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Some additive results on Drazin inverse

Xiaoji Liu, Xiaolan Qin, Julio Beńıtez

Abstract. In this paper, we investigate additive results of the Drazin inverse of elements in

a ring R. Under the condition ab = ba, we show that a + b is Drazin invertible if and only if

aa
D(a+ b) is Drazin invertible, where the superscript D means the Drazin inverse. Furthermore

we find an expression of (a + b)D. As an application we give some new representations for the

Drazin inverse of a 2× 2 block matrix.

§1 Introduction and previous results

In this paper, R will denote a unital ring whose unity is 1. Let us recall that an element

a ∈ R has a Drazin inverse [18] if there exists b ∈ R such that

bab = b, ab = ba, a− a2b is nilpotent.

The element b above is unique if it exists and is denoted by aD. The nilpotency index of

a−a2aD is called the Drazin index of a, denoted by ind(a). The notation aπ means 1−aaD for

any Drazin invertible element a ∈ R. Observe that by the definition of the Drazin inverse, aaπ

is nilpotent. The subset of R composed of Drazin invertible elements will be denote by RD.

Drazin proved, [18], that if a, b ∈ RD and ab = ba = 0, then a + b ∈ RD and (a + b)D =

aD + bD. In recent years, many papers focused on the problem under some weaker conditions.

Hartwig et al., [19], expressed (A+B)D under the one-side condition AB = 0, whereA and B are

complex square matrices. This result was extended to bounded linear operators on an arbitrary

complex Banach space by Djordjević and Wei in [15]. Again, it was extended for morphisms

on arbitrary additive categories by Chen et al. in [8]. More results on the Drazin inverse or

the generalized Drazin inverse can also be found in [3,5,6,8,9,11,12,15]. In particular we must

cite [13]: in this paper, the authors, under the commutative condition of AB = BA (when A

and B are Drazin invertible linear operators in Banach spaces), gave explicit representations of

(A+B)D in term of A, AD, B, and BD.
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In this paper, we assume that a and b are Drazin invertible elements which satisfy ab = ba

or aπb = 0 and anb = ban for some n ∈ N, and we conclude that a + b is Drazin invertible if

and only if aaD(a+ b) is Drazin invertible. Also we obtain an explicit expression for (a+ b)D.

As an application, we give additive results of block matrices under some conditions.

We give now some previous results which will be useful in proving our results.

Lemma 1.1. Let a, x ∈ R. If ax = xa and there exists n ∈ N such that an = 0, then 1 − xa

is invertible and (1− xa)−1 =
∑

n−1
i=0 xiai.

Proof. Let y =
∑n−1

i=0 xiai. It is enough to verify (1− xa)y = y(1− xa) = 1.

Lemma 1.2. Let x, y be two commuting nilpotent elements of R. Then x+ y is nilpotent.

Proof. It is enough to recall (x+ y)n =
∑

n

k=0

(

n

k

)

xkyn−k for any n ∈ N since xy = yx.

Next theorem was proved by Drazin [18, Th. 1].

Theorem 1.1. Let a ∈ RD and b ∈ R. If ab = ba, then aDb = baD.

§2 Main results

Let us observe the expression for (a−b)D in [24, Th. 2.3]. If we assume that w = aaD(a+b)

instead of w = aaD(a− b)bbD, we will get a much simpler expression for (a+ b)D.

Theorem 2.1. Let a, b ∈ R be Drazin invertible. If ab = ba, then w = aaD(a + b) is Drazin

invertible if and only if a+ b is Drazin invertible. In this case, we have

(a+ b)D = wD + aπ(1+ bDaaπ)−1bD = wD + aπ





ind(a)−1
∑

i=0

(−bDa)i



 bD. (1)

Proof. Recall that aaπ is nilpotent and its index of nilpotency is the Drazin index of a. Let

r = ind(a). Since ab = ba, by Theorem 1.1, aDb = baD and abD = bDa. From aDb = baD we

obtain aπb = baπ. Again by Theorem 1.1, aπ commutes with bD. Therefore, bDaπa = aπabD.

By Lemma 1.1 we get that 1+ bDaaπ is invertible and

(1+ bDaaπ)−1 =
r−1
∑

i=0

(−bDaaπ)i = 1+ aπ
r−1
∑

i=1

(−bDa)i.

