

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/LCN.2015.7366320

http://hdl.handle.net/10251/64467

IEEE

Patra, S.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P.
(2015). An ITS solution providing real-time visual overtaking assistance using smartphones.
40th IEEE Conference on Local Computer Networks (LCN 2015). IEEE.
doi:10.1109/LCN.2015.7366320.

An ITS Solution Providing Real-Time Visual
Overtaking Assistance Using Smartphones

Subhadeep Patra∗, Carlos T. Calafate†, Juan-Carlos Cano‡ and Pietro Manzoni§
Department of Computer Engineering,

Universitat Politècnica de València,
Camino de Vera S/N 46022, Valencia, Spain.

Email: ∗subpat@doctor.upv.es, †calafate@disca.upv.es, ‡jucano@disca.upv.es, §pmanzoni@disca.upv.es

Abstract—ITS solutions suffer from the slow pace of adoption
by manufacturers despite the interest shown by both consumers
and industry. Our goal is to develop ITS applications using
already available technologies to make them affordable, quick
to deploy, and easy to adopt. In this paper we introduce an
ITS system for overtaking assistance that provides drivers with
a real-time video feed from the vehicle located just in front.
This provides a better view of the road ahead, and of any
vehicles travelling in the opposite direction, being especially
useful when the front view of the driver is blocked by large
vehicles. We evaluated our application using H.264 and MJPEG
video encoding formats, and determined the most effective codec
choice for our case. Experimental results allow us to be optimistic
about the effectiveness and applicability of smartphones in
providing overtaking assistance based on video streaming in
vehicular networks.

Index Terms—Android application, real implementation, video
transmission, live streaming, vehicular network, ITS.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) are advanced solu-
tions that make use of vehicular and infrastructured networks
to provide innovative services related to both traffic and
mobility management, and that interface with other models
of transport. ITS aims at using the already available trans-
port networks in a smarter manner, resulting in significant
coordination and safety improvements. Our goal here is to
integrate smartphones into vehicular networks to develop ITS
applications that can reach out to the masses in a short period
of time. The choice of smartphones is not only justified by
their wide availability and use, but also because they are
evolving towards high performance terminals with multi-core
microprocessors packed with sufficiently accurate onboard
sensors.

The architecture and application has been developed for
the Android platform, and requires the devices running it
to be equipped with at least a GPS and a back camera.
The application makes use of the camera to record video
and transmit it over the vehicular network, thus providing
an enhanced multimedia information aid for overtaking. The
location information of the vehicles gathered from the GPS is
useful since the transmission of the video feed only occurs be-
tween cars travelling in the same direction, and always occurs
from the vehicle in front to the vehicle travelling behind. The
Android devices are to be placed on the vehicle dashboard with

the camera facing the windshield, so that a clear view of the
road in front and cars coming from the opposite direction can
be captured. Once started, the application requires no further
user interaction to operate, and it can run in the background.
Our application can be specially useful in scenarios where the
view of the driver is blocked by a larger vehicle, or when
a long queue of cars is located ahead and the driver wishes
to overtake. In this case, the application will automatically
receive the video stream from the vehicle that is leading, and
play the received feed on screen, thus aiding the driver in
deciding the safest moment to overtake.

We have evaluated the developed application in both indoor
and outdoor scenarios. The indoor tests involved comparing
the performance of the application using two different video
codecs, namely H.264 [15] and MJPEG1, where the video
stream is compressed separately as JPEG [12] images. These
two encoding formats were compared focusing mainly on the
delay between capture and playback of the video stream. Then,
choosing the best codec based on the indoor experiments,
we have performed outdoor tests involving real cars. A more
detailed explanation about the developed application in terms
of the architecture, design, implementation issues and results
obtained will be provided in the following sections.

The rest of this paper is organized as follows: In section II,
we survey some works in the literature that are closely related
to our own. In section III, we will present an overview of the
developed application. Later, in section IV, we will present
the application modules and some implementation details. The
setup used to deploy and validate our application will be
described in detail in section V. In section VI, we will present
the preliminary results achieved with the application in both
a real testbed and a laboratory environment. Finally, section
VII concludes this paper summarizing our contributions.

II. RELATED WORKS

Both academia and industry have shown a strong interest
in the field of ITS, resulting in the development of many
innovative applications. Since our application is targeted at
smartphones, in this section we are going to focus the bulk
of our attention on some of the most interesting smartphone
applications related to safe driving.

