see [8] for more details).

Afterwards, the 2-D BI-RME method is applied to obtain both the modal

chart and the expressions of the magnetic vector modal functions of a rectan-

gular waveguide with rounded corners of radius R. To this aim, the rigorous

technique detailed in [2] has been followed.

Next, the efficient integral equation technique described in [10] has been

implemented to characterize a planar junction between a standard rectangular

waveguide and a rectangular waveguide with rounded corners, in terms of a

generalized impedance matrix.

Finally, all the obtained matrices (generalized impedance and admittance
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Figure 2: Connection of the generalyzed admittance and impedance matrices associated to

the full-wave analysis of the H-plane T-junction shown in Fig. 1. The generalized impedance

matrices Z are provided by the integral equation technique.

matrices) are properly connected, as shown in Fig. 2, to provide the electrical

performance of the complete device. To this aim, it is worth mentioning that, for

the sake of improving even more the computational efficiency of the implemented

tool, an equivalent hybrid three-port immittance matrix (H in Fig. 2) is derived

for the characterization of the whole structure enabling only one matrix inversion

per frequency point, and thus significantly reducing the overall CPU effort.

Although this procedure has been detailed for the case of a three-port structure

(H-plane T-junction), it can be easily adapted to cope with two-port and five-

port structures, such as bends and turnstile junctions, respectively.

3. Design of multiport waveguide junctions considering mechaniza-

tion effects

In this section, we present new designs concerning compensated H-plane

right-angled bends and H-plane T-junctions, taking into account the mecha-

nization effects introduced by the low-cost production of such components. The

design of a more complex five-port device of a great technological interest, i.e. a

compensated turnstile junction, is also discussed. In all cases, the obtained sim-

ulated results have been succesfully validated using the numerical data provided

by a commercial finite-element method software.
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With the aim of achieving convergent results for all the new designs presented

in this work, we have required to use 25 accessible modes in each waveguide port

and 275 resonant modes in the rectangular cavity. In addition, the authors have

verified that convergence properties of the method are not dependent on the

post and rectangular cavity dimensions. Furthermore, for design purposes, the

authors have followed the practical design procedures detailed in [11] to achieve

an optimal electrical performance.

3.1. Design of compensated H-plane right-angled bends

A compensated H-plane right-angled bend is a two-port device that can

be readily obtained starting from the three-port component depicted in Fig. 1,

after short-circuiting the port placed at z=a. Next, Fig. 3 shows the variation

of the electrical performance of a new designed compensated H-plane right-

angled bend considering the presence of rounded corners of radius R in the two

waveguide access ports. It is important to note that the curve R=0 stands for

the case in which standard rectangular waveguides are considered and, therefore,

the mechanization effect is not present. Besides, it is worth mentioning that

the electrical performance of this new design with R = 0 has been drastically

improved with respect to the frequency response originally presented in [3].

In this case, the bend is implemented in WR-90 standard waveguide (a=

22.86 mm, b= 10.16 mm), the radius and height of the compensating post are

r= 0.5 mm and h= 8.75 mm, respectively, and its relative position within the

rectangular cavity (according to the axis system depicted in Fig. 1) is given by

x0 = z0 = 15.5 mm. Moreover, a very good agreement is observed between the

obtained results and the numerical data provided by a finite-element method

(FEM) commercial software.

It is possible to observe in Fig. 3 that the return losses of the bend deterio-

rates as the radius of the considered rounded corners increases. Lower values of

the radius (e.g. R= 1 or R= 2 mm) do not change significantly the frequency

response of the device. However, when higher values of the radius are consid-

ered (e.g. R = 4 or R = 5 mm), the usable bandwidth of the device and its
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Figure 3: Return losses of a compensated H-plane right-angled bend. Rounded corners of

radius R have been considered in the waveguide access ports.

overall electrical performance are seriously affected. In these cases, it is possi-

ble to compensate for this degradation by re-designing the compensating post

using the proposed CAD tool. As it is represented in Fig. 4 using solid curves,

an optimized electrical performance of the final manufactured device has been

provided.

The new dimensions and relative positions of the post have been inserted in

the figure. Finally, it is important to mention that the simulated results pre-

sented in this section were computed in just 0.02 seconds per frequency point

(Intel Core i3@3.1 GHz - 4 GB RAM), thus demonstrating the high computa-

tional efficiency of the developed tool.

