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Abstract—Message oriented middleware (MOM) refers to
the software infrastructure supporting sending and receiving
messages between distributed systems. AMQP and MQTT are the
two most relevant protocols in this context. They are extensively
used for exchanging messages since they provide an abstraction
of the different participating system entities, alleviating their
coordination and simplifying the communication programming
details.

These protocols, however, have not been thoroughly tested
in the context of mobile or dynamic networks like vehicular
networks. In this paper we present an experimental evaluation of
both protocols in such scenarios, characterizing their behavior in
terms of message loss, latency, jitter and saturation boundary
values. Based on the results obtained, we provide criteria of
applicability of these protocols, and we assess their performance
and viability. This evaluation is of interest for the upcoming
applications of MOM, especially to systems related to the Internet
of Things.

I. INTRODUCTION

Modern Internet-based applications are becoming more
oriented towards the interaction of wireless and mobile devices
with cloud resources and services. For many years HTTP has
been used as the reference communications protocol in this
context. HTTP is a very wide spread protocol, and APIs for
its use are available basically for every programming language.

However, more flexible middleware systems have been
developed to ease the design of cloud-based applications.
Significant research efforts have been dedicated to define new
communication systems that connect distributed components
via message passing; they are called Message Oriented Middle-
ware (MOM). The basic idea of MOM is that communication
takes place by adding messages to distributed queues, and
by getting messages from those queues. Based on the model
of Message Oriented Middleware, many protocols have been
developed, e.g. DDS, STOMP, XMPP. The two most widely
used proposals are: the Advanced Message Queuing Proto-
col (AMQP) and the Message Queuing Telemetry Transport
(MQTT). AMQP was created in 2003 by John O’Hara of
JPMorgan Chase and MQTT was originated in 1999 by Andy
Stanford-Clark of IBM. Both protocols provide some platform
agnostic methods to improve the communication and ensure
that information is safely transported between systems.

AMQP is an open standard for enterprise messaging,
designed to support messaging for almost any distributed or

business application [6]. It works like instant messaging or
email, and the difference towards these available solutions is
that AMQP comprises both a network protocol, which specifies
the entities (producer/consumer, broker) to interoperate with
each other, and a protocol model, which specifies the represen-
tation of messages, and the commands to interoperate among
the entities. Furthermore, AMQP messages are self-contained,
and data content in a message is opaque and immutable. Also,
there is no limit for the size of a message; it can either support
a 4 GByte message or a 4 KByte one, in any case ensuring
security, reliability, and performance.

MQTT is a lightweight machine-to-machine messaging
protocol [2], and it has a clear focus on the mobile sector.
Its information exchange procedure is resource-efficient, and
it does not specify a particular data format. Additionally, it
provides security that all messages transmitted even if the
connection breaks off briefly, solving problems that arise upon
unreliable communications.

Both protocols use similar techniques for message delive-
ring. When a message is sent by a client to a message broker, it
is placed in a queue, and after that, all customers subscribed to
this queue automatically receive the message as a push notifi-
cation [9]. To support a wide variety of usage scenarios, AMQP
offers several possibilities for message delivery, namely: point-
to-point, store-and-forward. However, the MQTT protocol
provides a basic messaging topic based on specified topics
(subscription’s name) without possibility of store-and-forward
mechanisms to support message delivery [13].

Both of these protocols were designed to facilitate the
dialogue among the components of a system, by simplifying
message exchange independently of their underlying platforms.
There are libraries available for the most popular programming
languages, and there are implementations for the most common
operating systems and platforms. In addition, they take into
consideration security and confidentiality issues without affec-
ting significantly the communications performance.

In this paper we evaluate AMQP and MQTT, and we com-
pare their capabilities and capacities through measurements
under a mobile or unstable wireless network testbed. We call
unstable networks those in which links can be frequently
modified or broken without control. Examples of unstable
networks are mobile networks or wireless networks in urban
environments, like community networks or vehicular networks,



which suffer from channel interferences or node blackouts.
Our goal is to determine whether these protocols provide a
satisfactory service, depending of the applications’ load needs,
in terms of message size and communication rates.

We present the evaluation results regarding the effect of
a mobile producer/publisher changing from one WiFi access
point (AP) to another in the same IP network. We developed a
synthetic load generator, called amqperf, that sends messages
with a sequence number to detect losses or messages delivered
in different sending order. The size of messages and the fre-
quency in which they are sent by the producer can be modified.
Using a simple scenario composed by one producer/publisher,
one consumer/subscriber and one message broker, we observe
the effect of network changes on the messages’ jitter, and
we detect the saturation boundary values with the specific
hardware used in the tests.

