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Weighted binary relations involving the Drazin inverse

A. Hernéandez*! M. Lattanzi' N. Thome?

Abstract

The Drazin inverse of a matrix has been used in the literature to define a pre-
order on the set of square complex matrices. In this paper we analyze new binary
relations defined on the set of rectangular complex matrices and some relationships
to the W-support idempotent. We introduce the class of weighted Drazin equal
projectors and analyze the pre-orders on this class. Moreover, adjacent matrices
are studied under the considered relations. Finally, some observations on weighted

partial orders are given.

AMS Classification: 15A09, 06A06
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1 Introduction

The symbol C™*™ denotes the set of m x n complex matrices. For a given A € C™*™,
the notation A* stands for the conjugate transpose of A. As usual, I,, and O,, denote the

n X n identity and zero matrices, respectively. The subscripts will be deleted when no

(n—t)

confusion is caused. Given two matrices A € Ct*t and B € C(m—t)x we will denote
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by A@® B the m x n matrix where A is in the N-W corner, B is in the S-E corner and the
other two blocks correspond to rectangular zero matrices of adequate sizes.

Let A € C"*". The index of A, denoted by ind(A), is the smallest nonnegative integer
k such that A* and A**! have the same rank. The only matrix X € C™" satisfying
XAX = X, AX = XA, and A1 X = A¥ with k = ind(A), is called the Drazin inverse
of A [3]. Tt always exists and is denoted by X = AP. It is clear that A™T1AP = A", for all
integer r > ind(A) and A"TPAP = AP A" for all integer r > 0. We recall that if A has
index at most 1, the Drazin inverse of A is called the group inverse of A and is denoted by
A# . The Drazin inverse of a matrix can be computed via the core-nilpotent decomposition.
Indeed, for a nonzero given matrix A € C**" with ind(A) = k, there exist nonsingular
matrices P € C™" and C' € C**° such that A = P(C © N)P~! where N € C(n~)x(n=a)
is absent (k = 0), N = O,,_, (k =1) or N € C"=9*(=) ig a4 nonzero nilpotent matrix
with nilpotence index equals k£ > 1. By abuse of language, we will say that IV is nilpotent
for each one of these three possibilities. In this case, AP = P(C~' @ O)P~!. We can
write A in the core-nilpotent decomposition as A = A; + Ay where A; = P(C ® O)P~!
and Ay = P(O@® N)P~! and A, A, are the unique matrices in these conditions (see [3]).

The following result will be used in the sequel.

Theorem 1.1 [4, Lemma 1.1] If W € C™™ is a nonzero matriz, A € C™*" k =
ind(AW), and ky = ind(W A) then there exist four nonsingular matrices P € C™™,
Q € C™ A, W; € C*, and two matrices Ay € Cm=0x0=t) gnd W, € Cr—tx(m=1)
such that AoWy and WoAg are nilpotent of indices ki and ko, respectively, where

A= P(Al @D AQ)Qil and W = Q(Wl @D Wz)Pil. (].)

We observe that Theorem 1.1 can also be established for k£ = max{ky, k2}. Moreover, the
matrix W can be seen as a weight needed to transform the rectangular matrix A into two
square ones, namely, AW and W A.

On the other hand, we recall that a binary relation is a pre-order if it is reflexive
and transitive and, a partial order, if it is also antisymmetric. Partial orders have been
widely studied (see, for example, [8] and the references therein). Interesting applications
of partial orders and pre-orders were investigated, for instance, in [1, 2]. In those papers,

properties on the distribution of quadratics forms in normal variables are dealt in the



Cochran’s Theorem environment. The utility of a pre-order was studied, for instance, in
[1]. The authors generalized a property on the independence of two quadratic forms that
involves the Lowner partial order (i.e., A <; B if B — A is nonnegative definite where A
and B are n x n symmetric matrices), replacing < by the column space pre-order, which
is simpler to be verified. For more applications, we refer the reader to [12].

The following binary relations are well known.

Let A, B € C™*™ be matrices with index at most 1. It is said that A is below B under
the sharp partial order, and is denoted by A <# B, if A# A = A¥ B and AA* = BA¥.

