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Intelligent Transportation System (ITS) technologies can be implemented to reduce both fuel consumption and the associated
emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time
and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic
congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the
day, for every day in a year, is a complex task.Modeling such a tremendous amount of data can be time-consuming and, additionally,
centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this
paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of
time-dependent traffic congestionmodeling. In particular, we propose grouping streets by taking into account real traces describing
the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show
that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of
time-dependent modeling requirements.

1. Introduction

In densely populated urban areas, traffic-related problems,
such as air quality, noise, vibration, and accidents, are critical
issues for management authorities. In terms of solutions to
make traffic flow more efficient or to reduce it, especially in
downtowns, authorities develop initiatives to promote the use
of public transportation, forbid access to the most polluting
vehicles, alternate the days of downtown access according to
the vehicles’ plate number, charge drivers for access, and so
forth. In addition to these initiatives, traffic engineers analyze
the traffic flow in our cities taking into account important
factors like the adequate street directions to minimize travel
times, influence of traffic lights synchronization and place-
ment in traffic congestion, fuel consumption and CO

2
emis-

sions, traffic noise modeling [1–6], and so forth.
Particularly, in the field of fuel consumption and exhaust

pollutant, Intelligent Transportation Systems (ITS) have
recently emerged as a powerful ally in order to improve traffic
flows [7]. Moreover, the massive adoption of smartphones

and the ever increasing efforts to achieve smartphone-vehicle
integration [8, 9] pave the way towards novel traffic manage-
ment solutions where real-time interaction between drivers
and traffic management authorities becomes possible. Such
interaction provides mutual benefits since traffic authorities
are able to have real-time feedback about traffic congestion
states at different parts of a city, while drivers are also able to
have more information, aiding them in the decision process
of finding the optimal route.

In this paper we present a novel platform for centralized
traffic management in urban environments which attempts
to avoid known problems associated with current route
planning solutions based on fixed path costs. The proposed
solution takes into account the historical data about traffic
patterns in order to provide time-dependent route recom-
mendations to drivers traveling through dense traffic areas.
As a first approach to deploy this solution, we propose using
existing trafficmeasurements based on induction loop detec-
tions [10] in order to obtain all the required time-dependent
traffic flow models. We focus on the specific case of the city
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of Valencia, Spain, to gain further insight into the problem.
Based on the results obtained, we propose a heuristic to
address the problem efficiently by grouping elements with
a similar behavior, and we assess the effectiveness of the
proposed heuristic in terms of the number of interpolation
functions required. We show that it is possible to reduce the
required number of interpolations functions describing daily
traffic patterns by a factor of 4210, which significantly reduces
the problem complexity.

The paper is organized as follows: in the next section we
introduce some related works. In Section 3 we present the
proposed traffic management platform. Section 4 describes
the time-dependent traffic analysis problem and provides an
overview of the traffic patterns for the city of Valencia, Spain.
Section 5 describes the selected heuristic to the modeling
problem, along with the results achieved. Section 6 then pre-
sents the overall aggregation gains, detailing the origin of
those gains. Finally, in Section 7 we conclude the paper.

2. Related Works

After several decades of research, the existing traffic engi-
neering literature is quite broad and extensive. Recently, some
solutions have emerged that rely on mobile devices to mon-
itor the traffic in real time, for example, the Mobile Millen-
nium [11] project. Such information can be used for admin-
istrative purposes, for example, to visually analyze the traffic
conditions, but, in addition, it can also be useful to optimize
the routes taken by vehicles, as shown analytically by Kim
et al. [12].

Among these proposals we can find TrafficView [13],
which defines a framework to gather and disseminate infor-
mation about the vehicles on the road. With such a system,
drivers will be provided with road traffic information that
helps driving in adverse situations such as foggy weather or
finding an optimal route in a long trip. Work and Bayen [14]
highlight the potential of mobile devices to provide real-time
traffic information for the entire transportation network, pro-
viding some case studies. Claudel et al. [15] emphasize how
mobile devicesmay allow obtainingmore reliable estimations
about the time required to traverse specific routes. Leontiadis
et al. [16] propose an opportunistic traffic management sys-
tem where vehicles share traffic information in an ad hoc
manner, allowing them to dynamically reroute based on
individually collected traffic information. Recently, solutions
such as EcoTrec [2] introduced a VANET-based ecofriendly
routing algorithm for vehicular traffic which considers road
characteristics and traffic conditions to improve the fuel
savings of vehicles, thereby reducing gas emissions.

Moreover, when attempting to solve the vehicle route
planning problem in the most accurate way, we must take
into account the traffic variability throughout the day, as well
as other situations that take place in real life when driving
a vehicle [17, 18]. For instance, it is quite clear that, on large
metropolitan areas, the cost of traversing certain arteries,
especially large avenues, heavily depends on the time of day,
being critical at peak traffic hours [19]. However, it has been

proved that integrating time-dependencies in route optimiza-
tion algorithms significantly increases their complexity [20,
21].

To tackle this increase of complexity, we present in this
paper an approach to significantly reduce the amount of
data that our platform will need to find the time-dependent
shortest routes. Specifically, we detail how to aggregate large
amounts of historical traffic flow data into the most mean-
ingful set of information to properly describe traffic flow
variations throughout the day on the different streets and
avenues of a city.