The rest of the article is organized as follows: Section II
presents a literature review related to the topic. Section III
provides a description of the methodology used in this work,
showing how measurements have been done in order to be
reproducible. Section IV presents the results and, finally,
Section V concludes the paper, highlighting the next steps to
follow in this research line.

II. RELATED WORK

The AMQP and MQTT protocols have proved to be useful
in production scenarios, and have been used in challenging
applications, including Autonomous Computing [4], Cloud
computing [14] or in aspects related to the Internet of Things
(IoT) [15].

There are several works in which the AMQP and MQTT
protocols are evaluated separately. In [10] the performance
of AMQP is assessed using Infiniband and Gigabit Ethernet
networks with Qpid as AMQP middleware. Five simple syn-
thetic benchmarks modeled after the OSU Micro-benchmarks
for MPI were used. They exercise the number of Publishers,
the number of Consumers, and the Exchange type. Each bench-
mark measures performance for data capacity (the amount of
raw data in MegaBytes per second), message rate (the number
of discrete messages transmitted), and speed (average time one
message takes to travel from the publisher to the consumer).

In [1] authors present a way to evaluate the performance
of AMQP by using an adapted version of the well-known
SPECjms2007 and jms2009-PS benchmarks. This would allow
to compare AMQP with other messaging systems such as JMS
(Java Message Service) in terms of performance, stability and
scalability.

In [5] a performance comparison between AMQP and
RESTful web services is presented. Three different tests are
performed, which consist of several client applications sending
messages during 30 minutes to the broker or the web server,
respectively; once the messages arrive to the server they are
stored in a database. Then, the average number of messages
per second that have been sent is compared to the total number
of messages stored in the database. They conclude that, when
the AMQP protocol is used to exchange messages, a larger
number of messages per second is supported.

Fig. 1: A picture of the scenario.

A study about MQTT, a “light weight” publish-subscribe
based messaging protocol, is presented in [7]. The correlation
between the end-to-end latency and loss of system messages
is studied. Three different QoS levels with different sizes of
payload (from 1 to 16 Kbytes) are tested on a real world
scenario with both wired and wireless clients using 3G. They
prove that there is a strong correlation between these two
variables.

However, few studies have focused on the effectiveness of
both protocols over unstable networks.

III. METHODOLOGY OF THE EXPERIMENTS

The publish/subscribe topology allows us to use a sim-
ple scenario with decoupled components in order to inter-
operate among them. In our experiments, we use a message
producer/publisher client, which at a given frequency, sends
AMQP/MQTT messages of a prefixed size to a message
broker.

In the case of AMQP, the message-broker accepts incoming
messages from a producer in an exchange (an exchange is
essentially a router [12]) and, based on a set of criterions
routes the messages to a specific queue. In the case of MQTT,
the message-broker forward the incoming messages from pu-
blishers directly to the subscribers. A subscription is initially
created by a client application with a simple subscription name
or a predefined topic.

In our scenario, the message consumer/subscriber is co-
nnected to the message-broker, and it is always ready to
get or consume messages. The message-broker and the con-
sumer/subscriber client are executed on the same computer. To
reach the message-broker, the producer/publisher is connected
to a WiFi access point within the same network. A picture
of the scenario configuration used in our testbed is shown in
Figure 1.

The consumer/subscriber records in a log file the sending
(timestamped by the producer in each message) and reception
times, along with the sequence number. There is not strict
synchronization between the producer and consumer clocks.
When there are changes in the producer/publisher link, the
regularity of message reception is affected. Since the inter-
message times are modified, message bursts can be delivered
to the consumer, and even the sending order can be changed.

Current implementations of AMQP and MQTT use TCP/IP
connections for communication in order to enhance reliability.



Fig. 2: Simulating the node mobility in an indoor scenario.

If the producer/publisher’s connection suffers an interrup-
tion, the client (producer’s AMQP or publisher’s MQTT)
accumulates the messages in its buffer and keeps it for a
limited time, waiting till the connection with the message
broker is re-established. The problem appears when, in the
producer/publisher part the storage buffer capacity is depleted,
thereby causing message losses.