Suppose that A, B € C"*" are matrices of arbitrary index, and they are written in the
respective core-nilpotent decompositions as A = A; + Ay and B = B; + B,. It is said that
A is related to B under the Drazin pre-order, and is denoted by A =< B, if A, <¥ B.
Observe that A <? B is equivalent to AP A = APB and AAP = BAP.

The main aim of this paper is to investigate some new binary relations defined on the
set of rectangular matrices C™*".

This paper is organized as follows. Section 2 introduces and characterizes three rela-

<dWr  <dWt and <4W . Moreover, the concept

tions considered on rectangular matrices:
of W-support idempotent is recalled and some links to these relations are given. For each
rectangular matrix A and a fixed weight W, it is possible to define two projectors in-
volving the Drazin inverse of AW and W A. Section 3 analyzes the class of all matrices
for which those two projectors coincide. Additionally, the relation <%"W is studied on
this class. In Section 4, we characterize the adjacent matrices under the three considered

relations. Finally, in Section 5, some considerations on weighted partial orders are given.

2 Weighted binary relations and the Drazin inverse

The fact that Drazin inverse exists for all square matrix allowed to define the Drazin
pre-order on square matrices [8]. However, it is not possible to define this pre-order for
rectangular matrices in the same way. In order to do that, we are going to consider a
weight matrix and define some binary relations on the set of rectangular matrices by

means of the Drazin inverse of certain square matrices.

Definition 2.1 Let W € C™™ a nonzero matriz and A, B € C™*™. It is said that



(a) A x3Wr B f AW <4 BW,
(b) A=IWERBfWA=IWB,
(c) A=W B if A=W B and A =W+t B,

where <% is adequately considered on C™ ™ or C™*".

Using that <% is a pre-order we obtain the following result.
Lemma 2.1 The binary relations <7 <4WL and <4V define a pre-order on C™*".

Next we characterize the relation <4"" in terms of block decompositions of the in-
volved matrices. Before doing that, notice that <4Wr <4Wt and <" pre-orders do
not preserve equivalences (that is, in general that A <° B implies I'1Al'y <° I'1 BTy is
not valid for all nonsingular I';, I’y and for each <°€ {<4Wr <dWLt <dW) Tn order to

illustrate this situation we give the following example.

Example 2.1 The matrices

0 0 2 01
1 01 0 0 1

A= ,BI ,W: 0 1 ,F1:[2, and FQI 0 2 0
010 1 10

1 0 0 0 2

satisfy AW = BW = Iy; however 'y ATy £4W" 'y BTy because (I ATy W) (T1AT,W)P =

I, and
0
E

This fact tells us that we can not remove matrices P and () when using Theorem 1.1 for

(T, BT, W) (T, AT, )P = [

Wl Wi

characterizing the pre-orders of Lemma 2.1.

Theorem 2.1 Let W € C™™ be a nonzero matriz and A, B € C™". The following

conditions are equivalent:
(a) A =3Wr B,
(b) (AW)P(AW) = (AW)P(BW) = (BIV)(AW)P.
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(c) (AW (BW) = (BW)(AW)* = (AW)*1+L where ky = ind(AW).

(d) There exist nonsingular matrices P € C™™ Q € C™", A, Wi € Claxta  and
(By)1, (W51 € C™, and there exist matrices Ay € Cm—ta)x(n=ta) = By ¢ Ctax(n—ta)
(By)y € Clm—ta=tix(n=ta=t) " gnd (W), € Crta=0xm=ta=t) sqtisfying

Ay By

A=PA, ®A)Q, B=P Q'
O (B3)1 @ (B2)2

W =QW{ @ (Wi ® (W3')2)) P,

where Ay(Wh) & (W3')2), (W3h)y & (Wi')2) Az, (B2)2(W3')a, and (W3')a(Ba)s are
nilpotent matrices and Bs((W4'); @ (W4')s) = O.

Proof. Items (a), (b) and (c) are equivalent taking into account the equality of the

projectors (AW)(AW)P and (AW)P(AW) and using the definition of Drazin inverse.
(b) = (d) Suppose that A, B € C™*" satisfy (b). By Theorem 1.1, there are

nonsingular matrices Py € C™™, Q4 € CV", A, WA € C'4** and matrices Al €

(C(m—tA)X(n—tA), WZA c Cn—ta)x(m—ta) satisfying
A=Py(A @ 4)Q,", W =QQ.aWaeWwhr,',

where A,W5' and WitA, are kj-nilpotent and ko-nilpotent, respectively, where k; =
ind(AW) and ke = ind(W A).

