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Abstract  

This paper proposes a novel method for MRI denoising that exploits both the sparseness and 

self-similarity properties of the MR images. The proposed method is a two-stage approach that 

first filters the noisy image using a non local PCA thresholding strategy by automatically 

estimating the local noise level present in the image and second uses this filtered image as a 

guide image within a rotationally invariant non-local means filter. The proposed method 

internally estimates the amount of local noise presents in the images that enables applying it 

automatically to images with spatially varying noise levels and also corrects the Rician noise 

induced bias locally. The proposed approach has been compared with related state-of-the-art 

methods showing competitive results in all the studied cases.  
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1. Introduction 

Magnetic resonance (MR) imaging has very important role on current medical and research 

procedures. However, these images are inherently noisy and thus filtering methods are required 

to improve the data quality. This denoising process is usually performed as a preprocessing 

step in many image processing and analysis tasks such as registration or segmentation. 

There is a large amount of bibliography related to the denoising topic that highlights the 

relevance of this issue for the scientific community. A large review of MRI denoising methods 

can be found at Mohan et al (2014). Currently, most denoising methods can be classified on 

those that use the intrinsic pattern redundancy of the data and those exploiting their sparseness 

properties. 

On the first class, the well known non-local means (NLM) filter (Buades et al,2005) is maybe the 

most representative method. This method reduces the noise by exploiting the self-similarity of 

the image patterns by averaging similar image patterns. In MRI, early works using the NLM 

method are from Coupe et al (2008) and Manjón et al (2008). The bibliography related to this 

method is quite extensive (Tristan-Vega et al, 20012; Coupe et al., 2012; Manjón et al., 2009, 

2010, 2012; Wiest-Daesslé et al, 2008; He and Greenshields, 2009; Rajan et al. 2012, 2014).    

On the other hand, sparseness-based methods try to reduce the noise naturally present in the 

images by assuming that the noisy data can be represented in a lower dimensionality space. In 

such methods, it is considered that most of the signal can be sparsely represented using few 

bases that enables to discard the noise related components or simply approximate noisy 

patterns by their corresponding noise free patterns. An example of these techniques are for 

instance those based on FFT or DCT transforms where standard bases such as sin or cosine 

functions are used to represent the images (Guleryuz, 2003; Yaroslavsky et al., 2000). In this 

case, noise reduction is achieved by removing noise related coefficients in a transform domain 

using either soft or hard thresholding techniques. More recently, techniques that learn the bases 

from the images to be denoised have received much attention (Elad et al. 2006, Mairal et 

al.,2008; Protter et al.,2009). These techniques learn a set of bases from the images to be 

denoised or from a set of similar noise free images to create a dictionary to sparsely represent 

image patches as a linear combination of dictionary entries (Aharon et al. 2006). The advantage 

of these dictionaries over standard ones such those used on DCT or FFT transforms is the fact 

they are better adapted to the images to be processed that enables a sparser representation 

and therefore a better signal/noise separation. In MRI, sparse theory has been used in many 

recent methods (Bao et al.2008; Bao et al. 2013; Pattel et al.2011). 

Principal Component Analysis (PCA) and related approaches have been also used for noise 

reduction in images (Muresan et al., 2003; Bydder et al., 2003; Deledalle et al., 2011). This type 

of technique falls in the second category since it takes benefit from the fact that original signal 

can be projected into an orthogonal space where most of the variance of the signal is 
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accumulated in few components while the noise being not sparse is uniformly spread over all 

the components. Noise reduction using PCA normally requires 3 main steps: 1) decomposing a 

set of selected signals into their principal components, 2) shrinking noise related components, 

and finally 3) reconstructing back the signals by inverting the PCA decomposition. This 

approach was first used by Muresan et al (2003) by applying PCA decomposition over a local 

set of image patches. Zhang el al. (2010) improved this approach by grouping similar patches 

before PCA decomposition and iterated the process to obtain a higher noise reduction. PCA has 

been also used to robustly compute patch similarities within a Non-local means framework (Van 

de Ville and Kocher, 2010; Zhang et al., 2013; Zhang et al., 2014). 

