Document downloaded from:

http://hdl.handle.net/10251/64622

This paper must be cited as:

Reafio Gonzalez, C.; Silla Jiménez, F. (2015). A performance comparison of CUDA remote
GPU virtualization frameworks. 2015 IEEE International Conference on Cluster Computing
(Cluster 2015). IEEE. d0i:10.1109/CLUSTER.2015.76.

The final publication is available at

http://dx.doi.org/10.1109/CLUSTER.2015.76

Copyright |EgE

Additional Information

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

A Performance Comparison of CUDA Remote GPU Virtualization Frameworks

Carlos Reafio and Federico Silla
Universitat Politéecnica de Valencia, Valéncia, 46022, Spain
carregon@gap.upv.es, fsilla@disca.upv.es

Abstract—Using GPUs reduces execution time of many appli-
cations but increases acquisition cost and power consumption.
Furthermore, GPUs usually attain a relatively low utilization.
In this context, remote GPU virtualization solutions were
recently created to overcome the drawbacks of using GPUs.

Currently, many different remote GPU virtualization frame-
works exist, all of them presenting very different characteris-
tics. These differences among them may lead to differences in
performance. In this work we present a performance compar-
ison among the only three CUDA remote GPU virtualization
frameworks publicly available at no cost. Results show that
performance greatly depends on the exact framework used,
being the rCUDA virtualization solution the one that stands
out among them. Furthermore, rCUDA doubles performance
over CUDA for pageable memory copies.

Keywords-GPGPU; CUDA; HPC; virtualization;

I. INTRODUCTION

The use of CUDA GPUs allows reducing the execution
time of parallel applications. However, using GPUs presents
several side-effects, such as increased acquisition and main-
tenance costs. In addition, GPU utilization is usually low.
In this context, remote GPU virtualization frameworks have
been recently created to overcome these drawbacks, such
as VGPU [9], GridCuda [4], DS-CUDA [5], GVirtuS [2],
vCUDA [8], GViM [3], rCUDA [6], and Shadowfax II [7].

Different virtualization frameworks provide different fea-
tures. For example, the vCUDA technology supports the old
CUDA 3.2 version and implements an unspecified subset of
the CUDA runtime. Moreover, its communication protocol
presents a considerable overhead. GViM is based on the
old CUDA version 1.1 and does not implement the entire
runtime API. The gVirtuS approach is based on the old
CUDA version 2.3 and implements only a small portion
of the runtime API. VGPU is a recent tool supporting
CUDA 4.0 although the information provided by its authors
is fuzzy. GridCuda supports the old CUDA 2.3 version.
Regarding DS-CUDA, it integrates a more recent version of
CUDA (4.1) and includes specific communication support
for InfiniBand. Shadowfax II is still under development, not
presenting a stable version yet and its public information is
not updated to reflect the current code status. In the case
of rCUDA, it is binary compatible with CUDA 6.5 and
implements specific communication modules for different
interconnects. Currently, it supports the general TCP/IP
protocol stack and includes specific modules for InfiniBand.

In this work we present a performance comparison among
the publicly available CUDA remote GPU virtualization
frameworks: gVirtuS, DS-CUDA, and rCUDA. The perfor-
mance of CUDA is also included for comparison purposes.

II. PERFORMANCE COMPARISON

Figure 1 presents a performance comparison of the three
GPU virtualization solutions under study, showing also
the performance of CUDA as the baseline reference. The
well-known bandwidthTest benchmark from the NVIDIA
CUDA Samples has been employed. The reason for using
bandwidth for comparing performance is that, when trans-
ferring data in CUDA applications between main memory
and GPU memory, data copy sizes are, in general, large
(in the order of MB). These large data transfers are mostly
influenced by attained bandwidth, which turns out to be
the most limiting factor regarding the performance of these
solutions. Consequently, other metrics such as latency are
less relevant in this context.

The testbed used in the experiments consists of two
1027GR-TRF Supermicro nodes featuring two Intel Xeon
E5-2620v2 processors (Ivy Bridge) operating at 2.1 GHz and
32 GB of DDR3 memory at 1600 MHz. The computers also
include an FDR InfiniBand adapter. One of the nodes owns
an NVIDIA Tesla K20 GPU. Linux CentOS 6.4 was used
along with CUDA 6.5 (NVIDIA driver 340.29) and Mel-
lanox OFED 2.3-2.0.0 (InfiniBand drivers and administrative
tools). Given that the InfiniBand FDR network technology
was used to connect both computers, both rCUDA and DS-
CUDA made use of the InfiniBand Verbs API. In the case
of gVirtuS, TCP/IP over InfiniBand was used because it is
not able to take advantage of the InfiniBand Verbs APIL

Notice that the three GPU virtualization solutions ana-
lyzed support different versions of CUDA: DS-CUDA is
compatible with CUDA 4.1, gVirtuS supports the old CUDA
2.3 version and rCUDA supports CUDA 6.5. Thus, each
of the frameworks has been analyzed with the respective
version of CUDA supported. In this regard, it is important
to remark that, in order to avoid introducing additional noise
in this particular test, we have previously compared the
bandwidth achieved by the three versions of CUDA and the
result is that differences in performance for the bandwidth
test are negligible from one CUDA version to another.