Now, we consider the following partition of B

B, B,

B=rP
‘1 B, B,

QL'

according to the size of the blocks of A. Then,

BW = Py

Bwi By p-1
BWA Bw |

and using the equality (AW)P = Py((A, W)™t @ O)P;" we get

BiATY O
B,ATY O

-1

(BW)(AW)P = P, e




(AW ByWi (A W) By
@) @)

and (AW)P(AW) = Ps(I;, ® O)P;'. From (b), we obtain B; = A;, By = O, and

BYW3' = O, that is

(AW)?(BW) = P4 Py,

A B,

B=pP
‘1o B

Q4

Suppose that W' # O. Applying Theorem 1.1 to matrices By € C(m—ta)x(n—ta)
and Wit € Cr—ta)x(m=ta) " there exist nonsingular matrices R € Cm—ta)x(m=ta) g ¢
C—ta)x(n=ta) (By),, (W4'), € C*?, and matrices (By), € Cm—ta=tixn=ta=t) (J74), ¢

Clr—ta=t)x(m—ta=t) gatisfying
By = R((B:)1 @ (By)2)S™"  and Wi =S(Wi'h @ (Wi))R™Y,  (2)

where (Ba)o(W3')s and (Wit)a(Bs), are nilpotent.
Consider the matrices P € C™*™ and ) € C*"*" defined by

P=PyI,,®R) and  Q=Qu(l, ®59). (3)

Replacing (2) and (3) in the expressions of A, B, and W and setting A, = R™'A,S and

Bs = B4S we arrive at
A=P(A®A)Q™", B=P QY

and
W=Q(W{®S'"Ws'R) P

Observe that the case W' = O can also be written as in (d) with (W3'); = O and
(W3')e = O.
(d) = (b) It is straightforward. |

A similar characterization is established for the inequality <%,

Theorem 2.2 Let W € C™™ be a nonzero matrix and A, B € C™". The following

conditions are equivalent:



(a) A <3V B,
(b) (WAP(WA) = (WAP(WB) = (WB)(WA).
(c) (WA=(WB)=(WB)(WA)* = (WA)*2* where ky = ind(W A).

(d) There exist nonsingular matrices P € C™™ Q € C™", A, W € Claxta  and
(By)1, (W51 € C**, and there exist matrices Ay € Cm—ta)x(n—ta) B Clm—ta)xta
(By)y € Clm—ta=tix(n=ta=t) g (W), € Crta=0xm=ta=t) sqtisfying

- » - A, O B
A=P(A @ A)Q™, B=P Q™

By (B2)1 @ (B2)2
W = QWi @ (W5 @ (W3'),)) P,

where (W3')1 @ (W3')2) Az, As(W5')y @ (W5h)2), (Wi')a(Ba)2, and (Ba)a(Ws')a are
nilpotent matrices and (W3'), @ (W3')9)By = O.

Proof. It follows from the fact that A <*"¥ B is equivalent to A* <*W"r B* and after
application Theorem 2.1. [ |

While in Theorem 2.2 we use the same matrix names as in Theorem 2.1, we remark
that they are not necessarily the same ones. That is, for example, matrix P in Theorem

2.1 may be different from matrix P in Theorem 2.2.

Theorem 2.3 Let W € C™™ be a nonzero matrix and A, B € C™". The following

conditions are equivalent:
(a) A=W B.

(b) (AW)P(AW) = (AW)P(BW) = (BW)(AW)? and (WA)P(WA) = (WA)P(WB) =
(WB)(WA)P.

(¢) (AW)E (BW) = (BW) (AWM = (AW and (WA (WB) = (WB)(WA)* —
(W A)k2HL where ky = ind(AW) and ko = ind(W A).



(d) There exist nonsingular matrices P € C™™, Q € C™", A, Wi € C*ta, and
(By)1, (W41 € C™, and there exist matrices Ay € CM—ta)x(n=ta) (By), € Clm—ta=t)x(n=ta—t)
and (W4')y € Cvta=t)x(m=ta=t) sqtisfying

A=PA®A)Q™",  B=P(A @ (B ®(B2)2) Q"

W =Q(Wi* & (W5 @ (Ws'))) P,

where (W3')1 & (W3')2) Az, As(Wih)y @ (W3')a), (W3)a(Ba)a, and (Ba)a(Ws')y are

nilpotent.