1More on MJPEG: http://en.wikipedia.org/wiki/Motion JPEG

Most driving safety applications usually aim at warning
generation based on onboard location sensors like in the works
of Whipple et al. [13], Yang et al. [16], Diewald et al. [3] and
Tornell et al. [10]. The application developed by Whipple et al.
warns drivers when driving at high speed near schools. Yang
et al. concentrated on finding out the probability of accidents
based on the location information. DriveAssist, by Diewald
et al., triggers warning messages for certain traffic incidents,
while Tornell et al., in their proposed application, display on
screen important vehicles like ambulances and police cars on
a map view, and they later improved that same solution in [8].
Few other applications used the On Board Diagnostics (OBD-
II) [4] interface to detect incidents, like in the work of Zaldivar
et al. [18] which aimed at detecting accidents. Wideberg et al.
[14] also made use of OBD-II devices to extract safety and
environment related information.

Only very few applications concentrated on providing vi-
sual aids to the drivers, like in SignalGuru described in
[6], which leverages collaborative sensing on windshield-
mount smartphones, in order to predict the schedule of traffic
signals. The CarSafe App [17], introduced by You et al.,
analyses images from front and back cameras of smartphones
to monitor the driver as well as the road ahead. Another
interesting application available for download is iOnRoad [1],
which aims at providing driving assistance functions including
augmented driving, collision warning, and “black-box” like
video recording.

Although we have found many different drive safety ap-
plications for smartphones, only a handful aimed at provid-
ing visual aids to the drivers, namely SignalGuru, CarSafe
and iOnRoad. However, none of these smartphone based
applications actually provides real-time visual overtaking aids
provided by other cars taking advantage of vehicular networks,
even though the idea of video-based overtaking assistance
systems is not new. Works like the See-Through System [7],
which was later improved in [5], although not being targeted
for smartphones, are focused on the issue of video-based
overtaking assistance. Other related works worth mentioning
are [11] and [2], which demonstrate the feasibility of such
video-based assistance systems. In [12] authors proposed per-
formance improvements to a video-based overtaking assistant
by focusing on codec channel adaptation issues. Whereas, [2]
focuses on the reallocation of wireless channel resources to
enhance the visual quality.

Encouraged by the findings from the above mentioned
works, and in order to fulfill the need for a visual overtaking
assistance application targeted at the consumers, we decided
to develop an application which on being provided with
a vehicular network, would require no additional hardware
besides a smartphone to operate. The proposed application
is targeted at smartphones since we aim at achieving rapid
acceptance as well as to promote the close integration of
smartphones to vehicular networks.

III. OVERVIEW OF THE PROPOSED ARCHITECTURE

The goal of our application is providing assistance during
overtaking by streaming real-time video coming from one
vehicle to another. The minimum requirements for running the
application is the availability of a device with GPS and a back
camera, along with a vehicular network for video transmission.

The functionality of the application can be split in three
simple steps for easy understanding. Step one, involves elect-
ing the sender and the receiver of the video which is subject
to some special tests and validation conditions. In step two
the actual video transmission occurs between the sender and
receiver chosen in phase one. Finally, step three is where the
application decides to terminate the video transmission and
playback. This step also involves testing a special condition
to stop the video streaming.

In the first step, each device equipped with a back camera
and running our application, broadcasts an advertisement
containing its location and direction, while they are simul-
taneously listening for incoming broadcast messages coming
from other devices. Whenever a device receives broadcast
messages from other devices, it first verifies whether the source
of the message is valid. This validity check is based on tests
which basically involve checking if the source and destination
vehicles are traveling one ahead of the other, and in the same
direction. For a more detailed description of these validation
conditions refer to Section IV. If several valid sources are
found, the device requests video from the best source, which
is selected based on the distance between sender and receiver
devices. The source vehicle, upon receiving the request to send
video from the destination vehicle, starts streaming the video
signal over the vehicular network, in step two. However, before
sending the video, the source double-checks the validation
conditions used in step one. The destination vehicle starts
playing the video onscreen as soon as it starts receiving it.
The streaming and playback process is stopped only when
the vehicle behind successfully overtakes, or when it stops
following the vehicle in-front, which occurs in step three.

(a) The vehicles exchange advertisements.

(b) The client requests video from the server.

Fig. 1: Functional overview of the application - Step one.