To this aim, we will use a clustering technique. Cluster
analysis is an unsupervised learning technique used for the
classification of data. Data elements are partitioned into
groups called clusters that represent proximate collections of
data elements based on a distance or dissimilarity function.
There exist two main clustering methods. The hierarchical
methods basically start with each member of the set in a
cluster of its own and fuse nearest clusters until there are 𝑘
remaining. The partitioning methods start by building a set
of 𝑘 representative objects and cluster around those, iterating
until (locally) optimal clustering is found. See, for example,
the classical book by Kaufman and Rousseeuw [22] and Xu
and Wunsch II [23].

Clustering techniques have been already used in the last
years as part of ITS solutions in order to provide real insights
into traffic management policies. For briefness, we only refer
to some of these works.We recommend consultingGuardiola
et al. [24] for further information on the topic.

For example, Wang et al. [25] present a dynamic traffic
prediction model that deals with traffic flow data to convert
them into traffic status. In this model, two data mining tech-
niques, the clustering analysis and the classification analysis,
are applied to historical traffic flow data. Caceres et al. [26]
present a methodology for estimating traffic flows using road
features as clustering variables, so that it can be applied to
any road section, even without detector data. More recently,
Yildirimoglu and Geroliminis [27] partition the historical
data set from loop detectors on Californian freeways in clus-
ters with similar characteristics based on the traffic patterns
observed on the roadway.Thebuilding block of theirmethod-
ology is the development of stochastic congestion maps,
which identify the probability that a space-time domain is
congested. Finally, Guardiola et al. [24] present a newmetho-
dology for analyzing the daily traffic flow profile using
Functional Data Analysis.They claim that their methodology
allows a maximum exploitation of the recorded historical
data and results in the detection of changes in the flow pat-
tern, which would otherwise be difficult to detect via classical
statistical methods.

3. Traffic Management as a Service

Current vehicle navigation systems are typically based on
locally stored static information from which routes are cal-
culated. Among such systems we can find commercial appli-
cations like TomTom (http://www.tomtom.com/) or Garmin
(http://www.garmin.com/). There are also free tools, like
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Google Maps Navigator and OsmAnd (http://osmand.net/)
that operate in a similar manner.Themain drawbacks of nav-
igation systems based on static information are the inability
to adapt to traffic congestion states or unexpected events, like
accidents or other problems on the road, which cause travel
times to be much higher than expected.

More sophisticated route navigation solutions update
route information in real time, based on reported traffic con-
ditions. As an example, the TomTom navigation software has
been enhanced to support client-server interaction in order
to inform clients about alternative routes when atypical traffic
delays are detected.

In this paper wewill address the specific problemof traffic
congestion in urban environments. Instead of accidents and
other conditions causing atypical delays, we will focus on
predicting daily traffic flow patterns for a specific urban
environment, detailing how it is possible to reduce travel
times based on historical information about the traffic density
distribution throughout the day.

The proposed traffic management platform is named
ABATIS: Automatic Balancing of Traffic through the Inte-
gration of Smartphones with vehicles. The main novelty of
ABATIS as a route planning system is providing time-
dependent route recommendations based on traffic conges-
tion history. Specifically, it offers client-server interaction,
where the route selection process is performed at the route
server (see Figure 1) based on real-time information stored in
the route database and historical data.The traffic analysis and
visualization server allowsmaking traffic congestion forecasts
based on historical data while also allowing traffic manage-
ment authorities to check the traffic conditions in real time.

Clients contribute to improving the route database infor-
mation by providing real-time feedback about traffic conges-
tion conditions, which allows maintaining both a real-time
map of traffic fluidity in a city and accurate historical data
of traffic behavior. This approach supports global traffic load
balancing and event-basedmanagement (e.g., reducing traffic
congestion in the route of an ambulance).

This strategy, although offering significantly better routes,
has a higher cost since the estimated time for traversing each
path segmentwill no longer be a fixed value based on segment
length and speed limit, but instead it will vary dynamically
along the day. In order to achieve time-dependent costs for
the different streets and avenues in a city, ABATIS will use
existing historical data about traffic logs in a city to estimate
travel times. Since such logs provide per-hour congestion
measurements for all induction loop detectors in a city
for a whole year, they must be properly summarized and
synthesized by the traffic analysis server to allow seamlessly
integrating such information in the route server. Thus, in the
remainder of the paper, we will focus on the traffic analysis
component, proposing a heuristic able to reduce the complex-
ity of the problem by converting huge amounts of historical
data about traffic intensity into a small but representative
set of daily patterns able to describe the expectable traffic
behavior in the city along the day.

Route
server

Traffic analysis and
visualization server

Database

Figure 1: ABATIS traffic management architecture.