In the rest of the proof, we will use frequently that {1, a, b, aD, bD} is a commutative family.

Assume that w is Drazin invertible and let us define

x = wD + aπ(1+ bDaaπ)−1bD.

From ab = ba and aDb = baD, we have w(a + b) = aaD(a+ b)(a+ b) = (a+ b)w. By Theorem

1.1, we obtain wD(a + b) = (a + b)wD. Since r = ind(a), then (aaπ)r = 0, or equivalently,
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araπ = 0. We get

(a+ b)aπ(1+ bDaaπ)−1bD

= (a+ b)
[

1+ (−bDa)aπ + (−bDa)2aπ + · · ·+ (−bDa)r−1aπ
]

bDaπ

= (a+ b)
[

1+ (−bDa) + (−bDa)2 + · · ·+ (−bDa)r−1
]

bDaπ

=
[

abD + a(−bDa)bD + a(−bDa)2bD + · · ·+ a(−bDa)r−1bD)
]

aπ

+
[

bbD + b(−bDa)bD + b(−bDa)2bD + · · ·+ b(−bDa)r−1bD
]

aπ

=
[

abD − (abD)2 + (abD)3 + · · ·+ (−1)r−2(abD)r−1 + (−1)r−1(abD)r
]

aπ

+
[

bbD − abD + (abD)2 + · · ·+ (−1)r−1(abD)r−1
]

aπ

= bbDaπ.

So, we get

(a+ b)x = (a+ b)
(

wD + aπ(1+ bDaaπ)−1bD
)

= (a+ b)wD + bbDaπ. (2)

Since {1, a, b, aD, bD, w, wD} is a commutative family, we get x(a+ b) = (a+ b)x.

Next, we give the proof of x(a + b)x = x. From (2) we can write (a+ b)x = x′ + x′′, where

x′ = wD(a+ b) and x′′ = bDbaπ. Observe that

w + aπ(a+ b) = aaD(a+ b) + (1− aaD)(a+ b) = a+ b.

From waπ = (a+ b)aaDaπ = 0 we get wDaπ = (wD)2waπ = 0, hence

xx′ =
(

wD + aπ(1+ bDaaπ)−1bD
)

wD(a+ b)

= (wD)2(a+ b) = wD(a+ b)wD = wD (w + aπ(a+ b))wD = wD

and

xx′′ =
(

wD + aπ(1+ bDaaπ)−1bD
)

bDbaπ

=
(

aπ(1+ bDaaπ)−1bD
)

bDbaπ

= (1+ bDaaπ)−1bDaπ

= x− wD.

So, we get x(a+ b)x = x(x′ + x′′) = x.

Now we will prove that (a+ b)− (a+ b)2x is nilpotent. Since a+ b = w+aπ(a+ b), aπw = 0,

and aπwD = 0, we have

(a+ b)2wD = (w + aπ(a+ b))2 wD

=
(

w2 + 2waπ(a+ b) + aπ(a+ b)2
)

wD = w2wD = w − wwπ .
(3)

Also we have

(a+ b)bDbaπ = (a+ b)aπ(1− bπ) = aaπ + baπ − aaπbπ − aπbbπ. (4)
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From (2), (3), and (4) we get

(a+ b)− (a+ b)2x

= (a+ b)− (a+ b)
(

wD(a+ b) + bbDaπ
)

= (a+ b)− (w − wwπ + aaπ + baπ − aaπbπ − aπbbπ)

= (a+ b)−
[

(a+ b)aaD + (a+ b)aπ − aaπbπ − aπbbπ − wwπ
]

= (a+ b)− [(a+ b)− aaπbπ − aπbbπ − wwπ ]

= aaπbπ + aπbbπ + wwπ .

Since aaπ, bbπ, and wwπ are nilpotent, and {aaπ, bbπ, wwπ} is a commuting family, then by

using Lemma 1.2 we get the nilpotency of (a + b) − (a + b)2x. Therefore, we have proved

a+ b ∈ RD and (a+ b)D = x, i.e., the expression (1).