3.2. Design of compensated H-plane T-junctions

A new design concerning compensated H-plane T-junctions (see Fig. 1),

considering the introduction of rounded corners of radius R in all the rectangular

waveguide access ports, is discussed in this section. The electrical performance

of this component, which is widely used in modern diplexers and multiplexers,
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Figure 4: Return losses of a compensated H-plane right-angled bend. The compensating post

has been re-designed to compensate for the degradation introduced by the rounded corners.

is investigated in Fig. 5.
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Figure 5: Electrical performance of a compensated H-plane T-junction (see Fig. 1) in terms

of the radius R of the considered rounded corners.
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The T-junction has been implemented in standard WR-75 waveguide (a=

19.05 mm, b= a/2), the radius of the compensating post is r = 0.454 mm, its

height is h= 8.8 mm, and its relative position is x0 = a/2, z0 = 11.525 mm. It

is important to note that, with respect to the previous results presented in [6],

this new design (case for R= 0) has significantly improved the return losses of

the component.

With this design we conclude that, neither the wideband operation of the

T-junction nor its overall electrical performance, are significantly affected by

the introduction of the rounded corners and, therefore, further optimizations of

the component are not required in this case. In fact, note that, even for higher

values of the radius (e.g. R = 4.5 mm), the usable bandwidth of the device

under −20 dB remains almost invariable (observing only a frequency shift).

Finally, regarding the computational efficiency of the implemented CAD tool,

the complete analysis of the T-junction only took 0.03 seconds per frequency

point.

3.3. Design of compensated turnstile junctions

A turnstile junction is a five-port microwave network composed of four rect-

angular waveguide ports and one circular waveguide port (see the inset of Fig. 6).

This component, which is a key element in modern orthomode transducers, can

be obtained starting from the structure shown in Fig. 1, by adding a fourth

rectangular port at x=a, and an input circular waveguide port at y=b [9].

The electrical performance of a compensated turnstile junction (circular

waveguide of radius r=1.26 mm) implemented in WR-10 rectangular waveguide

(a = 2.54 mm, b = a/2), and considering the rounded corners effect in all the

rectangular waveguide ports, is shown in Fig. 6. In contrast to the previous an-

alyzed components, where a single cylindrical post was used as a compensating

stub, this device is compensated using five piled-up cylindrical posts. The radii

in mm of the piled-up cylindrical posts used in the design are (from bottom to

top): r1 = 0.84, r2 = 0.4, r3 = 0.23, r4 = 0.18, r5 = 0.15. The heights in mm

of the posts are: h1 = 0.29, h2 = 0.31, h3 = 0.2, h4 = 0.3, h5 = 1.75.
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Figure 6: Return losses of a compensated turnstile junction as a function of the radius R of

the introduced rounded corners.

As in the previous discussed components, a degradation of the electrical

response is observed as the radius of the rounded corners increases. In particular,

note that the usable bandwidth below −20 dB decreases for R= 0.5 and R=

0.7 mm. Nevertheless, it is possible to compensate for this negative effect by

redesigning the height of the top piled-up cylindrical post used to compensate

the junction, as it is shown in the same Fig. 6 (dashed curves). Thanks to this

new optimization, the usable bandwidth below −20 dB for the case R=0.5 mm

is equal to the one achieved for the case R = 0, while maintaining a good

average return losses. Regarding the optimized case for R=0.7 mm, the relative

bandwidth below −20 dB has been increased in a 1.5% with respect to the

original design. The new height of the top piled-up post used in these two

new designs is h5 = 2.03 mm. With regard to the computational efficiency, it

is important to point up that the accurate analysis of this multiport junction

needed 0.9 seconds per frequency point.

In view of the results provided by the optimized design of the analyzed
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multiport waveguide junctions, it is possible to conclude a useful design guideline

to estimate the maximum radius allowed for a certain electrical performance.

The wide-band degradation of the designed devices is sensitive to the ratio

R/b. On the one hand, we have observed that when the ratio R/b is lower

than 0.25, the usable bandwidth of the device remains almost invariable and

no further optimizations are required. On the other hand, when higher values

of the ratio are considered, specially for R/b > 0.5, an important degradation

of the electrical response may be observed, and new optimized designs could

be necessary. In this worst case (R/b > 0.5), we have concluded that it may

be possible to recover a relative bandwidth under −20 dB similar to the one

obtained for the case in which R = 0, as we have verified, for instance, in the

case of H-plane bends. Even in the case of more complex structures (such

as turnstile junctions), an optimized response can be designed obtaining an

improved relative bandwidth.

Finally, the authors would like to point out that, after performing similar

studies for E-plane bends and T-junctions (considering in these cases compen-

sating posts and irises [3], [6]), similar conclusions to those reached for the

corresponding H-plane cases have been obtained when mechanization effects

are considered.

4. Conclusion

A new CAD tool for an accurate and efficient design of compensated mul-

tiport waveguide junctions considering the mechanization effects associated to

low-cost production techniques has been proposed. It has been shown that,

although the wide-band performance of the device can be reduced when high

values of the radius of the rounded corners are considered, it is possible to com-

pensate for this degradation by properly re-designing the compensating element,

thus achieving an optimum design of these components.
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