4. Flow Pattern Classification Problem

Attempting tomodel the daily traffic flowpattern of hundreds
of streets/avenues for every day of the year would lead to
hundreds of thousands of interpolation functions able to pro-
vide a smooth description of per-street traffic flow variations
throughout the day, based on several million input values
(assuming a per-hour granularity). Such modeling effort for
a single city can be considered excessive and, in addition,
causes route recommendation tasks at the server to have
an extremely high computational cost. Nevertheless, when
attempting to provide an accurate characterization of path
segment costs in a specific urban environment, it quickly
becomes clear that (i), from a yearly perspective, seasonal dif-
ferences are expectable as, for example, more people use
their vehicles during cold weather seasons than during the
warm and hot seasons where, for example, bicycles or public
transport can become a more attractive alternative; (ii), from
aweekly perspective, labor days are characterized bymobility
patterns and traffic congestion states that drastically differ
from the behavior during weekends and holidays; (iii),
from an hourly perspective, different hours of the day are
associated with different congestion levels (e.g., day versus
night); and finally (iv), from a spatial perspective, different
streets/avenues have different traffic levels at any time of the
day, requiring independent modeling.

Taking the aforementioned factors into consideration,
in this section we will take an in-depth look into traffic
behavior when focusing on amedium-size European city like
Valencia, Spain, which is the third largest metropolitan area
in Spain with about 1.77 million inhabitants. Detailed trace
files containing the amount of traffic flowing in each of the
streets/avenues each hour for a full year (2013) were provided
to us by Valencia’s City Hall TrafficDepartment, in particular,
data concerning the 421 most relevant streets/avenues (those
monitored by traffic services through induction loop detec-
tors).

Our goal is to obtain insight into the traffic flow, detecting
traffic patterns according to the day of the week, hour, and
type of street. Based on the traffic patterns detected, we will
propose a heuristic in order to simplify the number ofmodels
required while maintaining most of the time-dependent
modeling effectiveness. Although we use the city of Valencia
as the target of our analysis, the modeling methodology fol-
lowed is quite general, being applicable to other cities as well.
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Figure 2: Average traffic volume in Valencia per month.
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Figure 3: Average traffic volume in Valencia for the different days
of the week.

We start by analyzing the monthly traffic, assessing
whether we can detect significant seasonal differences. As
shown in Figure 2, there are minor fluctuations in terms of
overall traffic on a monthly basis. It quickly becomes evident
that holiday periods, like August and also Easter (in April),
have a clear and expectable impact on the overall traffic
volume. For the remaining months of the year the values can
be considered relatively similar, having a mean value of about
1 million vehicles.

For the analysis that follows we picked a month with
an average overall traffic volume close to the mean; specif-
ically, we selected November, which has no holiday periods.
Focusing on the traffic pattern variation throughout theweek,
Figure 3 shows that there are very significant differences bet-
ween the days of the week, especially between the weekend
and weekdays. Also, we can observe an overall increasing
trend fromMonday to Friday, with Friday being the weekday
with higher traffic volume.

In addition to the differences in terms of daily traffic vol-
ume, there are also clear differences in terms of the daily
traffic pattern itself. For instance, Figure 4 shows that on

Mondays the traffic follows a typical pattern where the peak
hour is between 8 and 9 a.m., when most people go to work.
Another peak occurs between 2 and 3 p.m., which denotes
mobility from people working in the afternoon. Finally, a
last traffic peak is detected between 6 and 8 p.m., when
workers return to their homes. Other weekdays follow a
similar pattern.

A totally different pattern is detected, for example, on
a Sunday. Compared to weekdays we find that (i) work-
related traffic peaks are no longer present; (ii) the total traffic
volume is significantly lower; and (iii) the peak hours differ.
In particular, peak hours are now related to mobility towards
food courts at lunch time (between 1 and 2 p.m.) andmobility
from relax areas to homes (between 6 and 8 p.m.).

When focusing on the traffic distribution throughout a
city, it is well known that main streets and avenues will
experience a much higher traffic load than secondary and
isolated ones.Discriminating between them is a relevant issue
since some streets barely experience any traffic load increase
during peak hours, meaning that travel times are not affected
by congestion in the same way as the main arteries of the city.

To be able to discriminate between the streets of Valencia
based on traffic flow, we first obtained the peak traffic
intensity per street during November, and we then obtained
the cumulative distribution for these values (see Figure 5).

We observe that 30.3% of all streets have a traffic intensity
lower than 690 vehicles/hour during peak hours, which
according to [28] means that these low traffic intensity streets
will not experience traffic congestion even at peak hours, and
so they can be discarded from our time-dependent mod-
eling efforts. Additionally, we observe that the number of
streets/avenues with very high traffic volumes (more than
10.000 vehicles during the peak hour) is rather limited (about
10%).Thus, themajority of the streets in a city will experience
moderate traffic volumes, and the global peak hour behavior
will not cause any noticeable effect on these streets. To
confirm this observation, Figure 6 shows the traffic load per
hour in two different streets for the same day. Notice that
although both share quite similar values for peak traffic inten-
sity, the daily traffic patterns significantly differ that the peaks
in one pattern often match valleys in the other pattern.

Observing the daily traffic pattern in Figure 6(a), we find
that it closely matches the traffic pattern of a typical Monday,
as shown in Figure 4(a); on the contrary, Figure 6(b) shows a
quite different traffic pattern. Hence, it becomes necessary to
discriminate between the different streets based on their daily
traffic pattern. To achieve this goal, we will apply a clustering
technique in order to automatically classify streets according
to their daily traffic pattern.