PCA based denoising has been also used for MRI filtering. In Manjón et al. (2009) PCA was 

used as a postprocessing step to remove remaining noise after the application of a 

multicomponent non-local means filter for multimodal MRI. Recently, a nonparametric PCA 

based filter was proposed for 2D MR images where patch similarities are estimated using rank 

limited PCA coefficients (Kim et al., 2010). Also recently, PCA based approaches have been 

proposed for diffusion weighted image (DWI) denoising (Bao et al., 2013; Fan et al., 2013; 

Manjón et al., 2013). 

In this paper, we present a novel denoising approach based on the application of PCA 

decomposition over a set of similar patches using a sliding window scheme. The resulting 

filtered image is used as a guide image to accurately estimate the voxel similarities within a 

rotationally invariant NLM (PRI-NLM) strategy as done in Manjón et al. (2012). The increased 

quality of this guide image resulting from the proposed PCA-based noise removal method 

significantly improves the application of the PRI-NLM filter boosting the overall denoising 

performance. We must remark that our guided PRI-NLM filter shares some similarities with 

methods like the one proposed by Salmon et al. (2012) where a Yaroslasky filter is applied 

using information from a pre-filtered image to improve denoising performance or also CANDLE 

filter (Coupe et al., 2012) which uses a median filtered image. Our approach is also related the 

method proposed by Zhang el al. (2010) to filter natural images with stationary Gaussian noise 

but in our case our patch selection is performed on a pre-filtered image to obtain a more robust 

patch grouping on very noisy conditions. Furthermore, we deal with non-stationary Rician noise 

and the thresholding step is performed by automatically estimating the local noise level from the 

eigenvalues of the PCA decomposition. The three main contributions in this paper are: 1) a new 

collaborative filter using a PCA based strategy to compute an improved guide image. 2) an 

automatic spatially varying noise estimation method fully integrated in the denoising pipeline 

and 3) a new Rician bias correction method.   
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 2. Material and methods 

Principal component analysis is a mathematical procedure that uses an orthogonal linear 

transformation to map the data into a new coordinate system where all the components are 

sorted by decreasing variance order. PCA has been traditionally used for dimensionality 

reduction but during the last decade some filtering applications have been proposed (Muresan 

et al., 2003; Bydder et al., 2003). The main idea when using PCA for noise reduction is to use 

its decorrelation properties to separate the signal from the noise by applying it to a set of noisy 

observations in order to erase least significant components that are mainly noise related.   

2.1. Non-local PCA denoising 

In this paper we present a novel method related with the filter proposed by Zhang et al (2010) 

where similar patches are grouped together prior performing the PCA decomposition. Differently 

from Zhang et al. (2010) (which was developed for natural images with stationary Gaussian 

noise) we group similar patches using a pre-filtered guide image that improves the group 

selection process in noisy conditions yielding in a sparser group definition. Besides, we have 

made our proposed method fully adaptive by internally estimating the local amount of noise 

within each group of patches.          

By using the usual definition of denoising problem, let define a noisy image Y as the original 

noise free signal A plus some noise N: 

Y = A + N                                                                 (1) 

The aim of any denoising method is to estimate A given Y. 

In our proposed approach we use a sliding 3D window approach where for each 3D patch of the 

image volume we create a group of patches by selecting the most similar patches to the current 

patch in a local search volume surrounding it. Specifically, for each point xi of the image domain 

Ω⊂ℜ
3
, a set of the N most similar 3D patches (in the Euclidean distance sense) within a search 

volume (cube of (2t+1)
3
 voxels) surrounding xi are reordered as a row vector in a matrix X (see 

figure 1). X is thus an NxK matrix where K corresponds to the number of voxels of each 3D 

patch and N the number of grouped patches (in our method we set N=k). 

For every created group of similar patches, PCA decomposition is then performed and the less 

significant components are erased using a hard thresholding rule (i.e., eigenvectors with a 

standard deviation lower than a threshold  are set to zero). Finally, since each voxel has 

contributions from different patches all estimates are combined using a uniform averaging rule. 

