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Abstract—Despite the recent technological improvements in
vehicles and engines, and the introduction of better fuels, road
transportation is still responsible for air pollution in urban
areas due to the increasing number of circulating vehicles, and
their relative travelled distances. We develop a methodology
to calculate, in real-time, the consumption and environmental
impact of spark ignition and diesel vehicles from a set of variables
such as Engine Fuel Rate, Speed, Mass Air Flow, Absolute Load,
and Manifold Absolute Pressure, all of them obtained from the
vehicle’s Electronic Control Unit (ECU). Our platform is able to
assist drivers in correcting their bad driving habits, while offering
helpful recommendations to improve fuel economy. In this paper
we will demonstrate through data mining, to what extent does
the driving style really affect (negatively or positively) the fuel
consumption, as well as the increase or reduction of greenhouse
gas emissions generated by vehicles.

Index Terms—Driving styles; Android smartphone; OBD-II;
neural networks; eco-driving, consumption, instantaneous fuel
consumption, greenhouse gas emissions, CO2.

I. INTRODUCTION

The increasing cost of fuel and the environmental pollu-
tion caused by greenhouse gas emissions has encouraged the
research of more energy efficient vehicles. At the same time,
mobile platforms have evolved according to user requirements,
and have been applied in different fields of industry such as the
automotive, where smartphones are starting to be integrated in
vehicles; this clearly opens a new and exciting area of research.

The On Board Diagnostics (OBD-II) [1] standard has re-
cently become an enabling technology for in-vehicle applica-
tions due to the availability of Bluetooth OBD-II connectors
[2], which enables transparent connectivity between mobile
devices and the vehicle’s Electronic Control Unit (ECU).

Among the different strategies to reduce fuel consumption
and greenhouse gas emissions, the DrivingStyles’ platform
[3] aims to sensitize drivers about their driving style, making
them aware that the driving style is directly related to fuel
consumption and gas emissions.

DrivingStyles implements a solution based on neural net-
works which is capable of characterizing the type of road on
which the vehicle is circulating, as well as the driving style of
each user [3]. In order to achieve this, the data is obtained from
the ECU via the OBD-II Bluetooth interface, including the
speed, acceleration, and revolutions per minute of the engine.

In this paper we improve the DrivingStyles’ platform by
calculating the instantaneous fuel consumption; in this plat-
form, the following variables are obtained in real time: mass
flow sensor (MAF), manifold absolute pressure (MAP), and

intake air temperature (AIT). Currently, this information is
being collected and used in applications aimed at improving
road safety and to promote eco-driving [4], thus reducing fuel
consumption and greenhouse gas emissions. Specifically we
find that, by shifting towards a more efficent driving style, users
can save up to 20% of fuel while improving driving safety
[17], [18].

This paper is organized as follows: in the next section we
present some related works. Section III introduces the Driv-
ingStyles architecture. Both client and server side applications
are described in more detail in section III. The calculations
consumption and CO2 emissions are presented in sections
IV and V, respectively. Section VI presents the performance
results we obtained. Finally, section VII concludes our work.

II. RELATED WORK

One of the main problems of eco-driving systems [4]
is identifying the factors that affect energy consumption.
Ericsson [5] suggests that, in order to save fuel, sudden
changes in acceleration and high speed driving should be
avoided. Johansson et al. [6] suggest maintaining low levels of
deceleration, minimizing the use of the first and second gears,
and using, when ever possible, the 5th and 6th gears, while
avoiding continuous gear shifts. There are several proposals
that analyze which variables affect fuel consumption. Kuhler
[10] introduced a set of ten variables that are used in laborato-
ries for fuel consumption and vehicle emissions. Other authors
such as André [11] and Fomunung [12] improve these results
by increasing and replacing some of the parameters.

In previous works such as D.Y.C. Leung [7] and COPERT
III [8], different tools were developed to collect in real time
the engine and vehicle parameters from the OBD connector.
Moreover, in conjunction with an exhaust analyzer Horiba
OBS [9], a set of consumption and emission models were
developed for vehicles equipped with spark ignition engines.
Several commercial OBD-II scanner tools are available, that
can read and record these sensor values. Apart from such
scanners, remote diagnostic systems such as GMs OnStar,
BMWs ConnectedDrive, and Lexus Link [13], [14] are capable
of monitoring engine parameters from a remote location.

Our solution differs from all the previous ones by providing
an analysis of the driving style for each user in the scope
of eco-driving behavior based on neural network techniques.
By calculating the consumption and greenhouse gas emissions
generated by both types of engines (spark ignition and diesel



Figure 1: System architecture of DrivingStyles.

vehicles), we are able to closely relate both results, detailing
the fuel savings achieved by soft driving patterns compared to
aggressive ones.