5. Clustering Heuristic

In this section we propose a heuristic to simplify traffic mod-
eling for the city of Valencia by taking into consideration the
results presented in the previous section.

The proposed heuristic aggregates into a single pattern all
those daily traffic patterns having a common behavior. This
is made possible by making the obtained time-dependent
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Figure 4: Average daily behavior for different days of the week.
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models independent of the actual number of vehicles in each
street through normalization using the mean daily value.

To this aim, we use Mathematica 9.0.1 [29], which is a
widely recognized tool to solve mathematical problems,
especially in engineering. This tool provides function Find-
Clusters, which returns the number of clusters as well as the
elements on each cluster. This function has several options
and suboptions. In fact, we can choose between a hierarchical
method or a partitioning method. The partitioning method
it uses is based on the Partitioning Around Medoids (PAM)
algorithm [22], which seeks to find 𝑘 representative objects
called medoids from the data set such that the sum of the dis-
similarities within a cluster are minimized. A medoid can be
defined as that object of a cluster whose average dissimilarity
to all the objects in the cluster is minimal. After finding the
set of medoids, each object of the data set is assigned to the
nearest medoid.

We have chosen the partitioning method of FindClusters
for two reasons.The first one is that this method is the default

option, and the second and most important one is that the
PAM algorithm is the one used by reference authors on the
topic such as Guardiola et al. (see [24]), who claim that the
choice of PAM is due in part to the large number of statistics
it provides for thorough analysis of the resultant clusters.

At this point, we want to stress the fact that while [24]
(and also [27]) try to cluster different days corresponding to
the same section of a freeway, the aim of our procedure is
quite different; particularly, we attempt to cluster different
streets corresponding to the same day. Moreover, as far as we
know, the clustering distance that we will use here has not
been used in any previous paper on ITS.

Finally, note that although we have not made use of them,
function FindClusters has suboptions in order, for instance,
to fine-tune the number of clusters. Probably the best known
suboption to do this is the silhouette statistic [22], but accord-
ing to [23] there is no criterion providing evidence about its
superiority compared to others in the general case of adjus-
ting the number of clusters. In addition, notice that two
properties that define a good heuristic and that we have taken
into account to our aim are low time overhead and simplicity
of its steps.

Below we describe the five steps followed to reduce the
number of independent daily patterns to be modeled: (i)
select the appropriate clustering metric, (ii) find the optimal
number of clusters per day of the week, (iii) determine how
representativemean days are, (iv) group days of theweekwith
similar characteristics, and (v) group clusters with similar
daily patterns.

5.1. Selection of a Clustering Metric for Per-Hour Street Behav-
ior. If for each street (or street segment) we have the number
of cars that traverse it every hour, we can represent each street
by a point 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

24
) inR24, where 𝑥

𝑖
is the number

of cars traversing the street at hour 𝑖. Suppose we have two
streets 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

24
) and 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

24
). By

default, the distance used to form clusters is the Euclidean
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Figure 6: Daily traffic intensity pattern for streets with different characteristics.

distance, √∑24
𝑖=1
(𝑥
𝑖
− 𝑦
𝑖
)
2. If the Euclidean distance between

two points is relatively small, both streets will belong to the
same cluster. However, if we attempt to classify streets taking
into account the traffic variability as a function of the time of
day, we believe that this distance is not adequate. Let us take
a small illustrative example in this regard. Suppose that we
only consider six consecutive hours for four different streets
and that their respective points are 𝑎 = (12, 9, 10, 9, 8, 11),
𝑏 = (24, 20, 22, 20, 17, 21), 𝑐 = (6, 16, 20, 25, 17, 7), and 𝑑 =
(15, 35, 44, 48, 34, 17).

Streets 𝑎 and 𝑏 have a similar behavior: the relative
number of vehicles traversing them every hour is more or less
the same, within certain bounds. Although the actual number
of vehicles differs greatly from one street to another, both
streets should be in the same group encompassing all those
streets where there is little traffic variability, where vehicle
speeds can be consideredmostly constant over the considered
period.

With respect to streets 𝑐 and 𝑑, central hours are peak
periods where we have about three times the traffic volume
compared to edge values. Although the number of vehicles
differs greatly from one street to another, they should belong
to the same group characterized by a single peak correspond-
ing to hours in the mid-range and with much lower values on
the edges.

However, if we classify the four streets using the Euclidean
distance, the result is quite predictable: {𝑎, 𝑐} and {𝑏, 𝑑}. In
this example the Euclidean distance has created two clusters
grouping the two streets with less traffic and the two streets
with high traffic volume. To address this problem, we believe
that the distance metric that best fits our objective is the
correlation distance, defined as 1 − |𝑟

𝑥𝑦
|, where 𝑟

𝑥𝑦
is the

correlation coefficient:

𝑟
𝑥𝑦
=
∑
24

𝑖=1
(𝑥
𝑖
− 𝑥) ⋅ (𝑦

𝑖
− 𝑦)

√∑
24

𝑖=1
(𝑥
𝑖
− 𝑥)
2

⋅ ∑
24

𝑖=1
(𝑦
𝑖
− 𝑦)
2

. (1)

Recall that |𝑟
𝑥𝑦
| is always less than or equal to 1 and that

values close to 1 indicate that variables 𝑥 and 𝑦 have a direct
linear relationship,meaning that the graphical representation
of the 24 points (𝑥

𝑖
, 𝑦
𝑖
) is approximately a straight line.