Fig. 1 provides more details about step one. In this example,
we have four cars, all of them using our application. CAR-
A and CAR-B are travelling in one direction, while CAR-C

and CAR-D travel in the opposite direction. First, the cars
broadcast the advertisement to each other as shown in Fig. 1a.
Since CAR-C is not within the range of any other car, nobody
is able to communicate with it. Each car, upon receiving
the advertisement, performs the validity checks to see if the
sender of the advertisement is travelling in the same direction
and lane. In this case, only CAR-A finds the advertisement
message from CAR-B to be valid, and thus requests video
from it, as depicted in Fig 1b.

Fig. 2: Functional overview of the application - Step two.

Similarly, Fig. 2 shows that CAR-B, upon receiving the
video request from CAR-A, rechecks the validity conditions
and starts streaming the video. CAR-A starts receiving the
video stream and plays it onscreen for its driver. It may be
noted here that a device can act both as video source and
destination. This is because, while a device is receiving video
from another device, it may also be streaming its own video
capture to a completely different device.

Fig. 3: Functional overview of the application - Step three.

Fig. 3, shows that CAR-A has overtaken CAR-B, and this
causes the video transmission to stop. Now, CAR-B may
request the video feed from CAR-A since it is now travelling
ahead, and all the steps above would be repeated in that case.

IV. IMPLEMENTATION DETAILS

From the previous section we already know that the func-
tionality of the developed architecture can be split into three
steps. Also, a device running our application can act as both
server and client at the same time, receiving video from
another device while streaming video to a completely different
device. In this section we consider two devices out of which
one will be streaming and the other just receiving. The device
sending the video is considered as the server, while the receiver
act as a client. Despite server and client roles are not yet
established at the beginning of step one, we will use the words
server and client to refer to the devices that will be attaining
the respective role in the future for the sake of clarity.

Fig. 4 shows the different states that server and client can
attain. When the client and the server start as a part of step
one, the server is in the notify state, as shown in Fig. 4a,
and it starts advertising the availability of the video feed by
broadcasting a hello message. Besides sending advertisements,

(a) Different Server States. (b) Different Client States.

Fig. 4: State diagram of the Server and Client.

the server, while in the notify state, also listens for replies to
its hello message from clients requesting the video feed. A
hello message contains the location information of the server
so that the client, upon receiving it, and by performing some
validation tests, can determine if the server is ahead and
travelling in the same direction. The client remains listening
for advertisements from the server while in the listen state, as
shown in fig. 4b. If the client receives hello messages from
different servers, it checks whether the servers are valid, and
stores them in a queue of candidate servers. The proposed
validity tests include the same direction test and the same
lane test conditions as shown in fig. 5.

(a) Same direction test. (b) Same lane test.

Fig. 5: Validation conditions used to initiate video streaming.

The same direction test is used to detect whether two
vehicles are travelling in the same direction. For understanding
the same direction test, let us assume we have two cars, one
travelling from the point A1 to B1 and the other from A2
to B2 as shown in Fig. 5a. Notice that, even if two cars are
travelling in the same direction and speed, its it hard for them
to have an overlapping displacement vector; in other words,
the angle between the two vectors is not 0. This can happen
due to different driving styles and GPS errors. Thus, we
measure the angle θ between these two vectors and compare
it to a predefined threshold α. If θ is less than α, we can

Message Type From → To Client State Server State Message Contents
Hello S → C Listen Notify Location and Direction
Request C → S Request Notify Location and Direction
Ready S → C Request Reply Video sender port
Reject S → C Request Reply -
Data S → C Play Stream Location, Direction and Speed
Data-Ack C → S Play Stream -
End C → S Play Stream -

TABLE I: Messages exchanged between the Server and Client.

safely assume that the two vehicles are travelling in the same
direction. Now, even if two vehicles are travelling in the same
direction, it does not necessarily mean that one is ahead of
the other, both vehicles may be travelling on different lanes or
parallel roads altogether. To check if one is following the other
one on the same lane, we perform the same lane test, and for
this purpose we draw an imaginary line joining the current
locations of the two vehicles, as shown in fig. 5b, where B1
and B2 are the current locations. Then we measure the angle
of intersection of this line joining the points B1 and B2 with
the displacement vectors of the vehicles. When the measured
angle of intersection θ is less than a predefined angle β, then
the vehicles are considered to be travelling on the same lane.
Being on different lanes will result in a higher value of the
measured angle θ, and the same lane test will fail. If these two
conditions are satisfied, then the two vehicles are assumed to
be travelling in the same direction, one following the other.