III. OVERVIEW OF THE DRIVINGSTYLES ARCHITECTURE

The DrivingStyles architecture applies data mining tech-
niques (process of discovering patterns in large data sets
involving, methods of artificial intelligence, machine learning,
statistics, and database systems) to generate a classification
of the driving styles of users based on the analysis of their
mobility traces. Such classification is generated taking into
consideration the characteristics of each route, such as whether
it is urban, suburban, or highway.

Figure 1 shows the system architecture which comprises
four elements:

1) An application for Android based smartphones (see
figure 1.b). (i) Using an OBD-II Bluetooth interface, the
application collects control information such as speed,
acceleration, engine revolutions per minute, throttle po-
sition, and vehicle’s geographic position (obtained from
GPS mobile). (ii) In addition, we also obtain via OBD-II
the mass flow sensor (MAF), manifold absolute pressure
(MAP), and the intake air temperature (AIT) used in the
calculation of fuel consumption. (iii) After gathering the
information, the user uploads the route data to the remote
data center for analysis.

2) A data center with a web interface to collect large
data sets sent by different users concurrently, and to
graphically display a summary of the most relevant
results including the fuel efficiency. Our solution is
based on open source software tools such as Apache,
PHP and Joomla.

3) A neural network, which must be trained using the most
representative route traces in order to correctly identify,
for each path segment, the driver’s style, as well as the
segment profile: urban, suburban or highway. We use
the backpropagation algorithm [15], which has proven
to provide good results in classification problems such
as the one associated to this project.

4) Integration of the tuned neural networks in the data
center platform. The goal is to use neural networks
to dynamically and automatically analyze user data,
allowing users to find out their profiles as a driver, as
well as their fuel consumption (which is related to their
driving behavior), thus promoting a less aggressive and
more ecological driving (see figure 2).

A. Android Application and Web Interface

The Android application is a key element of our system,
proving connectivity to the vehicle and to the DrivingStyles
web platform. Currently, it can be downloaded for free from
the DrivingStyles website http://www.drivingstyles.info, or
from Google Play https://play.google.com/store/apps/details?



(a) Route type. (b) Route behavior.

Figure 2: Snapshots of route type and behavior.

id=com.driving.styles (more than 4500 downloads).
The available functionalities are: (i) User creation, (ii) Con-

nection options, (iii) GPS Activation, (iv) Sensor sampling.
Our application captures data sent by the OBD-II and the

GPS interfaces, as well as the phone’s accelerometer (see
figure 3).

Besides showing the sensors that we are monitoring, we
can perform several parallel actions without affecting the data
captured.

The route upload module is in charge of sending the
users’ traces to the website data center for further analysis.
This module can be accessed either from the historic stored
routes, or immediately after stopping the data capture. The
information screen displays the header information of the
selected route, such as: (i) date of the captured data, (ii)
start time, (iii) finish time, (iv) maximum speed and (v) fuel
consumption.

Our application includes a graphical interface for showing
the routes on a map, as well as the collected statistics. Addi-
tionally, it also includes communication facilities for uploading
the collected routes to the data center.

Figure 3: Snapshots of the main screen and the data sending
module.

The second main component of our architecture corresponds

to the data center and its web interface. For this, we have
selected open source software such as Apache HTTP, and
Joomla as the content management system (CMS). We have
used a CMS, combined with the use of a resource wrapper,
which detachs our system from the presentation layer, thus
focusing on the problem of driving styles characterization and
the influence of the latter fuel consumption. The URL of this
module is http://www.drivingstyles.info.

Next, we present our fuel consumption estimation approach
relating it with the driver style as captured by the DrivingStyles
platform.

IV. FUEL CONSUMPTION / INSTANTANEOUS FUEL
CONSUMPTION CALCULATION

Fuel consumption is usually represented as the ratio of fuel
consumed per distance travelled, being measured in terms of
litres per 100 kilometres (or alternatively as MPG - miles
per gallon). In this work we focus on petrol and diesel
engines. Although the basic designs of gasoline and diesel
engines are similar, the mechanics are different. A gasoline
engine compresses its fuel and air charge, and then initiates
combustion by the use of a spark plug. A diesel engine
just compresses air until the combustion chamber reaches a
temperature for self-ignition to occur. So, at a given speed in
kilometres per hour, fuel consumption can be calculated as
follows:

Fuel Consump. [l/100km] =
Fuel F low [l/h]

Speed [km/h]
· 100 (1)

Instantaneous fuel economy/consumption is calculated from
the current fuel flow and the current vehicle speed. It can be
only be calculated when the vehicle is moving and the engine
is operating.