Therefore, the higher the correlation between points 𝑥 and 𝑦
is, the closer to zero 1 − |𝑟

𝑥𝑦
| becomes, and so the probability

of belonging to the same cluster will increase. If we classify
the four streets according to correlation distance, the result
obtained is the desired one: {𝑎, 𝑏} and {𝑐, 𝑑}.

On the other hand, it is easy to see that the correlation
distance is the same if we work with the coordinates (𝑥

𝑖
, 𝑦
𝑖
)

or with coordinates (𝑥
𝑖
/∑
24

𝑗=1
𝑥
𝑗
, 𝑦
𝑖
/∑
24

𝑗=1
𝑦
𝑗
), taking into

account that, to compare streets considering traffic variability
throughout the day, it also seems useful to compare the
percentage of the daily traffic passing on every street for
each hour. This way, it does not matter whether we compare
both streets considering the number of cars per hour or the
percentage of traffic per hour: the classification using the
correlation distance will generate the same clusters. This is
obviously not true when adopting Euclidean distances.

5.2. Finding the Optimal Number of Clusters for Each Day of
the Week. Using the correlation distance defined previously,
in this section we will determine the optimal number of
clusters for the 292 streets in Valencia considered by the City
Hall as representative in terms of traffic flow for every day
of the week. Subsequently, to reduce the overall number of
clusters, we will attempt to join the different days in a week
whenever the same number of clusters are detected.

Therefore, for our analysis, we apply the FindClusters
function to each of the 28 days of November studied enabling
the correlation distance option. For each day, the function
will cluster the 292 points inR24 corresponding to the streets
taken for our study.

In the analysis that follows we work with the percentage
of vehicles traversing each street every hour with respect to
the overall daily value. As referred in the previous section,
the actual number of vehicles per se is not relevant to
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Table 1: Number of clusters obtained and associated statistics.

Mo Tu We Th Fr Sa Su
A: Week 1 3 3 1 2 1 2 3
B: Week 2 1 2 4 1 3 2 4
C: Week 3 5 3 1 4 2 2 3
D: Week 4 3 1 1 3 3 2 1
E: mean(A, B, C, D) 3 2.25 1.75 2.5 2.25 2 2.75
F: median(A, B, C, D) 3 2.5 1 2.5 2.5 2 3
G: average day 4 2 2 4 3 2 2
H: round(E) == G False True True False False True False
I: mean(E, F, G) 3.3(3) — — 3 2.58(3) — 2.58(3)
Number of clusters 3 2 2 3 3 2 3

Table 2: Percentages of matching for the different clusters compared to the average day clusters.

Mo Tu We Th Fr Sa Su
Number of clusters 3 2 2 3 3 2 3

Week 1
83.11 92.31 84.42 30.86 70.15 91.98 73.72
66.67 84.56 62.32 59.32 68.75 71.43 66.67
81.33 56.99 90.43 35.82

Week 2
60.14 89.74 80.52 81.48 70.15 96.26 74.36
55.07 58.09 59.42 43.22 60.64 81.90 69.56
80.00 58.06 51.56 73.13

Week 3
62.84 84.62 80.52 58.02 70.15 88.77 51.28
69.57 32.35 91.30 75.42 74.47 84.76 47.83
84.00 31.18 35.94 89.55

Week 4
81.76 96.15 74.68 62.96 86.57 97.87 82.05
88.41 84.56 82.61 74.58 65.96 53.30 59.42
76.00 65.59 56.25 58.21

Average 73.63 78.68 77.05 58.56 69.18 86.21 66.70

our purposes, and the correlation distance metric adopted
provides the same output on both cases.

Since our study period encompasses 4weeks, we create an
“average day” for each day of the week, which is calculated for
each street by averaging the number of vehicles traversing it
each hour. Such “average day” attempts to filter out the peculi-
arities of a specific day, obtaining a representative trend
instead.

Table 1 shows the results obtained, where the last row
shows the cluster allocation for each day of theweek. To attain
those values, we first apply function FindClusters to different
weeks (A–D) and to the “average days” (G). In addition, we
calculate the mean (E) and the median (F) for the cluster
groups corresponding to the different weeks. If this mean
value (E) is rounded to a number that matches the number of
clusters for the average day (G), then we define such value as
the number of clusters for that day of the week. Otherwise, we
obtain the average of the mean (E), median (F), and average
day (G) to obtain a value (I) that when rounded defines the
number of clusters to be used. We find that the proposed

number of clusters matches the rounded mean (E) except for
a minor change in one day.

5.3. Determining Cluster Matching on a Per-Day Basis. Once
the number of clusters for each day of the week was defined,
the next step was to validate that cluster elements for each day
of the week resembled the cluster elements obtained for the
average day. If a good degree ofmatching is obtained, then the
conclusions associated with streets in that cluster are valid;
otherwise, we could be considering that streets belong to a
group with a specific behavior, when in fact their behavior
significantly differs.