The client which was listening for server advertisements,
chooses the best server from the list of candidate servers based
on its distance to the server. The client then tries to connect
to the chosen server by sending a request, and moves to the
request state. The server, upon receiving the request from the
client, also checks its validity by performing the same direction
and same lane tests once again. Before sending the ready or
reject message, which denotes whether it is ready to send the
video being captured by its camera, the server changes its
state to reply. The server may further choose to change its
state back to notify or to stream modes depending on its own
reply. The client, which was previously in the request state,
only changes its state to play if the reply from the server was
a ready message containing the video sender port number;
otherwise it may choose to contact some other server. Table I,
details the packet types exchanged between the server and the
client.

Fig. 6: Overtake test to terminate video streaming.

In case the server and client are in the stream and play states
respectively, step two, which involves video streaming and

playback, is started at the server and client ends, respectively.
Beside streaming video, the server, during this period, keeps
sending a data message every second. The data message
contains the location, direction and speed information of the
vehicle where the server is located. This way, its corresponding
client can check whether an overtake has occurred. To find out
if an overtake was successful, the overtake test takes place, as
shown in fig. 6. This test is similar to the same lane test,
the only difference being that the angle θ measured here is
the other linear pair of the angle of intersection between the
displacement vector and the line formed by joining the current
location of the two vehicles. Also, the threshold ϕ used here is
usually a much larger value. Upon receiving the data message
from the server, the client, if it still has not overtaken as
suggested by the overtake test, replies the server with a data-
ack message to keep the video connection alive.

If the overtake test detects that an overtake has taken
place, step three takes place, and so the client can request
the server to terminate the video stream by sending an end
message. When the video streaming has been stopped, the
client switches to the end state and, later on, moves back to
the listen state once again. The server, on the other hand,
can move to the end state upon receipt of the end message
from the client, or if the waiting time for a data-ack from
the client expires. This waiting time is used to detect cases
of eventual disconnections. In our implementation we have
fixed this waiting time to 3 seconds, which is adequate to
detect disconnections, especially when considering that all
communications occur between two cars, one just ahead of
the other.

V. CREATING THE VEHICULAR NETWORK

For proper operation, the developed application assumes the
availability of a vehicular network, although the vehicles we
use on a daily basis still lack the capability to communicate
with one another. So, for testing our application, we equipped
cars with GRCBoxes [9] inside them. GRCBox is a low cost
connectivity device based on a Raspberry Pi2 which enables
the integration of smartphones into vehicular networks. It
was developed mainly due to the difficulty in creating an
adhoc network using smartphones. Another important feature
provided by GRCBox is the support for V2X communications.
The different networks supported by the GRCBox include
adhoc, cellular and Wifi access points, among others. Thus,

2More on Raspberry Pi: https://www.raspberrypi.org

we use the adhoc network support of the GRCBoxes to create
the required network for our application.

Fig. 7: Our application working together with GRCBox.

Fig. 7 shows how the application works when combined
with GRCBox. Each car within the vehicular network has a
GRCBox mounted. The smartphones of the passengers within
the car are connected to the GRCBox, which is equipped
with Wifi-enabled USB interfaces to communicate in adhoc
mode, creates a vehicular network. Even though GRCBox is
supposed to be equipped with 802.11p for vehicular commu-
nication, we used 802.11a devices instead as 802.11p-enabled
hardware was not available while setting up the GRCBox
to perform the tests. In future experiments we intend to use
802.11p compatible hardware to take advantage of the WAVE
standard.

As shown in the figure, Car-B is ahead of the Car-A, and
both of them are travelling in the same direction and running
our application, so the smartphone in Car-B starts recording
the video autonomously and sending it to Car-A, relying on
the vehicular network created using the GRCBoxes available
within the cars. Concerning the video, it is played onscreen
on the device in Car-A as soon as video reception starts.

VI. APPLICATION VALIDATION

For validating the application, we performed tests in both
indoor and outdoor scenarios. The indoor tests consisted of
comparing the delay involved between video capture and
its playback, for both H.264 and MJPEG encoding formats.
The outdoor tests, on the other hand, involved testing our
application and evaluating the various conditions for initiating
or terminating video streaming, using real cars driven around
the Universitat Politècnica de València. Each car was equipped
with a GRCBox to create the required vehicular network, and
the Android devices used were a Nexus 7 and a Samsung
Galaxy Note 10.1 (2014 Edition). The Nexus 7 from Google
was powered by a quad-core 1.2 GHz processor, ULP GeForce
GPU, 1 GB RAM and 1.2 MP camera. The Samsung Galaxy
Note 10.1, on the other hand, was equipped with a quad-core
1.9 GHz plus quad-core 1.3 GHz processors, 3 GB ram, 8 MP
primary camera and 2 MP secondary camera.