Conversely, let us assume a + b ∈ RD. Let y = aaD(a + b)D. We will prove that w =

aaD(a+ b) ∈ RD and wD = y. Observe that Theorem 1.1 implies that {a, b, aD, bD, (a+ b)D}

is a commuting family. Now, having in mind (aaD)2 = aaD, it is simple to prove wy = yw =

aaD(a+ b)(a+ b)D, y2w = y, and w2y − w = aaD
[

(a+ b)2(a+ b)D − (a+ b)
]

, which leads to

the nilpotency of w2y − w. The proof is finished.

Corollary 2.1. Let a, b ∈ R be Drazin invertible. If ab = ba and baaπ = 0, then w = aaD(a+b)

is Drazin invertible if and only if a+ b is Drazin invertible. In this case, we have

(a+ b)D = wD + aπbD.

Proof. From baaπ = 0, we have bDaaπ = (bD)2baaπ = 0. It is enough apply Theorem 2.1 to

prove this corollary.

Theorem 2.2. Let a, b ∈ R be Drazin invertible, aπb = 0 and anb = ban for some n ∈ N.

Then a+ b is Drazin invertible if and only if w = aaD(a+ b) is Drazin invertible. In this case,

we have

(a+ b)D = wD.

Proof. From a ∈ RD, it is simple to prove that an ∈ RD and (an)D = (aD)n. In addition,

(an)π = 1− an(an)D = 1− (aaD)n = 1− aaD = aπ. Since anb = ban, by Theorem 1.1 we get

(an)Db = b(an)D, and therefore, aπb = baπ and aaDb = baaD. Also, the following equality will

be useful:

w + aπ(a+ b) = aaD(a+ b) + (1− aaD)(a+ b) = a+ b. (5)

Since aaD commutes with a and b, we get waπ = aπw = 0.

Assume that w is Drazin invertible. We will prove that wD is the Drazin inverse of a + b,

i.e., we will prove wD(a+ b) = (a+ b)wD, (wD)2(a+ b) = wD, and (a+ b)2 −wD is nilpotent.

Since aaDb = baaD, we get

w(a+ b) = aaD(a+ b)(a+ b) = (a+ b)aaD(a+ b) = (a+ b)w.

By Theorem 1.1 we obtain wD(a+ b) = (a+ b)wD.

From waπ = 0 we get wDaπ = (wD)2waπ = 0. By using wDaπ = 0 and (5) we have

(wD)2(a+ b) = (wD)2(w + aπ(a+ b)) = (wD)2w + (wD)2aπ(a+ b) = wD.
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Since a+ b = w + aπ(a+ b) and aπw = waπ = 0, we have

(a+ b)2 = (w + aπ(a+ b))2 = w2 + aπ(a+ b)2.

Hence from aπwD = aπw(wD)2 = 0 we obtain

(a+ b)2wD = (w2 + aπ(a+ b)2)wD = w2wD = w − wwπ

= aaD(a+ b)− wwπ = (1− aπ)(a+ b)− wwπ

= a+ b− aπa− aπb− wwπ .

From aπb = 0, we have a+ b− (a+ b)2wD = aπa+ wπw.

From aπw = waπ , we have aπwD = wDaπ, so, we get

aπwπ = aπ(1− wwD) = (1− wwD)aπ = wπaπ.

From waπ = aπw = 0 we obtain (aaπ)(wwπ) = 0 and (wwπ)(aaπ) = 0. Hence for any k ∈ N

we have
(

a+ b− (a+ b)2wD
)k

= (aπa+ wπw)k = (aπa)k + (wπw)k.

Since aaπ and wwπ are nilpotent, it follows that (a + b) − (a + b)2wD is nilpotent. We have

just proved that a+ b ∈ RD and (a+ b)D = wD.

Assume that a+ b ∈ RD. We will prove that w = aaD(a+ b) ∈ RD and the Drazin inverse

of a + b is wD, i.e., (a + b)Dw = w(a + b)D,
(

(a+ b)D
)2

w = (a + b)D, and w2(a + b)D − w is

nilpotent.

Since aaD commutes with a and b we have (a+ b)w = w(a+ b). By Theorem 1.1, one gets

(a+ b)wD = wD(a+ b).