Proof. Suppose that A, B € C™*" satisfy A <*W B. Thisis, A <*"" B and A <%W* B.
By Theorem 2.1,
Ay Bs

A=PA ®A)Qt, B=P Q'
O (B3)1 ® (B2)2

W= QWi @ (Wi @ (W3')2)) P,

where all the blocks satisfy the conditions found in item (d) of Theorem 2.1. Using that
WA <% WB and making some computations we get Bz = O. This shows (a) = (d).

The remaining implications follow directly from Theorem 2.1 and Theorem 2.2. |

For a rectangular matrix A and a weight W of adequate sizes, Castro-Gonzalez and
Vélez-Cerrada considered in [4] the W-support idempotent A%W = A(WA)P = (AW)P A.
The authors established conditions under which the projectors AWW and B*"W co-
incide. Similarly, for the projectors WA>" and W B%W. In addition, they characterized
matrices B such that A" = B®W. We reconcile results in Theorems 2.1, 2.2 and 2.3
above with Theorem 2.1, Theorem 2.4, and Corollary 2.7 in [4]. In order to do that, we

first observe that if A <" B then, from Theorem 2.1 above, we can write

A X Y
P_IBQ — O (Bg)l O
O O  (Bs):



where Bj has been partitioned as [ XY } according to the blocks of (By); @ (B2)s.
Clearly, the matrix

A X
O (Bs)

is nonsingular and setting Y = [ Y* O } we get

B Y
O (B),

B=P Q. (4)

Since By((Wi)1®(Wst)s) = O, some algebraic manipulations yields X = O and Y (Wg), =
O. So, if A <*W" B then B can be written as in (4) where B € Clat)x(tath) js non-
singular, Y (W5')y = O, and (By)s(W4), is nilpotent. Nevertheless, we remark that the
matrix By in [4, Theorem 2.1 (ii)] and the matrix A; in [4, Lemma 1.1] have the same
size. This shows that conditions in our Theorem 2.1 does not imply those conditions in
[4, Theorem 2.1]. That is, Theorem 2.1 above is essentially different from [4, Theorem
2.1]. The same occurs with Theorem 2.2 and [4, Theorem 2.4] and also with Theorem 2.3
and [4, Corollary 2.7]. However, it follows that

AWYW = B°WW  implies A <*"" B and B <*Wr A.

We can get similar results for left and both sides relations as well. The converse of this

result is also true as we show in the following theorem.

Theorem 2.4 Let W € C™™ be a nonzero matriz and A, B € C™*™,
(a) If A 22" B and B 3" A then AWW = BoWW.

(b) If A =Wt B and B <34 A then WASW = WBoW.

(c) If A =4 B and B <4V A then AW = BoW.

Proof. It is enough to prove only item (a) because the second one can be obtained in
a similar way and the third one is immediate from [4]. In fact, from A <%"" B and
Theorem 2.1 we have that

Al Bg

A=PA ®A)Qt, B=P Q'
O (B3)1 ® (B2)2



W= QWi & (W5 & (W3'))) P,
where A{W/ and (By)1 (W), are nonsingular, (By)a(Wi')a, (Wih)a(By)a, Ax((W5h): @
(Wih)s) and ((Ws'); @ (Wi4')a) Ay are nilpotent matrices and Bz((Wit); @ (Wit)y) = O. Tt
then follows that BW = P(A, W @ ((By)1 (W) @ (By)2(W3')2))P~'. Thus, (BW)P =
P(AAWH L@ ((Bo)1(W)1) @ 0)) P~ leads to BW(BW)P = P(I,, @ (I; © O))P~L.
If we now partition
(A2)1 (A2)s

A2 =
(A2)s (Az2)2

Y

we can get

As(Wih @ (W5h)) =

(A1 (W5 (A)a(W5), ]
(A2)a(W3') (Az)a(Wish)y |

Using that B <*"" A we have that (BW)P?BW = (BW)PAW = AW(BW)P and
replacing by the expressions of BW, (BW)P and AW it can be easily obtained that
(A2)1 (W1 = (B2 i (W), (A9)3(Wst)y = O, and (A4;), = O. Hence, the nilpotent
matrix Ay(W5), @ (W3t)s) = (Ba)1 (W), @ (As)2(W5h),. Since (By)1 (W), is nonsin-
gular, (By); must be absent in the decomposition of matrix B. So, by [4, Theorem 2.1],
AWW = B"WW. u

From Theorem 2.1 (d), it follows directly that A <" B implies A%W <4Wr poW,
Analogously, for left and both sides relations similar implications can be stated.