A. Delay requirements
The most important factor to determine the proper function-

ing of a driving assistance application based on streaming real-
time video, is the delay between video capture and playback.

To calculate an admissible value of delay between video
capture and playback, let us assume two cars travelling in
the opposite direction on a road located in a densely populated
area where the possibility of accidents is much higher because
roads tend to be more crowded. We know that the maximum
speed limit on such roads is usually around 50 km/h. Assuming
the worst case where both cars are travelling at maximum
speed limit, the relative velocity (VR) can be calculated using
the formula:

VR = VA + VB

where VA and VB are the velocities of the two cars, VR is
found to be 100 km/h or 27.778 m/s.

Fig. 8: Error due to delay.

Since there is a delay involved between video capture and
playback, the car coming from opposite direction will be in
fact closer than the position shown by the application. Fig. 8
demonstrates such a situation, where CAR-A is receiving
video feed from CAR-B which shows the position of CAR-
C. However, due to the delay involved, CAR-C is located
at a position much closer than shown in the video feed.
Now, if the allowable error in the position of the vehicle
coming from the opposite direction is limited to 10 meters,
as displayed by the application, then the maximum allowable
delay would be 0.36 seconds in accordance with the equation:
time = distance/speed. So, in the results that follow, we
must make sure that such maximum delay requirement is met.

Fig. 9: Variation of throughput with JPEG quality for a 10fps
MJPEG video.

B. Indoor tests

Compared to H.264, MJPEG is a more simpler video com-
pression format since the video stream is compressed sepa-

(a) The delay comparisons for 320x240 video stream.

(b) The delay comparisons for 640x480 video stream.

(c) The delay comparisons for 1280x720 video stream.

Fig. 10: The comparison of MJPEG and H.264.

rately as JPEG images. Thus, when talking about compression-
ratios, the performance of MJPEG is limited. So, to make
a clear comparison between H.264 and MJPEG encoding
schemes for Android devices in terms of delay, we first
calculate the throughput of MJPEG video for different resolu-
tions, so that we can eventually make delay versus throughput
comparisons for the two encoding formats.

In Fig. 9, the frames per second of the MJPEG video stream
was fixed at 10 because we believe that a 10fps video is
sufficient for our application. Also, the quality of the JPEG in
the video stream was varied from 20 to 80 percent, since for
lower values the video quality was too low, whereas a JPEG
quality of more than 80 percent did not show any significant
improvements in the perceived quality. From the figure we
can observe that, for a resolution of 320x240, the average
throughput varies from 0.405 to 1.029 Mbps. For 640x480, it
lies between 0.976 to 2.336 Mbps, and in case of a 1280x720
resolution, it ranges between 1.805 to 4.177 Mbps.

We now supply the throughput values we achieved for
MJPEG to the H.264 encoder to make a proper comparison
between them, and to obtain the delay for the two types of
encoding formats.

Fig. 10 shows the delay comparison of MJPEG versus
H.264 for different resolutions. Fig. 10a allows observing that,
for a resolution of 320x240, the average delay for MJPEG
suffer minimal variations (from 0.24 to 0.27 seconds), whereas
for H.264, it increases from 0.71 to 2.92 seconds. Similarly,
fig. 10b shows that the average delay ranges from 0.26 to 0.31
seconds for MJPEG, and from 0.7 to 1.22 seconds for H.264
video, the resolution being 640x480 for both the encoding
formats. Eventually, in fig. 10c, which compares H.264 with
MJPEG for a resolution of 1280x720, we see that, in case
MJPEG is used, the mean delay ranges between 0.4 and 0.44
seconds, being in the range from 0.72 to 1.44 seconds for
H.264. Thus, in all the cases, MJPEG outperforms H.264 when
considering delay in scenarios involving Android devices.
Notice that, although the devices used for our experiments
packed sufficient processing power, delay was introduced by
the Android libraries. Meaning that MJPEG becomes the
wisest choice among the two compression methods.