For our endeavor we apply the FindClusters function to
the 35 days (28 real days plus 7 average days), but this time
fixing the number of clusters defined a priori, as obtained in
the previous section. Afterwards, for each of the four weeks
under analysis, we compare the clusters obtained against
the average day of the week, determining the percentage of
streets that both clusters have in common. These results are
presented in Table 2.
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Table 3: Percentages of cluster matching for average days of the
week with same number of assigned clusters. Valid combinations are
shown in boldface.

Combinations Degree of
matching (%) Average matching (%)

Monday-Thursday
57.43

48.298.69
66.67

Monday-Friday
77.70

68.8472.46
48.00

Monday-Sunday
58.78

43.4927.54
28.00

Thursday-Friday
37.04

59.2571.19
63.44

Thursday-Sunday
30.86

41.7855.93
33.33

Friday-Sunday
61.94

51.3736.17
51.56

Tuesday-Wednesday 91.67 91.78
91.91

Tuesday-Saturday 71.15 58.56
44.11

Wednesday-Saturday 69.48 56.51
42.03

We find that the average degree of matching for all the
days of the week is 72.71%. Globally, we find that this value
is quite acceptable and that differences appearing on specific
days are expectable since traffic patterns may suffer some
changes depending onweather, special events, or other condi-
tions.

5.4. Grouping Days of the Week with Similar Cluster Char-
acteristics. The next step of our clustering procedure was to
assess the feasibility of grouping those days of theweek having
the same number of clusters. With this purpose we tested
all combinations and calculated the percentage of cluster
matching for each pair of mean days of the week. The results
are shown in Table 3.

All combinations show an average degree of matching
below 70%, except for the Tuesday-Wednesday combination
which is close to 92%.Thus, we agree that these two weekdays
can be combined as if they were a single day since similar
patterns are obtained in terms of traffic variability throughout
the day. Data shown earlier in Figure 3 also emphasize this
similitude.

To confirm that the grouping did not have a negative
impact on the error associated with specific days, we now

proceed to compare the degree of matching for the different
clusters against the average day, the crossed average day, and
the proposed union of both days. These results are shown in
Table 4.

We find that the differences between the three cases are
quite low. Specifically, the impact of grouping these two days
into one is of only 1.6%, which is quite acceptable.The results
using cross averages also strengthen the point of unifying
these two days. As a result, by accounting for the number
of clusters of each average day and by merging Tuesday and
Wednesday into a single day, we obtain a total of 16 different
traffic patterns.

5.5. GroupingClusters with SimilarDaily Patterns. In this sec-
tionwe present the normalized traffic patterns corresponding
to the 16 clusters created: 3 for Monday, 2 for Tuesday/
Wednesday, 3 forThursday, 3 for Friday, 2 for Saturday, and 3
for Sunday.

As shown in Figure 7, there are some pattern simili-
tudes between the first weekdays (Monday versus Tuesday/
Wednesday), between the last weekdays (Thursday versus Fri-
day), and between weekend days (Saturday versus Sunday).
However, this initial insight obtained visually must be con-
firmed through statistical evidence. With this purpose we
picked the clusters for those days which visually show some
similitude and calculated the correlation between the daily
patterns associated with each cluster for relevant time ranges.
The results of these analyses are presented in Table 5.

When comparing the daily pattern for the clusters of
Monday against Tuesday/Wednesday (see Table 5(a)), we find
that there is a high correlation (>92%) between the patterns
corresponding to the first 2 clusters of each of these days.
Thus, a singlemodel will suffice when attempting to represent
the daily pattern for these clusters that only a different model
is required for Monday’s Cluster number 3.

When comparing Thursday against Friday, we find that
only Cluster number 2 for Thursday and Cluster number 1
for Friday present a high correlation (∼94%).

Finally, when comparing Saturday against Sunday,we find
that Cluster number 1 and Cluster number 3 present a good
degree of matching (∼94%), and these two clusters can also
be represented through same daily pattern.

6. Generalization and Benefits of
the Proposed Model

In this section we assess the benefits of our model in terms
of the minimum number of patterns required to adequately
describe traffic intensity throughout the day for the city of
Valencia.Then, we detail how these differentmodels obtained
can be integrated in our traffic management platform to
predict route costs. Finally we summarize our proposal by
presenting the proposed heuristic in pseudocode format to
allow generalizing the proposed procedure to any target city.

6.1. Aggregation Gains Achieved. Below we discuss the differ-
ent aggregation techniques that integrate our heuristic and
the previous analysis.
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Table 4: Percentages of matching for the different clusters against the average day, the crossed average day, and the proposed union of both
days.

Original average days Crossed average days Union of average days
Tu We Tu We Tu We

Week 1 92.31 84.42 90.26 86.54 86.83 86.23
84.56 62.32 81.16 65.44 84.00 69.60

Week 2 89.74 80.52 89.61 78.21 85.63 77.25
58.09 59.42 57.25 58.09 56.80 60.00

Week 3 84.62 80.52 86.36 78.85 82.04 72.46
32.35 91.30 34.06 90.44 30.40 88.00

Week 4 96.15 74.68 95.45 73.08 92.22 68.26
84.56 82.61 82.61 81.62 86.40 80.00

Average 78.68 77.05 77.82 76.71 77.14 75.34

Table 5: Correlation between clusters (period between 7 a.m. and 9 p.m.).