Since a is Drazin invertible, we can write a = a1+a2 (this is the core-nilpotent decomposition

of a, see e.g [16, Ch. 2]), where a1 ∈ aaDRaaD and a2 ∈ aπRaπ is nilpotent. From aπb =

baπ = 0 we obtain b ∈ aaDRaaD. Hence a+ b can be decomposed as

a+ b = (a1 + b) + a2, a1 + b ∈ aaDRaaD, a2 ∈ aπRaπ. (6)

From (a + b)aaD = aaD(a + b) and Theorem 1.1 we get (a + b)DaaD = aaD(a + b)D, and

therefore,

(a+ b)D = aaD(a+ b)DaaD + aaD(a+ b)Daπ + aπ(a+ b)DaaD + aπ(a+ b)Daπ

can be also decomposed as

(a+ b)D = u+ v, u ∈ aaDRaaD, v ∈ aπRaπ . (7)

From the definition of the Drazin inverse and (6), (7) we have that a1 + b, a2 ∈ RD and

(a1 + b)D = u, aD2 = v. But, aD2 = 0 because a2 is nilpotent. Therefore, (a+ b)D = (a1 + b)D ∈

aaDRaaD. Now
(

(a+ b)D
)2

w =
(

(a1 + b)D
)2

aaD(a+ b)

=
(

(a1 + b)D
)2

(a+ b) =
(

(a+ b)D
)2

(a+ b) = (a+ b)D.

Now, let us prove that w2(a + b)D − w is nilpotent. We have proved that aaD commutes
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with a+ b. Since aaD is an idempotent,

w2(a+ b)D − w =
[

aaD(a+ b)
]2

(a+ b)D − aaD(a+ b)

= aaD(a+ b)2(a+ b)D − aaD(a+ b)

= aaD
[

(a+ b)2(a+ b)D − (a+ b)
]

.

Since aaD commutes with a+ b and (a+ b)D, and (a+ b)2(a+ b)D − (a+ b) is nilpotent, then

w2(a+ b)D −w is nilpotent. Therefore, w ∈ RD and wD = (a+ b)D. The proof is finished.

If (R, ·) is a ring with a unity 1, then we can define a new multiplication in R by a ⊙ b =

ba. With this multiplication, (R,⊙) becomes a ring with the same unity 1. We can apply

Theorem 2.2 to (R,⊙) obtaining a dual result.

§3 Applications

In this section, we give some formulas for the Drazin inverse of a 2× 2 block matrix under

some conditions. Let Cm×n be the set of all the m× n matrices over the complex field.

Let M be a matrix of the form

M =

[

A B

C D

]

, A ∈ Cm×m, D ∈ Cn×n. (8)

Campbell and Meyer, [2, Ch. 7] proposed the (until now open) problem to find an explicit

formula of the Drazin inverse ofM in terms of the blocks ofM . Several authors have investigated

this problem and they were able to find some partial answers (imposing some conditions on the

blocks of M). Here we write an exemplary list.

• B = 0 (or C = 0). See [2, Ch. 7] or [23].

• BC = 0, DC = 0 (or BD = 0), and D is nilpotent. See [20].

• BCA = 0, BD = 0, and DC = 0 (or BC is nilpotent). See [4].

• BCA = 0, BCB = 0, DCA = 0, and DCB = 0. See [25].

• BC = 0, BD = 0 and DC = 0. See [14].

• BC = 0 and DC = 0. See [10].

• BCA = 0, BCB = 0, ABD = 0, and CBD = 0. See [22];

• BC = 0 and BD = 0. See [17].

We will find several expressions forMD under some conditions involving the blocksA,B,C,D,

and the Drazin inverses of A and D. Let us recall that the Drazin inverse of any square comples

matrix always exists (see e.g., [1, Ch. 4])

First, we will state some auxiliary lemmas.
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Lemma 3.1. (See [1, Ch. 4] or [2, Th. 7.8.4]). Let A ∈ Cm×n, B ∈ Cn×m. Then (AB)D =

A[(BA)D ]2B.

Lemma 3.2. (See [7] or [21]). Let A ∈ Cm×n, B ∈ Cn×m. Then
[

0 A

B 0

]D

=

[

0 (AB)DA

(BA)DB 0

]

.