We will refer this method as Non-local PCA (NL-PCA) filter.  

The homogeneity of the group plays a very important role in the denoising process since more 

homogeneous groups will provide sparser representations and therefore will enable a better 

noise reduction. To this end, instead of comparing noisy patches for the group selection we 
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propose to use a pre-filtered volume to drive the selection process. We found that a simple 3D 

median filter significantly improves the patch selection during grouping process (especially for 

medium and high noise levels). Therefore, as done in (Coupe et al., 2012), we used a simple 

3D median filter due to its efficiency and because it can be applied automatically without any 

knowledge of the local noise level present at each point of the images.  

Finally, another important feature of our proposed method is its ability to automatically estimate 

the noise statistics from each group of patches.  In this sense, the algorithm naturally adapts to 

spatially varying noise patterns and it is actually independent of any external noise estimation 

method (this issue will be discussed in the section 2.4).  

 

Figure 1. Overview of NL-PCA scheme. A set of N similar patches are selected to create a matrix X. This 

matrix is then transformed using PCA and the least significant eigenvectors are removed by hard 

thresholding. Finally, the filtered matrix X is obtained by inverting the PCA decomposition.     

2.2. Rotational Invariant Non- local PCA denoising 

As demonstrated in Manjón et al. (2012), when a good quality pre-filtered image is available we 

can use this image to guide the similarity estimation process of a rotationally invariant version of 

the NLM filter.  
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where µNi and µNj are the mean values of patches Ni and Nj around voxels i and j in the guide 

image g,  h is related to the standard deviation of the noise present on image y and Ω 

represents position of the elements of the search volume. We refer the reader to the original 

paper (Manjón et al. 2012) to see the details of the rotational invariant NLM filter.     

In this previous work, the pre-filtered image was estimated using a local DCT based filter while 

in this paper we propose to use the output of the described NL-PCA filter as guide image. We 
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will refer to this filter as PRI-NL-PCA to differentiate it from the PRI-NLM proposed in our 

previous work (Manjón et al. 2012).  

It is worth noting that applying this rotational invariant NLM using the NL-PCA guide image 

outperforms the re-application of NL-PCA using the NL-PCA output of the first iteration as guide 

image.  

2.3. Adaptation to Rician noise 

Contrary to the usual denoising problem in natural images where noise is considered as 

Gaussian, noise in magnitude MR images normally follows a Rician distribution (Nowak et al., 

1999). The asymmetry of the Rician distribution results in a non-constant intensity bias as it 

depends on the local SNR. To reduce such bias, some authors have proposed to remove the 

bias in the squared magnitude image (Wiest-Daesslé et al., 2008, Manjón et al., 2008).  

However, this approach can be applied only when reducing the noise using the averaging 

principle. In our case, due to the effect of PCA thresholding, the bias in the squared domain is 

not constant, but intensity dependent. Fortunately, this bias can be estimated theoretically and 

inverted in the original domain using the properties of the first moment of a Rician distribution as 

done in Manjón et al. (2013). 

This correction algorithm is used to recover the mean value of the Rice distribution R(v,) with 

parameters v and , being v the true value we want to recover and  the noise standard 

deviation. The expected value writes as: 

 
2

2

2

12

2

2

2

02

2

2

2

4242
1

2
exp

2
)R(v,E 































































v
I

vv
I

vv

            (3)

 

where I0 and I1 are the modified Bessel functions of order zero and one, respectively. 

After denoising the data using the proposed NL-PCA method and knowing the noise variance, 

we can compensate for the bias by inverting the previous expression and recovering the true 

value v. We can observe that E[R(v,)]/  can be written as a function of =v /. 
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The inverse of this expression as a function of  can be stored into a Look Up Table (LUT) that 

we denote by (). The final estimated value x obtained by the denoising process with this bias 

correction can be written as: 

)/(ˆ  xx 
                                                                 (5) 
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The Rician bias correction for the RI-NL-PCA method is performed in squared magnitude image 

as done in the RI-NLM method (Manjón et al., 2013).   
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Where in this case the fixed bias 2(i)
2
 depends on the local noise level (i) at position i. 