(a) Monday and Tuesday/Wednesday

Tuesday/Wednesday
Cluster number 1 Cluster number 2

Monday
Cluster number 1 0.9221668 0.578729
Cluster number 2 0.6229643 0.9422671
Cluster number 3 0.5900097 0.7910942

(b) Thursday and Friday

Friday
Cluster number 1 Cluster number 2 Cluster number 3

Thursday
Cluster number 1 0.6741969 0.2552095 0.7292981
Cluster number 2 0.9393144 0.6691599 0.6666628
Cluster number 3 0.7247197 0.7841533 0.8645128

(c) Saturday and Sunday

Sunday
Cluster number 1 Cluster number 2 Cluster number 3

Saturday Cluster number 1 0.8859214 0.8585393 0.9368844
Cluster number 2 0.8948805 0.8840648 0.7977545

Yearly Analysis. The monthly behavior results shown before
allow assuming that traffic volumes throughout the year are
mostly constant, except for vacation periods like summer and
festivities lasting for long periods (e.g., Easter), meaning that
partitioning weeks into three groups (typical week, relevant
holiday period, and summer holidays) seems appropriate.

Monthly Analysis. Results have shown that, for the same
type of period, data is consistent across weeks, which allows
clustering the different days of a month in a single average
representative week.

Traffic Intensity Analysis. Concerning traffic congestion for
the different streets and avenues of a city, our heuristic
assumes that only a subset of these streets/avenues actually
face significant congestion problems deserving time-depend-
ent modeling, while for the rest, the use of traditional fixed-
cost approaches suffices. Based on the thresholds defined in
[28] for class IV (urban) arterial types, we consider that only

those streets with a peak traffic value surpassing 690 vehicles
per hour are actually experiencing congestion-related traffic
delays. This way, the target number of streets/avenues can be
reduced from 421 (total number of streets being monitored
by traffic services) to 292 (number of streets with a relevant
traffic load).

Clustering Analysis. Focusing on the street/avenue subset
significantly affected by congestion, the clustering analysis
showed that a small number of groups can be created, where
for each group all streets/avenues follow very similar traffic
congestion patterns. Thus, the target number of models
required can be reduced from 292 per 7 days in a week to
a total of 18, and this value can be further reduced to 16 by
noticing the similarity between Tuesday and Wednesday.

Daily Pattern Analysis. An analysis of the daily patterns
associated with the different clusters defined for the different
days of the week has shown that some of these clusters have
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Figure 7: Cluster description for the different average days considered.



Mathematical Problems in Engineering 11

Table 6: Benefits of the proposed heuristic in terms of aggregation gain.

Target heuristic Number of elements Aggregation gains Independent modeling domains
Monthly patterns per year 12 12 : 3 3
Daily patterns per month

421 × 30

30 : 7

12
Traffic intensity analysis 421 : 292
Street clustering (292 × 7) : 18
Similar days clustering 18 : 16
Daily pattern analysis 16 : 12
Total 151,560 4210 36

a common behavior. This means, in general, that the same
group of streets behaves similarly across different days, which
allows slightly reducing the number of patterns from 16 to 12.

Based on aforementioned aggregation proposals for the
city of Valencia, in Table 6 we detail the benefits obtained
in terms of model simplification. As can be observed, street
clustering is the key element when reducing the number
of separate modeling domains required to characterize the
traffic behavior throughout the year. In particular, aggre-
gation based on the clustering analysis is the most critical
one, allowing for substantially reducing the number of
interpolation functions required. The second most relevant
aggregation gain is associated with yearly and week behavior,
based on segregating work periods from short/long holiday
periods and by finding that we have the same behavior
across the different weeks. Eliminating secondary streets
that experience fluid traffic throughout the whole year also
provides some contribution in terms of aggregation gain by
eliminating the need for modeling their traffic throughout
the day. Finally, the daily pattern analysis across clusters has
further helped reducing the number of models required.

Overall, the proposed heuristic allows reducing the req-
uired number of interpolation functions for the city of
Valencia by a factor of 4210 while maintaining the essence
of time-dependent modeling requirements. Such a signifi-
cant reduction certainly simplifies the integration of these
models in our ABATIS platform and allows accelerating the
associated calculations.This way, route decisions are taken in
a centralized route server based on traffic states prediction
throughout the day and for the different streets/avenues of a
city, thus providing the most time-efficient routes.

6.2. Applicability of the Model in the Context of ABATIS. The
relationship between traffic flow levels and average travel
speed is a well-known topic in traffic flow theory [30]. As
shown in Figure 8, this relationship can be closely approxi-
mated through a parabolic behavior represented through the
following expression, obtained by interpolating points (0, 0),
(𝑠
𝑓
/2, V
𝑚
), and (𝑠

𝑓
, 0):

V (𝑠) =
4 ⋅ V
𝑚

𝑠2
𝑓

⋅ 𝑠 ⋅ (𝑠
𝑓
− 𝑠) . (2)

As expected, average travel speed starts to decay when
traffic density per lane increases beyond a certain threshold
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Figure 8: Relationship between vehicle flow level and vehicle speed.

and becomes close to zero when approaching the maximum
road capacity.