Lemma 3.3. (See [2, Ch. 7] or [23]). Let M1 and M2 be of a form

M1 =

[

A 0

C B

]

, M2 =

[

B C

0 A

]

.

If r = ind(A) and s = ind(B), then

MD

1 =

[

AD 0

S BD

]

, MD

2 =

[

BD S

0 AD

]

,

where

S =

[

r−1
∑

i=0

(BD)i+2CAi

]

Aπ +Bπ

[

s−1
∑

i=0

BiC(AD)i+2

]

−BDCAD. (9)

Let M be a 2 × 2 block matrix represented as in (8). Let r = ind(A) and s = ind(D). To

state next lemma, we define the following matrices, being k a nonnegative integer.

Σk = (DD)2
r−1
∑

i=0

(DD)i+kCAiAπ +Dπ

s−1
∑

i=0

DiC(AD)i+k(AD)2 −

k
∑

i=0

(DD)i+1C(AD)k−i+1. (10)

Lemma 3.4. (See [17]). Let M be a matrix of a form (8). If BC = 0 and BD = 0, then

MD =

[

AD (AD)2B

Σ0 DD +Σ1B

]

,

where Σ0 and Σ1 are defined in (10).

Lemma 3.5. Let X ∈ Cn×n. Then (X2XD)D = XD, (X2XD)π = Xπ, and ind(X2XD) = 1.

Proof. The Jordan canonical form of X permits write X = S(C ⊕ N)S−1, where S and C

are nonsingular, and N is nilpotent. Evidently, XD = S(C−1 ⊕ 0)S−1. Now, it is evident

X2XD = S(C ⊕ 0)S−1, which leads to the affirmations of this lemma.

Using Theorem 2.1 and the previous lemmas, we get the following results.

Theorem 3.1. Let M be given by (8) and let r = ind(A).

(i) If AB = BD, DC = CA, and BDD = 0, then

MD =

[

AD (AD)2B

Φ0 DD +Φ1AA
DB

]

+

r−1
∑

i=0

[

0 (BC)DB

(CB)DC 0

]i [

(−A)iAπ 0

0 (−D)iDπ

]

,

where

Φ0 = (DD)2CAπ −DDCAD

and

Φ1 = (DD)3CAπ −DDC(AD)2 − (DD)2CAD.
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(ii) If AB = BD, DC = CA, and BC = 0, then

MD =

[

AD −(AD)2B

−(DD)2C DD + (DD)3CB

]

.

Proof. (i) We can split the matrix M as M = P +Q, where

P =

[

A 0

0 D

]

, Q =

[

0 B

C 0

]

.

From AB = BD and DC = CA, we have PQ = QP . Applying Theorem 1.1 and Theo-

rem 2.1, we get

MD =
(

PPD(P +Q)
)D

+

[

r−1
∑

i=0

(QD)i+1(−P )i

]

P π. (11)

Observe that

(

PPD(P +Q)
)D

=

[

A2AD AADB

DDDC D2DD

]D

.

From BDD = 0, the matrix PPD(P + Q) satisfies Lemma 3.4. In view of Lemma 3.5 we

get (recall that the index of matrices A2AD and D2DD is 1)

(

PPD(P +Q)
)D

=

[

AD (AD)2B

Φ0 DD +Φ1AA
DB

]

,

where

Φ0 = (DD)2CAπ −DDCAD

and

Φ1 = (DD)3CAπ −DDC(AD)2 − (DD)2CAD.

Also we have
r−1
∑

i=0

(QD)i+1(−P )i =

r−1
∑

i=0

[

0 (BC)DB

(CB)DC 0

]i [

(−A)i 0

0 (−D)i

]

.

The proof of (i) is finished.

(ii) Now, we split the matrix M as M = P +Q, where

P =

[

0 B

C 0

]

, Q =

[

A 0

0 D

]

. (12)

From AB = BD and DC = CA, we have PQ = QP . Hence we can use the expression (11);

but now for the matrices P and Q defined in (12).

Since BC = 0, it is easy to get P 3 = 0. Therefore, PD = 0 and (11) reduces to

MD = QD − (QD)2P + (QD)3P 2.