We should note that the presented bias correction techniques can be applied to single coil or 

SENSE acquired images but not to GRAPPA acquired images. In this case, the noise 

distribution does not follow a Rician distribution but a Non-central Chi distribution. However, we 

can modify equation 6 to take into account noise contribution of each of the multiple N coils.  
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Here, N represents the number of coils used in the GRAPPA acquisition. In this paper, we will 

perform the experiments on Rician noise to focus on denoising methodology rather on the 

nature of noise in MRI.      

 

2.4. PCA based noise estimation  

 

The NL-PCA method relies heavily on the correct estimation of the optimum threshold to select 

the signal related components. This threshold is normally set as function of the noise level 

present on the image. Therefore, a good noise level estimation is fundamental to obtain an 

optimal filtering performance.  

 

Although, there are several methods to estimate the noise level in MRI (Sijbers et al., 2007; 

Coupe et al., 2010; Aja et al.,2009; Pyatykh et al.,2013) most of them assume a stationary 

condition of the noise (i.e., the noise level is the same over the entire image) that is not a valid 

assumption when using images acquired with parallel imaging techniques such as SENSE. As 

far as we know only two methods has been presented for non-stationary noise estimation in 

MRI. The first is the approach of Pan et al. (2012) based on local kurtosis measures and 

designed for Gaussian distributed noise, and the second is the Maggioni and Foi method (2013) 

which is based on local DCTs and is able to deal with Rician noise. 
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In this paper we propose a new method for local noise estimation which is fully integrated within 

the proposed NL-PCA method.  

 

The eigenvalues of the PCA decomposition represents the variability of both signal and noise 

contributions at each component. First components are mainly related to signal while last 

components are mainly related to noise. This fact has been used to reduce noise by using hard 

thresholding techniques like the one presented in this paper.  

 

When a set of similar patches are grouped together prior to perform PCA decomposition, the 

resulting set is expected to be highly sparse due to the high level of pattern redundancy within 

the group of selected patches. Therefore, we can assume that most of the signal contribution 

will be concentrated in the first components while the remaining components will be mainly 

dominated by the noise. If the set of selected patches belong to a homogeneous area the mean 

of the eigenvalues is expected to be close to the variance of the noise (the same holds for the 

median of the eigenvalues). However, if our set of patches corresponds to edges or textured 

areas, the mean of the eigenvalues will logically overestimate the noise variance due to signal 

variance contamination. However, if our representation is sparse enough, the median of the 

eigenvalues still will provide a robust noise level estimator (see Figure 2).  

 

Although the median of the eigenvalues is related to the noise variance, there is a systematic 

bias that depends on the relation between the number of selected patches and the number of 

voxels of each patch. Therefore, the local noise standard deviation can be derived from the 

median of the eigenvalues using the following expression: 

                                                                                              (8) 

where   corresponds to the correction factor related to the ratio between the number of selected 

patches and the number of voxels of each patch (  =1.16 for N=K which was experimentally 

obtained by numerical simulation) and   represents the eigenvalues of the PCA decomposition. 

A theoretical correction factor being close to   can be estimated when all the selected patches 

are equal up to the noise. In that case, the PCA eigenvalues follow a known distribution 

depending on the ratio N/K and the noise standard deviation , which permits to analytically 

compute this correction factor. This theoretical factor slightly differs from the one used, since in 

practice the N patches are not always identical up to noise oscillations. 

 

Although this simple method provides accurate estimates for medium and high noise levels it 

tends to slightly overestimate the noise level for low noise conditions at areas with low pattern 

redundancy and strong edges (i.e. low group sparseness). The reason for this overestimation is 

the fact that for low noise levels the variance of the signal may be non negligible compared to 

the variance of the noise at the eigenvalue median. To minimize the impact of the signal in the 

noise estimation we can estimate the noise level only from a subset of the eigenvalues by 
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adaptively removing some of the first eigenvalues prior the median estimation. To do so, we 

remove the eigenvalues with a standard deviation higher than two times the standard deviation 

of the median of the full set of eigenvalues. We finally estimate the noise standard deviation as 

the square root of the median of this trimmed subset of eigenvalues but using the corresponding 

correction factor (  =1.29) taking into account the reduced size of the subset of selected 

eigenvalues.             