A testing application, which we call amqperf, has been
developed to generate a workload for the message queuing sys-
tem on the producer. Amqperf uses the RabbitMQ library [16],
which is an AMQP implementation, and the Paho library,
which is an open source MQTT implementation. Amqperf also
works as a consumer/subscriber.

In our experiments, the duration of the tests was about 20
seconds, which is sufficient to check the access point migration
of the message producer. During the tests we checked whether
there were messages losses or if messages arrived out of order.

In order to simulate node mobility in an indoor scenario,
we used a set of scripts that shut down or activates the routers’
radios and disassociate/associate all client devices. A schema
of this approach is shown in Figure 2.

Due to the asynchrony among the internal clocks of the di-
fferent entities of a distributed system, we cannot determine an
exact latency value. Instead, we have calculated the variation
in the delay of the received messages, i.e., the jitter.

The nth message inter-arrival time jitter is computed
through the following equation:

Jn = t′n − t′n−1 − T

where t′n is the arrival time of message n to the consumer,
and T is the (fixed) inter-message production period. T is one
of the variables fixed for each experiment. Note that, with
this formula, we are not concerned by a possible asynchrony
between the producer and the consumer, which are executed
in different computers. An example of the timing involved in
the experiments can be seen in Figure 3.

The reference for the values used in the test is about 5
Mbps, which is the bandwidth needed, for example, to support
high definition video streaming. This value can be reached, for
instance, by transmitting messages of 12500B (12.5KBytes)
every 0.02 seconds. We made some tests to detect the point at
which messages start being lost in both cases: with and without

Fig. 3: Times involved in the experiments.

access point migration for the producer. The obtained values
are detailed in the following section.

The message broker was created on a server with an AMD
8-core processor and 16GBytes of RAM memory. The client
had an Atom N450 processor and 1GByte of RAM memory.
Both of them were running Ubuntu 12.04 GNU/Linux distri-
bution. For the wireless network we have used the OpenWRT
GNU/Linux distribution with Attitude Adjustment version on
an Alix PC-Enginees (alix2d2) and a Tplink (TL-WDR3600)
routers. The tests were run on a dedicated LAN without
external traffic.

IV. RESULTS

In this section we present our experimental results. The
scenario is based on a wireless producer which migrates from
one access point to another maintaining the same IP address;
the TCP connection between the producer/publisher and the
message broker is not affected.

For the experiments, we have used a completely dedicated
network without external traffic. The tests were repeated 100
times for each combination of inter-message period and me-
ssage size. We analyse the behaviour for each scenario, and
we generalize it through a cumulative distribution function.

A. Behaviour during access point transition

AMQP and MQTT protocols ensure that, when a client
reconnects, it does not repeat messages and resumes the
previous session with the message broker.

In order to understand the event, when a producer is
migrating from one access point to another, we provide Fi-
gure 4. These figures show the typical jitter behaviour for each
message received by the consumer/subscriber.

In Figures 4a and 4b, we can see a vertical line close to the
message number 500th that reaches 3.3 seconds. These figures
were obtained producing and sending, during 20 seconds



(a) period = 10ms (b) period = 10ms

(c) period = 500ms (d) period = 500ms

Fig. 4: Jitter’s behaviour on the producer migration between access points, while it is sending messages of 512 B using: AMQP
(left) and MQTT (right).

messages of 512 Bytes with an inter-message period 10ms. Due
to the high amount of messages, it is difficult to distinguish
the transition event. So, in Figures 4c and 4d, we show the
profile of the curve with an inter-message period of 500ms in
which we can see a positive peak corresponding to the hand-off
time, and also jitter with negative values due to the reception
of a burst of messages which the producer retained during
the communication’s interruption. As expected, the number of
messages with negative jitter can be approximated by the peak
positive jitter divided by the message producing period. For
instance, in Figure 4d, it is 3000/500 ≈ 6 messages.

Also, Figure 4a shows a small oscillation after the hand-
off peak when using the AMQP protocol. We have found that,
during the message burst, the delivery follows a LIFO (last-
input first-output) order, which results in messages consumed
in inverted order. This does not occur with MQTT protocol,
where the delivery is in order.

B. Jitter analysis

We repeated the experiments over the same scenario, with
the same combination of message production rates and me-
ssage sizes. We used sizes between 0.5 KBytes and 6 KBytes,
and periods between message production of 10, 50, 100, 500
and 1000 ms. We know that the maximum jitter in our tests

is the consequence of access point migration given that the
network had no external traffic, and that the workloads used
in these tests do not saturate the system.