Results in Figure 1 deserve some discussion. First, it
can be seen in Figures 1(a) and 1(b) that CUDA achieves
the highest performance when pinned memory is used,
attaining a bandwidth around 6,000 MB/s. Notice that this
bandwidth is noticeably reduced for copies using pageable
memory, as show in Figures 1(c) and 1(d). Second, Figure 1
shows that rCUDA outperforms the other two remote GPU
virtualization solutions. Actually, for copies using pageable
memory rCUDA also performs better than CUDA. This
is a well-known effect thoroughly described in previous

—CUDA -=rCUDA
6000 -
i g g g g g g S S
& 5000 £
)
= 4000
= 3000
Z
3 2000
s
& 1000
i e
0 10 20 30 40 50 60
Transfer Size (MB)
(a) Copies from host pinned memory to device memory.
6000 mmemmmmm—emmmmm——ceo———oo--
& 5000 s
) P
S 4000 -7
=]
=]
S 3000 f
3 2000 14—
s
@ 1000 p
0 +——+— : : : ; ;
0 10 20 30 40 50 60
Transfer Size (MB)
(c) Copies from host pageable memory to device memory.
Figure 1.

= =GVirtu$S —DS-CUDA

6000
5000
4000
3000
2000
1000

Bandwidth (MB/s)

0 T T T T T T
0 10 20 30 40 50 60

Transfer Size (MB)

(b) Copies from device memory to host pinned memory.

6000

¥ 5000

) e e ce—————————————

S 4000 |»*

= ',

¥ 3000 1,

2 2000 {/

c

@ 1000 - —
ot

0 10 20 30 40 50 60

Transfer Size (MB)

(d) Copies from device memory to host pageable memory.

Performance comparison among three publicly available CUDA GPU virtualization solutions: gVirtuS, DS-CUDA, and rCUDA. The comparison

is performed in terms of attained bandwidth. The performance of CUDA is also depicted for comparison purposes.

works on rCUDA [6] and is due to the use of an efficient
pipelined communication based on the use of internal pre-
allocated pinned memory buffers. Nevetherless, the rCUDA
performance shown in the figure is a noticeable improvement
over other previously published results. On the other hand,
notice that both rCUDA and DS-CUDA make use of the
InfiniBand Verbs API, thus having access to the large band-
width available in this interconnect. However, DS-CUDA
presents a very poor performance. Also, notice that DS-
CUDA supports neither memory copies larger than 32MB
nor the use of pinned memory. Regarding gVirtuS, its per-
formance is extremely low. One may think that this is due to
the fact that gVirtuS is using TCP/IP over InfiniBand, which
clearly achieves lower performance than the InfiniBand
Verbs APL. However, according to our measurements with
the iperf tool, TCP over InfiniBand FDR provides around
1,190 MB/s, which is a noticeably larger bandwidth than the
one attained by gVirtuS. Hence, the low performance of this
middleware is not due to the use of TCP/IP over InfiniBand
but to the way it internally manages communications.

III. CONCLUSIONS

In this work we have compared the performance of the
publicly available CUDA remote GPU virtualization frame-
works. Furthermore, their throughput has been put into the
context of the performance of CUDA. Results show that the
rCUDA framework outperforms the other two remote GPU

virtualization solutions. Moreover, results point out that, for
pageable memory copies, rCUDA attains more bandwidth
than CUDA, regardless of the copy size or direction. This
improvement over CUDA is a novel result, not previously
published in prior works on rCUDA.

ACKNOWLEDGMENT

This work was funded by the Generalitat Valenciana under
Grant PROMETEOII/2013/009 of the PROMETEO program
phase II. Authors are also grateful for the generous support
provided by Mellanox Technologies.

REFERENCES

[1] A. Gaikwad, et al.: GPU based sparse grid technique for
solving multidimensional options pricing PDEs. WHPCF’09

[2] G. Giunta, et al.: A GPGPU transparent virtualization compo-
nent for high performance computing clouds. EuroPar’10

[3] V. Gupta, et al.: GViM: GPU-accelerated virtual machines.
HPCVirt’09

[4] T.Y. Liang, et al.: GridCuda: a grid-enabled CUDA program-
ming toolkit. WAINA’11

[5] M. Oikawa, et al.: DS-CUDA: a middleware to use many
GPUs in the cloud environment. SC*12

[6] A.J.Peiia, etal.: A complete and efficient cuda-sharing solution
for HPC clusters. PARCO 2014

[7] Shadowfax II - scalable implementation of GPGPU assemblies.
http://keeneland.gatech.edu/ software/keeneland/kidron

[8] L. Shi, et al.: vCUDA: GPU accelerated high performance
computing in virtual machines. IPDPS’09

[9] V-GPU: https://github.com/zillians/platform_manifest_vgpu