Instanta. Fuel Consump. [l/km] =
Fuel F low [l]

Speed [km]
(2)

Again, not all vehicles support all the OBD PIDs, and there
are usually many manufacturer-defined custom PIDs that are
not defined in the OBD-II standard. So, the OBD standard does
not provide a fuel consumption parameter; instead, it provides
other values that enable its calculation. Depending on the



Figure 4: Scheme of the different possibilities of MAF calcu-
lation.

variables that the ECU can supply, the mathematical procedure
to determine fuel consumption is different (see figure 4).

1) By combining the Engine Fuel Rate (PID 015E), also
known as Fuel Flow (litres/hour), and Speed (PID
010D), it is easy to calculate fuel consumption. However,
while speed is mandatorily available, fuel rate is not. In
fact, it was unavailable in all the vehicles we used to
carry out our tests. This can be due to two reasons: (i)
the manufacturer chooses not to make it available, or (ii)
there is no sensor inserted in the fuel line between the
fuel tank and the engine carburetor to measure litres per
hour.

2) If the MAF PID is available, but the Engine Fuel Rate is
not, we can calculate fuel rate as Fuel Flow (litres/hour)
by dividing the Mass Air Flow (PID 0110) · 3600 sec.
by the product of air-to-fuel ratio and Fuel Density (see
table I):

Fuel F low [l/h] = (MAF · 3600)/AFRA · FD (3)

where MAF refers to Mass Air Flow (g/s), AFRA to
the actual Air-to-Fuel Ratio (see table I), and FD - Fuel
Density (g/l, see table I), allowing us to directly calculate
fuel consumption.

3) If MAF is not available there are two ways to calculate
it (see figure 4).

• As a function of absolute load (PID 0143), RPM (PID
010C) and Engine Displacement (EngDisp, volume of
an engine’s cylinders in cm3, intake stroke is the fluid
admission phase of a reciprocating cylinder). The
equation is:

MAF [g/s] = 1.184 [g/l] · EngDisp [l/intakestroke]

·load abs/100 · enginespeed [rpm] (4)
/2 · [rpm/intakestroke] /60 [sec/min]

• As a function of the intake manifold pressure (PID 010B),
RPM (PID 010C), intake air temperature (PID 010F) and

Figure 5: Outline of the calculation of the Fuel Flow average.

engine displacement. A synthetic variable called IMAP
can be used to estimate the Mass Air Flow (MAF) of an
internal combustion vehicle, much like a MAF sensor. In
order to make this calculation, the engine displacement
and volumetric efficiency of the engine must be provided.

IMAP = RPM · MAP/IAT/2 (5)

Where RPM (PID 010C) is the engine speed in RPM,
MAP (PID 010B) is the Manifold Absolute Pressure
measured in kilopascal kPa, and IAT (PID 010F) is the
Intake Air Temperature measured in degrees Kelvin. This
integrated value can be converted into total air flow
(grams) using the following formula:

MAF [g/s] = (IMAP/60) · (V olEff/100)

· EngDisp · MMAir/R (6)

Where VolEff is Volume Efficiency (which relates the
actual and the theoretical volumetric flow rate in %),
EngDisp is the Engine Displacement (the volume of an
engine’s cylinders in cm3) and R is 8.314 J/oK/mole.
These parameters are used to formulate the equation
in order to obtain reliable OBD data, which is then
compared to the data given by the vehicle manufacturer
to ensure its accuracy.
The Air Fuel Flow can then be calculated as follows: (see
figure 5).

Fuel F low [l/h] = (MAF · 3600)/AFRA · FD (7)

Fuel Type Ratio by mass Density g/dm3

Gasoline 14.7:1 820
Diesel 14.5:1 750

Table I: Ideal air/fuel ratio (grams of air to 1 gram of fuel) -
Density (g/dm3).