                                                                                         (9) 

 

Figure 2. Left: Example of PCA eigenvalues (observe that most of the signal variance comes from the first 

4 eigenvalues). Right: Histogram of the eigenvalue distribution (notice that first eigenvalues can be 

identified as outliers of the noise related components distribution). The noise variance in this example case 

was around 7.  

 

 

Rician noise estimation 

 

The above described noise estimation methods rely on a Gaussian nature assumption of the 

noise. However, as previously commented, it is well known that magnitude MRI noise normally 

follows a Rician distribution. Therefore, the presented noise estimation approach has to be 

adapted to deal with this fact. One approach that has been successfully used in the past for 

correcting the noise underestimation at low SNR areas is based on the iterative analytical 

correction scheme proposed by Koay and Basser (2006). This approach was used for stationary 

noise estimation in MRI (Coupe et al., 2010; Manjón et al., 2010). 

However, we have experimentally observed that this approach although effective to estimate 

the global noise level does not provides optimal results when used locally, probably due to 

convergence problems in the iterative process for very low SNR areas.   
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As an alternative, we propose in this paper a simple but efficient and accurate method to map 

Gaussian-like local estimates in their corresponding Rician ones by using the effective local 

SNR instead of the estimated SNR as used by Koay and Baser (2006). 

We estimated a mapping function correcting the systematic noise underestimation by using 

Monte-Carlo simulations where effective local SNR (that is the ratio between the local mean and 

the corresponding local standard deviation) was related to the correction factor that converts the 

local Gaussian-like standard deviation to the corresponding Rician one (see Figure 3). We fitted 

the simulated data using the following rational model.  











otherwise

if

0

)86.1(
0.1175))+1.86)-((

0.1983)+1.86)-((0.9846(

)( 






                              (10) 

where  represents the effective local SNR. The corrected local standard deviation is calculated 

by multiplying the correction factor based on the effective local SNR with the initially estimated 

local standard deviation provided by the NL-PCA method.  

)( ˆ                                                                        (11) 

Figure 3. Experimental noise correction factors for different SNR values and its associated model. As can 

be noted, the correction factor for high SNR is close to 1 as expected while for low SNR its value increases 

to counteract the noise underestimation.  
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Finally, to further improve the Rician noise estimation required to apply bias correction to the 

NL-PCA filter and to provide accurate noise estimation to the PRI-NL-PCA method, we apply a 

low-pass filter to the estimated noise map. We do so to further regularize the estimated spatially 

varying noise field to produce a more realistic noise map (the noise field is expected to be 

slowly varying). We have used a kernel size of 15 mm
3
 for that purpose. In the case that the 

noise is found to be constant across the entire image, the average of all local estimations can 

be used to provide a more accurate estimation. To detect this homogeneity condition we used 

coefficient of variation (CoV) of the estimated noise field (the stationary condition was met for 

CoV<0.15). In table 1 we summarize the described NL-PCA and PRI-NL-PCA methods. 

 

Table 1. Summary of the proposed methods. 

Method NL-PCA Method PRI-NL-PCA 

1. Estimate guide image (3D median filter) 

2. For each 3D patch: 

2.1. Group similar non-local patches  

2.2. Perform PCA decomposition 

2.3. Estimate local noise level (Eq. 9) 

2.4. Perform hard thresholding 

2.5. Invert PCA decomposition  

3. Combine multiple voxel contributions to 

obtain the denoised images and the 

estimated noise field.  

4. Correct Rician bias on the filtered images 

using Eq. 5 and correct Rician noise field 

estimation using Eq. 11.  