Using the Cumulative Distribution Function on the set of
experimental data, we have analysed the behaviour of the
message’s jitter that arrives to the consumer focusing on the
instant when the producer makes an access point migration.

Figure 5 shows the distribution function of the jitter using
a period of 10ms for message production and message sizes
of 512 Bytes and 6 KBytes for each protocol tested. When
message size is 512 Bytes (Figures 5a and 5b), we observe
that the jitter value is concentrated around 3.3 seconds, with
sporadic cases of jitters of 7 seconds, without significant
differences between these protocols. When the message size is
bigger (Figures 5c and 5d) about half of the cases present jitter
values close to 3.3 seconds while the other half of the cases
double this value. We consider that this behavior for bigger
messages is due to the fragmentation of their payload by both
protocols.

To study the jitter evolution, we have used the statistical
analysis for rounding mode values (rounded to the nearest
hundred) to fit the most representative value instead of using
the value that appears most often in the data sets. We have



(a) message size = 512 Bytes (b) message size = 512 Bytes

(c) message size = 6 KBytes (d) message size = 6 KBytes

Fig. 5: Cumulative Distribution Function of the maximum jitter
with a inter-message production period of 10 ms, using: AMQP
(left) and MQTT (right).

represented the jitter’s mode in two ways: as a function of the
message size (Figure 6a) or as function of the inter-message
period (Figure 6b).

C. Workload boundary

In order to know the capacity of the messaging system to
handle heavy workloads, we executed the experiments without
access point migration. There is, therefore, no interruption
in the wireless link between the producer/publisher and me-
ssaging broker. Note that these saturation boundary values
can be dependent on the platform used, and even on their
configuration.

A typical user application sends a few messages per second,
with average load below 5 Mbps, which is well managed
both by message protocols and the network. Performing this
exhaustive delimitation of the workloads, in Figure 7 we show
an approximation of the capacity of the system in terms of
message size and number of messages produced per second.

For loads above the lines in each case, the system is
saturated, causing that a certain proportion of all produced
messages do not arrive to consumers. The limits are close to
20 Mbps, which is near to the bandwidth that we have obtained
with the iperf tool for the TCP test.

We note that the payload limit of a message in the MQTT
protocol is greater than for AMQP. We consider that is mainly
caused by the difference between the frame header: AMQP

Fig. 7: Threshold limit of messages losses for different inter-
message period and message size.

has a fixed size header of 8 Bytes while MQTT has only a 2
Byte header.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an experimental analysis of
the behavior of two application protocols based on Message
Oriented Middleware standards, namely AMQP and MQTT.
We focussed on the information exchange over unstable and
mobile networks, like in vehicular networks, to provide a
characterization of the publish-and-subscribe models in these
scenarios.

We have evaluated scenarios where the producer/publisher
suffers a handover process to measure effects such as the
variability of the jitter and the information loss, with a
simple workload model of one producer/publisher and one
consumer/subscriber, in an extended wireless network (i.e.
several access points conforming a same Service Set). We have
observed that the mean jitter values during transitions tend to
oscillate between 3 and 6 seconds, although 7 seconds peaks
have also been detected for high transmission rates (e.g., 100
messages per second).

We have found that, during message bursts, the delivery
follows a LIFO (last-input first-output) order, which results
in messages consumed in inverted order. But this is not done
MQTT protocol, where the delivery is always in order.

We have demonstrated that there is no information loss
during the hand-off; then, we can say that the messaging
system of these protocols is robust, and that it guarantees
message delivery without losses. Messages losses are present
only when, in the producer side the load is higher than its
system buffer capacity.

In order to select the right protocol to build systems
and applications with mobile communications over unstable
network environments, both of these protocols can be used.
The application/system architect’s decision to choose one of
them, will be determined according to different criteria, such
as security and energy efficiency. AMQP offers more aspects
related to security [17], and MQTT is more energy efficient [7].



(a) message size (b) inter-message period

Fig. 6: Evolution of maximum jitter as a function of (a) and (b)

We recommend the use of AMQP protocol to build reliable,
scalable, and advanced clustering messaging infrastructures
over an ideal WLAN, and the use of MQTT protocol to support
connections with edge nodes (simple sensors/actuators) under
constrained environments (low-speed wireless access).

As future work, we plan to evaluate these protocols on
more complex scenarios in which a roaming producer changes
between IP networks and, consequently, the active TCP co-
nnection has to be reset.
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