Next, we want to select the most appropriate resolution and
JPEG quality for the MJPEG video stream for use in the scope
of our application. The proper functioning of the application
is largely dependent on the availability of a vehicular network
which has been created using GRCBoxes. Thus, this selection
process depends on the bandwidth provided by the vehicular
network. From our experiments with the GRCBox, we found
that it is capable of providing a mean bandwidth of 10.5Mbps
for TCP traffic, and 15.5Mbps for UDP traffic, although the
worst value for both TCP and UDP was close to 5.5Mbps.
Since, an Android device with our application installed can
simultaneously act as video source and destination, the ef-
fective bandwidth available for one-way video transmission
in the worst case scenario is 2.75Mbps. At the data rate of
2.75Mbps, all the different combinations of resolution up to
HD with JPEG quality up to 50 percent, as suggested by the
Fig. 9, can be supported by the vehicular network created using
GRCBoxes. But, previously we have seen that a delay of more
than 360 ms is unacceptable for our real-time visual overtaking
aid, consequently we choose to use the MJPEG compression
scheme for the resolution of 640x480 at 10fps with JPEG
quality set to 80 percent for the video stream, owing to its
better performance in terms of delay.

Fig. 11: The experiments with the application in real scenario.

C. Outdoor tests

In our developed architecture, the three important conditions
evaluated were described in Section IV, and each of these
conditions, namely same direction test, same lane test and
overtake test, were dependent on a threshold value. We have
performed a wide set of tests in a real scenario, and our aim
was to evaluate reasonable values of the threshold angles α,
β and ϕ, for two cars where one follows the other throughout
the whole experiment while travelling along a particular route,
so that there is non-stop streaming of video between them.

Fig. 11 shows a photo taken during one of the outdoor
tests 3. In this picture, we can see that the front car is trying
to take a right turn, and the back car is receiving the video
from the car ahead and playing it onscreen. While doing our
outdoor tests with the application, we collected the various
angles used in the three different validation tests. Below we
can see the graphical representation of the data obtained during
the experiment.

Fig. 12 show the density plot of the angles measured by
the same direction test at the client side. Most observations
for the same direction test lies within 20 degrees, which is
satisfactory. It is also noticeable that many peaks occur due to
GPS errors, also because the route followed had a lot of turns
and curves, and so the two cars were not always on a straight
path.

Fig. 13 show the density graph of the same lane test for
the client. From this particular plot, we can see that most
observations for the same lane test also lie within 20 degrees.
Notice that this value is too high considering that this test is
very sensitive, and used to detect if cars are travelling on the
same lane, and so we find that this condition may not be too
useful when considering the accuracy of current technology.
Notice that the same direction test and same lane test are
relevant when starting the video streaming, and are evaluated
by both the sender and the receiver, but only data from the

3Application in action: https://www.youtube.com/watch?v=jrIWbFjN3Hw

Fig. 12: Results of the same direction test.

Fig. 13: Results of the same lane test.

receiver (i.e. the client) has been plotted in Fig. 12 and 13 as
similar values have also been obtained at the server end.

Fig. 14: Results of the overtake test.

Fig. 14, shows the density plot for the observations of the
overtake test. Note that, in order to simplify the graph analysis,
the values used are: 180◦−θ where θ represents the measured
angles in the overtake test. The overtake test is only evaluated
by the client, and we have used its data to produce the graph.
We find that the results from this test were pretty much what
we expected since all plotted values are below 90 degrees.

VII. CONCLUSIONS

In this paper, we have presented a driving safety application
that is able to help drivers in safe overtaking. The system
provides a real-time video feed captured by the smartphone
installed in the vehicle ahead, and which is streamed to the
smartphone of the driver seated in the car behind, which
displays the video without user intervention. Thus, it provides
drivers with important information and helps them to decide
whether it is safe to overtake. The developed application was
tested using H.264 and MJPEG video encoding formats, and
MJPEG was chosen as the default video compression scheme
due to its lower encoding delay. We have also evaluated
the different test conditions used for starting and stopping
autonomous video capture, and found that thresholds of 20
degrees for the same direction test and 90 degrees for the
overtake test are reasonable. Nevertheless, the same lane test
was found to be useless unless more accurate GPS hardware
is made available. Despite this minor issue, we acknowledge
the fact that combining smartphones with vehicular networks
indeed opens a new horizon for ITS applications and, in
the future, we will focus our attention on improving our
application by evaluating different alternatives for the same
lane test, which includes, among others, incorporating image
processing techniques for license plate recognition, which can
assist the client in choosing the video server.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission under Svāgata.eu, the Erasmus Mundus Programme,
Action 2 (EMA2) and the Ministerio de Economı́a y Com-
petitividad, Programa Estatal de Investigación, Desarrollo e
Innovación Orientada a los Retos de la Sociedad, Proyectos
I+D+I 2014, Spain, under Grant TEC2014-52690-R.