V. GREENHOUSE GAS EMISSIONS CALCULATION

The most significant greenhouse gases are generated from
direct combustion carbon dioxide CO2, Methane (CH4), and
Nitrous oxide (N2O), among others. CO2 is always generated
when burning fuel that contains carbon. Since the carbon in the
fuel is combined with the oxygen in the air: C+O2 → CO2,
the amount of CO2 can be calculated by the atomic masses



Figure 6: Chart of consumption and CO2 in relation to the
driving behavior.

of carbon and oxygen and the carbon content of the fuel. The
atomic mass of carbon is 12U and oxygen is 16U , meaning that
CO2 = 12U+2 ·16U = 44U . Burning 1 kg of carbon produces
44/12 ≈ 3, 67kg of CO2 in complete combustion, and so the
CO2 emission of combustion is 3, 67 · Cc · mfuel where
Cc = fuel carbon content (mass bassis). Considering that
the carbon content of diesel fuel is 85,7% the CO2 emission
when burning 1 kg (mfuel = 1kg) of diesel fuel is:

mCO2 = 3, 67 · Cc · mfuel

mCO2 = 3, 67 · 0, 857 · 1 [kg] = 3, 15 [kg/1kg fuel]

Density of diesel fuel is 0, 84 [kg/l]

mCO2 = 3, 15 [kg] · 0, 84 = 2, 64 [kg/1l fuel] (8)

Driving in a fuel-efficient manner can save fuel, money,
and reduce greenhouse gas emissions. Among the factors
that can affect fuel consumption, such as: vehicle age and
condition, outside temperature, weather, and traffic conditions,
we consider that driver behavior can be the most relevant
parameter.

VI. EXPERIMENTAL RESULTS AND EVALUATION

In our project, we focus on measuring fuel consumption
variations associated with different driver behaviors. In order
to achive this objetive, we rely on the collaboration of 264
drivers from around the world using our platform, including
countries like India, Brazil, Central America, and Europe
[16]. In this particular study, we analyzed the behavior of 34
representative routes (each divided into 20 second periods)
using the neural network described earlier. For each section,
the neural network returns the corresponding driver behavior,
and we combine this data with the fuel consumption data
corresponding to that route.

Figure 7: Comparative chart between two drivers and their
behavior.

We carried out several types of tests to validate our pro-
posals. The first requires a same person to drive a single
vehicle model, and then analyzing all the behaviors recorded
during driving, as well as the instantaneous consumption. The
results of this test have been very significant, as shown in
figure 6. Notice that more aggressive driving behaviors cause
consumption to increase significantly, liters of fuel, likewise
increasing the generation of CO2.

Figure 8 displays the differences between quiet, normal,
and aggressive driving behavior in terms of fuel consumption;
aggressive drivers provoke fast starts and quick accelera-
tions, driving at high engine revolutions, and causing sudden
speed changes. Conversely, a quiet driving behavior would
be smooth, without sudden speed changes or continuos gear
shifts. It is clear that fuel consumption increases when the
driver behavior becomes more aggressive, with average dif-
ferences of up to 1,5 liters per 100 km. Regarding CO2 emis-
sions, they increase by 50%, going from 10 to 15 Kg/100km,
dependending on whether you are a quiet or an aggressive
driver, as shown in figure 6.

The second battery of tests was performed using the same
vehicle but with different drivers. Figure 7 shows the behavior
of two drivers driving the same vehicle. We can see that the
behavior of both drivers is clearly different, being that the
second driver clearly has a more aggressive behavior, and so
consumption is noticeably higher compared to the other driver..

As a result, we conclude that aggressive driving behav-
iors, besides being dangerous and not recommended, can be
economically expensive and ecologically harmful. A trend
towards aggressive driving behavior may actually increase fuel
costs by more than 20%, not to mention that additional CO2

emissions to the environment could be avoided.



Figure 8: Box and wisker plot of Fuel Consumption / Driving
Behavior.

VII. CONCLUSIONS AND FUTURE WORK

Reducing energy consumption and greenhouse gas emis-
sions requires drivers to adopt an efficient driving style. This
paper presents our DrivingStyles platform, which integrates
mobile devices with data obtained from the Electronic Control
Unit (ECU) to determine the type of road where the driver is
traveling, as well as his driving habits. Using only an Android
Smartphone and an OBD-II adapter, it is possible for a driver
to improve his driving behavior and fuel efficiency, motivating
him to improve his driving behavior.

In this paper, it has been demonstrated that the driving style
is directly related to fuel consumption. Specifically, adopting
an efficient driving style allows achieving fuel savings ranging
from 15 to 20%. An aggressive driving style always results in
a greater energy consumption and CO2 emissions, whereas
smooth driving ends up providing a greater energy efficiency
as well as reduced gas emissions.

The application, which is available for free download in
the DrivingStyle’s website and in the Google Play Store, has
achieved more than 4500 downloads from different countries
in just a few months.

As future work, we intend to extend this platform to provide
driving recommendations based on real-time feedback about
the driver’s health conditions and the instant driving pattern.
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