We close this section emphasizing that the relations <" <4WL and <4W are
pairwise different. It is enough to show that A <4"" B does not imply A <4"* B, In
fact, matrices A, B, and W given in Example 2.1 satisfy A <*"" B and A A*"* B.

3 Equal Weighted Drazin Projectors

We recall that a square matrix A is said to be EP if AAT = ATA, where A! denotes
the Moore-Penrose inverse of A (that is, AATA = A, ATAAT = AT (AAT)* = AAT, and
(ATA)* = ATA hold). These and similar matrices have been widely studied in different
environments [5, 6, 9, 10].

Let W € C*™. We now observe that, if A € C™ " the matrices (AW)P? AW and

(WA)PW A are projectors of size m x m and n x n, respectively. The following definition

10



considers the case where both weighted Drazin projectors are equal and is inspired in the
definition of EP matrix.

Definition 3.1 Let W € C™™ be a nonzero matriz. A matriz A € C"*™ is called ED Py,
if satisfies (AW)P AW = (W A)PW A.

The class of all ED Py matrices will be denoted by EDPy,. Notice that if A € EDPy,
then PAP™' € EDPpyp-1 for all nonsingular P € C™*" because (PAP~1)P = PAP p~1.

Our next aim is to characterize £ D Py, matrices.
Theorem 3.1 Let A, W € C™" with W # O. The following conditions are equivalent:
(a) A e EDPy.

b) There exist nonsingular matrices P € C*™", A, W, € C**', and there exist matrices
9
Ay, Wy € CO=DX0=) sych that

A=P(A ® A)P? and W =PW,®Wy) P!,
where AsWs and Wy As are nilpotent.
Proof. Assume that A € C**" is EDPy,. Since W # O, we can write
A=PA & A)Q™ and W =QW, & WjP, (5)

where the block matrices have the properties indicated in Theorem 1.1. It is easy to see
that

(AWYPAW = P(I, ® O)P, and (WAPWA=Q(I,0)Q".

Equating and partitioning

M N
R S
according to the blocks of A we get N = O and R = O, which implies that Q = P(M & .5).
The result follows by replacing @ in the expression (5) of A and W and setting A; =
AIM~ Ay = ALS™H Wy = MW/ and Wy = SW3. The converse is trivial. [ |

P =

_<d,W

We now study the pre-order on the class of matrices with equal weighted Drazin

projectors.
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Theorem 3.2 Let W € C™™ be a nonzero matriz and A € EDPyw. The following

conditions are equivalent:
(a) There exists B € EDPyw such that A <4V B.

(b) There exist nonsingular matrices Ve C"*" Ay, Wy, € C™ and (Bs)1, (Ws), € C™7,
and matrices Ay € C=0X0=0 (By)y (Wy)y € C=t=mX(=t=7) gych, that

A=V @A)V, B=V(A e (B @ (Ba)2))V (6)

and
W =V(W, & ((Wy), & (Wa)2))V (7)

where (BQ)Q(WQ)Q, (WQ)Q(BQ)Q, AQ((WQ)l D (WQ)Q), and ((W2)1 D (WQ)Q)AQ are m'lpo—
tent and (B2)s € EDP(w,), -

Proof. Since A € EDPyy , applying Theorem 3.1 we can write
A=PA @ A)P! and W =P(W,®W,)P~! (8)
where the block matrices have the properties indicated there. Partition

B, Bs
By B

P*l

B=P

with the blocks of appropriate sizes accordingly to A. The equalities (AW)PAW =
BW(AW)P and (WA)PWA = (WA)PWB are equivalent to B; = Ay, By = O and
B3 = 0. So,

B =P(A, @ By)P". (9)

Now, B € EDPy if and only if the equality (BW)P?BW = (WB)PW B holds, from
we have By € EDPyy. Again, Theorem 3.1 applied to the matrix By and the weight
W4 asserts that By = Pi((By)1 @ (By)2) P! and Wy = P(Wa), @ (Wa)) Py t, where
(Bg)2(Ws)g and (Ws)a(Bsy), are nilpotent matrices.