REFERENCES

[1] “iOnRoad official website,” http://www.ionroad.com/, accessed: 2015-
02-8.

[2] E. Belyaev, P. Molchanov, A. Vinel, and Y. Koucheryavy, “The use
of automotive radars in video-based overtaking assistance applications,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 14, no. 3,
pp. 1035–1042, 2013.

[3] S. Diewald, A. Möller, L. Roalter, and M. Kranz, “DriveAssist-A V2X-
Based Driver Assistance System for Android.” in Mensch & Computer
Workshopband, 2012, pp. 373–380.

[4] I. O. for Standardization, “ISO 14230-1:1999: Road vehicles, Diagnostic
systems, Keyword protocol 2000,” 1999.

[5] P. Gomes, C. Olaverri-Monreal, and M. Ferreira, “Making vehicles
transparent through V2V video streaming,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 13, no. 2, pp. 930–938, 2012.

[6] E. Koukoumidis, M. Martonosi, and L.-S. Peh, “Leveraging smartphone
cameras for collaborative road advisories,” Mobile Computing, IEEE
Transactions on, vol. 11, no. 5, pp. 707–723, 2012.

[7] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira, and M. Ferreira,
“The See-Through system: A VANET-enabled assistant for overtaking
maneuvers,” in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE,
2010, pp. 123–128.

[8] S. Patra, S. M. Tornell, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“Messiah: An ITS drive safety application,” in XXV Jornadas Sarteco,
Valladolid, Spain, 2014.

[9] S. M. Tornell, S. Patra, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“GRCBox: Extending Smartphone Connectivity in Vehicular Networks,”
International Journal of Distributed Sensor Networks, 2014.

[10] S. M. Tornell, C. T. Calafate, J.-C. Cano, P. Manzoni, M. Fogue, and
F. J. Martinez, “Implementing and testing a driving safety application
for smartphones based on the eMDR protocol,” in Wireless Days (WD),
2012 IFIP. IEEE, 2012, pp. 1–3.

[11] A. Vinel, E. Belyaev, K. Egiazarian, and Y. Koucheryavy, “An overtaking
assistance system based on joint beaconing and real-time video trans-
mission,” Vehicular Technology, IEEE Transactions on, vol. 61, no. 5,
pp. 2319–2329, 2012.

[12] G. K. Wallace, “The JPEG still picture compression standard,” Commu-
nications of the ACM, vol. 34, no. 4, pp. 30–44, 1991.

[13] J. Whipple, W. Arensman, and M. S. Boler, “A public safety application
of GPS-enabled smartphones and the android operating system,” in
Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International
Conference on. IEEE, 2009, pp. 2059–2061.

[14] J. Wideberg, P. Luque, and D. Mantaras, “A smartphone application to
extract safety and environmental related information from the OBD-II
interface of a car,” International Journal of Vehicle Systems Modelling
and Testing, vol. 7, no. 1, pp. 1–11, 2012.

[15] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H. 264/AVC video coding standard,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 560–576,
2003.

[16] J. Yang, J. Wang, and B. Liu, “An intersection collision warning system
using Wi-Fi smartphones in VANET,” in Global Telecommunications
Conference (GLOBECOM 2011), 2011 IEEE. IEEE, 2011, pp. 1–5.

[17] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J. Bao,
M. Montes-de Oca, Y. Cheng, M. Lin, L. Torresani et al., “Carsafe
app: Alerting drowsy and distracted drivers using dual cameras on
smartphones,” in Proceeding of the 11th annual international conference
on Mobile systems, applications, and services. ACM, 2013, pp. 13–26.

[18] J. Zaldivar, C. T. Calafate, J.-C. Cano, and P. Manzoni, “Providing
accident detection in vehicular networks through OBD-II devices and
Android-based smartphones,” in Local Computer Networks (LCN), 2011
IEEE 36th Conference on. IEEE, 2011, pp. 813–819.