Since ourmodels required a normalization of traffic levels
of each street in order to perform model aggregation for
similar patterns, given a street and an instant of time a vehicle
is expected to enter the street, we show below the four steps
involved in calculating the travel time for that street starting
at the given instant of time. Note that, for simplicity, we do
not put to the variables the subindexes corresponding to the
given street and instant of time.

(i) Find the normalized traffic intensity (pattern) 𝑛 at the
time the vehicle is expected to enter the target street,
using the daily pattern for the target street.

(ii) Obtain the expected traffic flow level V for that street
and instant of time by denormalizing the obtained
value using the mean traffic volume V for the target
street:

V = 𝑛 ⋅ V. (3)

(iii) Based on the average free-flow speed 𝑠
𝑓
and themaxi-

mumflow V
𝑚
for the target street (provided by author-

ities), the expected travel speed 𝑠V can be obtained
based on the predicted traffic flow level V. Specifically
and taking the behaviour of Figure 8 corresponding
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input: 3D array of traffic density per street, per hour, per day
output: pattern-dependant cluster classification
BEGIN
for each street in All streets do {
if (peak traffic intensity in 𝑃 < 690 veh/h) then
remove street from All streets

}

for each Week day in WEEK DAY do {
average Week day = get average pattern(Week day)
clusters[] = FindClusters(Week day, average Week day)
mean clusters = get average(clusters[Week day])
median clusters = get median(clusters[Week day])
if (clusters[average Week day] == round(mean clusters)) then
num clusters[week day] = clusters[average Week day]

else
num clusters[week day] = round(get average(mean clusters,

median clusters, clusters[average Week day]))
}

for all week day pairs (𝑤 𝑖, 𝑤 𝑗)
where num clusters[𝑤 𝑖] == num clusters[𝑤 𝑗] do {
if (Matching(cluster elements(𝑤 𝑖), cluster elements(𝑤 𝑗)) > 90%)
then pattern[𝑤 𝑖] = pattern[𝑤 𝑗]

}

for all week day pairs (𝑤 𝑖, 𝑤 𝑗) with different pattern do {
for all clusters 𝑐 𝑖 in 𝑤 𝑖 and 𝑐 𝑗 in 𝑤 𝑗 do {
if (correlation(average street(𝑐 𝑖), average street(𝑐 𝑗)) > 0.9)
then

pattern[𝑐 𝑖] = pattern[𝑐 𝑗]
}

}

RETURN cluster pattern classification
END algorithm

Algorithm 1: Cluster patterns.

to below flow saturation levels as reference (solid line
section), 𝑠V can be approximated as follows:

𝑠V =
𝑠
𝑓

2
⋅ (1 + √1 −

V
V
𝑚

) . (4)

(iv) Calculate the travel time 𝑡 for the target street with
length 𝐿 using the expected travel speed:

𝑡 =
𝐿

𝑠V
. (5)

Notice that, since the ABATIS platform is able to offer,
among others, Traffic Management as a Service, it is able
to serve optimal routes to clients. Currently, route costs are
calculated using free-flow speeds.Thus, the proposedmodels
can be integrated in the route calculation engine so that
optimality conditions now account for the updated path costs
using our predictive model. In addition, if the current
status of the traffic flow is available in the future, it can be
combined with the predicted value to further improve path
cost accuracy.

6.3. Pseudocode for the Proposed Heuristic. Let 𝑃 represent
the time period under analysis and let Week day represent

the set of days in 𝑃 corresponding to a particular day of the
week.WEEK DAY is a superset containing allWeek day sets
and All streets represents the set containing all the streets for
the target city.

Algorithm 1 shows the pseudocode that allows applying
the proposed heuristic in a systematic manner, thereby
making it applicable to any target city.

7. Conclusions

Traffic management has evolved substantially in the last dec-
ades. Nowadays, traffic engineers require effective solutions
to help them improve the traffic flow in cities, while minimiz-
ing travel times and tackling traffic-related problems such as
CO
2
emissions, noise, and accidents.

In this paper we define a procedure to obtain reliable
traffic congestion estimations for all the streets/avenues in a
city for the different times of the day and for every day in a
year. Considering the modeling effort required, we proposed
a heuristic that allows reducing the number of required inter-
polation functions characterizing daily traffic patterns.

By specifically addressing the city of Valencia, we made
a detailed analysis of traffic behavior on the different streets/
avenues of the city to determine (i) the behavior along the
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year, (ii) which days of the week show a similar pattern, (iii)
which streets/avenues experience more traffic congestion,
and (iv) how streets can be grouped into clusters based on
their daily traffic pattern. The results of our analysis show
that it is possible to model the traffic behavior in the city
by aggregating elements with a similar behavior in the same
interpolation function.Thisway,wewill be able to account for
the travel time variations along the main paths of a city, prov-
iding users with both optimized and accurate travel plans,
while reducing the modeling complexity.

As future work we will develop a smartphone application
that interacts with the ABATIS platform in order to obtain
the most efficient routes, and we will implement a route plan-
ning algorithm that allows selecting these best paths while
accounting for time-dependencies, FIFO restrictions, turn
penalties, and so forth.
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