Furthermore, we have

(QD)2P =

[

(AD)2 0

0 (DD)2

] [

0 B

C 0

]

=

[

0 (AD)2B

(DD)2C 0

]

.

and

(QD)3P 2 =

[

(AD)3 0

0 (DD)3

][

0 0

0 CB

]

=

[

0 0

0 (DD)3CB

]

.

The proof is finished.
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Theorem 3.2. Let M be given by (8). If BC = 0, ABDD = 0, CAπB = 0, and AB = BD,

then

MD =

[

AD (AD)2B

Σ0 DD +Σ1AA
DB −DDΣ0A

πB

]

,

where Σ0 and Σ1 are defined in (10).

Proof. We can split the matrix M as M = P +Q, where

P =

[

0 AπB

0 0

]

, Q =

[

A AADB

C D

]

.

From BC = 0, CAπB = 0, and AB = BD we have PQ = QP . Moreover it is trivial to

verify P 2 = 0, hence PD = 0. Applying Theorem 2.1, we get

MD = QD − (QD)2P. (13)

Matrix Q satisfies Lemma 3.4, so we get

QD =

[

AD (AD)2AADB

Σ0 DD +Σ1AA
DB

]

, (14)

where Σ0 and Σ1 are defined in (10). Evidently, (AD)2AADB = (AD)2B. Now,

QDP =

[

AD (AD)2B

Σ0 DD +Σ1AA
DB

][

0 AπB

0 0

]

=

[

0 0

0 Σ0A
πB

]

because ADAπ = 0. Therefore,

(QD)2P =

[

AD (AD)2B

Σ0 DD +Σ1AA
DB

][

0 0

0 Σ0A
πB

]

=

[

0 (AD)2BΣ0A
πB

0 (DD +Σ1AA
DB)Σ0A

πB

]

.

Observe that ADBDD = (AD)2ABDD = 0, which leads to

ADBΣ0 = ADB

(

(DD)2
r−1
∑

i=0

(DD)iCAiAπ +Dπ

s−1
∑

i=0

DiC(AD)i(AD)2 −DDCAD

)

= ADBDπ

s−1
∑

i=0

DiC(AD)i(AD)2

= ADBDπC(AD)2

= ADB(I −DDD)C(AD)2

= ADBC(AD)2 = 0.

Thus,

(QD)2P =

[

0 0

0 DDΣ0A
πB

]

. (15)

To prove the theorem, it is enough consider (13), (14), and (15).

Next result generalizes Lemma 3.3

Theorem 3.3. Let M be a matrix written as in (8). If BC = 0, CB = 0, and AB = BD,

then

MD =

[

AD −B(DD)2

S DD

]

.
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where

S =
r−1
∑

i=0

(DD)i+2CAiAπ +
s−1
∑

i=0

DπDiC(AD)i+2 −DDCAD, (16)

r = ind(A), and s = ind(D).

Proof. We split the matrix M as M = P +Q, where

P =

[

0 B

0 0

]

, Q =

[

A 0

C D

]

.

From the hypotheses of the theorem we get PQ = QP . Since P 2 = 0, then PD = 0 and P π = I.

Thus, Theorem 2.1 and Theorem 1.1 imply

MD = QD − P (QD)2. (17)

By using Lemma 3.3 we can find an expression for QD:

QD =

[

AD 0

S DD

]

, (18)

where S is defined in (16). Now we have

PQD =

[

BS BDD

0 0

]

and QDP =

[

0 ADB

0 SB

]

.

By Theorem 1.1, we get BS = 0 and SB = 0 (in addition, we get BDD = ADB, but this

equlity will not be useful). Now,

P (QD)2 = (PQD)QD =

[

BDDS B(DD)2

0 0

]

and QD(PQD) =

[

0 ADBDD

0 SBDD

]

.

As before, by Theorem 1.1, we get

P (QD)2 =

[

0 B(DD)2

0 0

]

. (19)

To prove the theorem, it is enough to consider (17), (18), and (19).
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[9] D.S. Cvetković-Ilić, D.S. Djordjević, Y. Wei, Additive results for the generalized Drazin

inverse in a Banach algebra, Linear Algebra Appl. 418 (2006), 53-61.
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