Setting V = P(I, © P)), Ay = P 'A, P, and replacing in expressions (8) and (9) we
obtain matrices A and B of (6), and matrix W of (7). Moreover, (B3)s € EDP ), and
Ay((W3)1 & (Wa)o) and ((Ws)1 @ (W3)a)As are nilpotent.Hence, (a) = (b) holds. The

12



converse is trivial. [ ]

Of course that, right and left relations can also be analyzed on the class of matrices

with equal weighted Drazin projectors obtaining similar results.

4 Adjacent matrices under the jd’W’T, jd’W’g, and <4V
relations

For two given matrices A, B € C™*", it is said that A and B are adjacents if rank(B—A) =
1 (see, for example, [7, 11]). In what follows, we investigate the expressions for two

matrices to be adjacent under <&Wr <&Wl and <4W relations.

Theorem 4.1 Let W € C™™ be a nonzero matriz and A, B € C™ " such that A <&Wr

B. The following conditions are equivalent:
(a) A and B are adjacent.

(b) There exist nonsingular matrices P € C™*™ and Q@ € C™", and nonzero vectors
u e C™ gnd v € CtA*1 gych that

B:A—FP[O uv*}Q_l.

Proof. Let A, B € C™" with A <4"" B. From Theorem 2.1,

Al Bg

A=PA @ A)Q? and B=P
O (B32)1 @ (B2)2

Q.

It can be shown that rank(B — A) = 1 if and only if

rank (

Bs
((B2)1 @ (Ba)2) — Az

which is equivalent to

13



for some nonzero vectors u € C™*!' and v € C»~t4)x1 Replacing in the expression above
we have B = A+ P [ O w* ] Q~'. Observe that A # B in item (a) is equivalent to
u# 0 and v # 0 in item (b). |

Analogously, we can give the following similar results.

Theorem 4.2 Let W € C™™ be a nonzero matriz and A, B € C™" such that A <4W*

B. The following conditions are equivalent:
(a) A and B are adjacent.

(b) There exist nonsingular matrices P € C™™, @ € C™", and nonzero vectors u €
Cm=taxl gnd v € C™! such that

B=A+P

0) ] o1

uv

Theorem 4.3 Let W € C™*™ be a nonzero matriz and A, B € C™" such that A <4V B.

The following conditions are equivalent:
(a) A and B are adjacent.

(b) There exist nonsingular matrices P € C™™ @ € C" ", and nonzero vectors u €
Cm=ta)x1 gnd v € Cr—ta*1 gych that

B=A+POouw)Q .

Remark 4.1 If A and B are adjacent matrices then
(i) either A <®"r B and B <" A hold, or AW and BW are adjacent matrices,
(ii) either A <4"W* B and B <4 A hold, or WA and W B are adjacent matrices.

Indeed, in case (i), rank(BW — AW) < rank(B — A) = 1 if A and B are adjacent. That
is, either AW = BW holds or AW and BW are adjacent matrices. Similarly for the case

(ii).
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5 Further considerations on weighted partial orders

For a nonzero matrix W € C™*, we now consider the set
Mw, ={A e C™" ind(AW) < 1}.

Observe that My, # 0 since rank((W*W)?) = rank((W*W)(W*W)*) = rank(W*W)
yields ind(W*W) < 1 and then W* € Myy,.

Definition 5.1 Let A, B € Myy,.. It is said that A <#W" B if AW <# BW.

We remark that the relation <#"" is a pre-order and coincides with the restriction
of <4 on My,. Moreover, we stand out that the representation Theorem 2.1 is also
true for the relation in Definition 5.1. In addition, taking into account that A € My, it
then holds that either AsW5 = O or A;Wj is absent. Furthermore, since k; € {0,1} and
|k1 — ko| < 1, it results ko € {0,1,2} by [13, Theorem 11.1.2]. Then, W5A, is absent if
ko =0, WoAy = O if ky =1 or (WhA3)? = O # WhAy if ky = 2.

Since <¥ is a partial order on index at most one matrices in C™*™, we establish the

following result.

Theorem 5.1 The relation <#W'" is a partial order on My, provided that W has full

row rank.

Next we consider the set Py, = {Z C C™*": <4Wr g a partial order on Z } ordered

by set inclusion.
Theorem 5.2 If W € C™*™ has full row rank then My, is a mazimal element of Py,

Proof. We first observe that Myy, € Py,.. Assume that there exists a subset Z € Py,
such that My, C Z. If we suppose that A € Z — My, then ind(AW) > 1 and Theorem
1.1 assures that A = P(A;® A5)Q " and W = Q(W, & W) P! as indicated in (1). Since
ind(AaWs) > 1, we get AyWy # O [3]. On the other hand, set B = P(A; & 0)Q~'. Tt
can easily be seen that B € My, C Z. By Theorem 2.1, A <*"" B holds. Now, by
definition, it is easy to that B <" A. Since A, B € Z and <" is antisymmetric on

Z, we get A= B. Hence, Ay = O, which is a contradiction. [ |
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Similarly, if A,B € My, = {A € C™" : ind(WA) < 1}, we define A <#W* B if
WA <#* WB. It is obtained that <#*"* is a partial order on My, provided that W has
full column rank. It is also valid that My, is a maximal element among all the subsets
Z of C™*" satisfying that <%" is a partial order on Z.

Finally, defining A <#W B if A <#W" B and A <#"W* B for A, B € My, N My,
it can also be established that <#" is a partial order provided that W has full rank.

6 Acknowledgements

This paper was partially supported by Universidad Nacional de La Pampa, Facultad de
Ingenieria of Argentina (grant Resol. N° 049/11) and the third author was partially
supported by Ministerio de Economia y Competitividad of Spain (grant DGI MTM2010-
18228).

References

[1] J.K. Baksalary, J. Hauke, Inheriting independence and chi-squaredness under certain
matriz orderings, Statistics and Probability Letters, 2 (1984), 35-38.

[2] J.K. Baksalary, J. Hauke, G.P.H. Styan, On some distributional properties of
quadratic forms in normal variables and some associated matrix partial orderings,
Multivariate Analysis and its Applications, 24 (1994), 111-121.

[3] S.L. Campbell, C.D. Meyer Jr., Generalized Inverse of Linear Transformations.
Dover, New York, Second Edition, 1991.

[4] N. Castro-Gonzélez, J.Y. Vélez-Cerrada, The weighted Drazin inverse of perturbed
matrices with related support idempotents, Applied Mathematics and Computation,
187 (2007), 756-764.

[5] D.S. Djordjevi¢, Y. Wei, Operators with equal projections related to their generalized
inverses, Applied Mathematics & Computations, 155, 3 (2004), 655-664.

16



[6]

[10]

[11]

[12]

[13]

J.J. Koliha, P. Patricio, Elements of rings with equal spectral idempotents, Journal of
the Australian Mathematical Society, 72 (2002), 137-152.

Li-Ping Huang, Zhe-Xian Wan, Geometry of skew-Hermitian matrices, Linear Alge-
bra and its Applications, 396 (2005), 127-157.

S. K. Mitra, P. Bhimasankaram, S. B. Malik, Matrix partial orders, shorted operators
and applications. World Scientific Publishing Company, 2010.

D. Mosi¢, D.S. Djordjevi¢. Partial isometries and EP elements in rings with involu-
tion, Electronic Journal of Linear Algebra, 18 (2009), 761-772.

P. Patricio, C. Mendes Aratjo, Moore-Penrose invertibility in involutory rings: the
case aa’ = bb', Linear and Multilinear Algebra, 58, 4 (2010), 445-452.

P. Semrl, A.R. Sourour, Adjacency preserving maps on hermitian matrices, Journal
of the Australian Mathematical Society, 95, 1 (2013), 129-133.

M. Tosi¢, D.S. Cvetkovic¢-1li¢, Invertibility of a linear combination of two matrices and
partial orderings, Applied Mathematics and Computation, 218, 9 (2012), 4651-4657.

G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science
Press, Beijing/New York, 2004.

17