Stage 1 (Basic estimate) 

 Perform NL-PCA filtering 

 

 

Stage 2 (Final estimate) 

 Apply PRI-NLM filter over the noisy image 

using as guide image the filtered image 

and the estimated noise field obtained 

from NL-PCA filter. 
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3. Experiments and results 

Several experiments were carried out to estimate the optimal filter settings as well as to 

compare the proposed methods to related state-of-the-art methods. 

 

3.1. Experimental data description 

For our experiments, we used the well-known Brainweb 3D T1-weighted (T1w) MRI phantom 

(Collins et al., 1998; Kwan et al., 1999). This dataset has a size of 181217181 voxels (voxel 

resolution = 1 mm
3
) and it was corrupted with different levels of Gaussian and Rician noise (1% 

to 9% of maximum intensity). Rician noise was generated by adding Gaussian noise to real and 

imaginary parts and then computing the magnitude image. 

 

Two quality measures were used to evaluate the results. The first was the Peak Signal to Noise 

Ratio (PSNR) metric while the second was the structural similarity index (SSIM) (Wang et al., 

2004), which is a measure more consistent with the human visual system: 
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where µx and µy are the mean value of images x and y, x and y are the standard deviation of 

images x and y, xy is the covariance of x and y, c1 = (k1L)
2
, and c2 = (k2L)

2
 (where L is the 

dynamic range, k1 = 0.01 and k2 = 0.03). As suggested by Wang et al. (2004), the SSIM was 

locally estimated using a Gaussian kernel of 333 voxels. Finally, the mean value of all the 

local estimations was used as a quality metric. For the sake of clarity, both measures were 

estimated only in the region of interest (head tissues) discarding the background.  

 

3.2. Parameter estimation 

The proposed NL-PCA method has several free parameters that need to be set to obtain 

optimal performance. 

 

The three most important parameters of the proposed method are the 3D Patch side size r (so 

k=r
3
), the search volume radius t and the threshold  applied to local PCA eigenvalues to erase 

the noise related components. To find the optimum values of these parameters an exhaustive 

search was performed. In figure 4 (left) the mean PSNR (for all noise levels) in function of the 

threshold  is plotted for 3 different patch sizes. As can be noted, optimum results are found for 

r=4 and =2.1 for the PRI-NL-PCA and =2.2 for NL-PCA. Also in figure1 (right) the mean 

PSNR in function of the search volume radius t is plotted (in this case we fixed r=4 and =2.1). 
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As can be observed optimum results are obtained for a search volume radius value of t=3 (i.e., 

a search volume of size 7x7x7 voxels). Gaussian noise was used in these experiments to 

simplify the analysis of the results. From these experiments, we set as default parameters r=4 

(Patch of 4x4x4 voxels), =2.1 and t=3 (search volume size of 7x7x7 voxels). These 

parameters are used in all the following experiments. 

 

Figure 4. Left: PSNR results for diferent values of threshold  and patch sizes. Solid lines 

correspond to NL-PCA results while dashed lines correspond to PRI-NL-PCA results. Right: 

Mean PSNR results for NL-PCA method for 3 diferent values of search volume radius. Optimum 

results were found at t=3.  

 

 

These results were obtained using a sliding window approach with full overlap over consecutive 

patches (no gap between consecutive windows) as it is known that overcomplete approaches 

enable to obtain better denoising results by increasing the number of elements contributing to 

every voxel from the different overlapping denoised patches as demonstrated by Katkovnik et 

al. (2010). However, we analyzed the effect of different levels of overlap from full overlap 

(step=1) to minimum overlap (step=3 for r=4, that is just one voxel overlap between neighbor 

windows). In table 2 we can observe that the best results are obtained with full overlap as 

expected but at the expense of a high processing time. We can also notice that the accuracy 

differences are really small for the different levels of patch overlap while the processing times 

are significantly reduced. This can be explained by the fact that the whole group of selected 

patches is jointly denoised so multiple contributions to every voxel comes from different groups 

which makes the approach already quite overcomplete. We decided to set the default step 

value to 3 since it was found to be the most cost-efficient parameter value.          
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Table 2. PSNR results for different overlapping levels.  

Method 
Noise level   

1% 3% 5% 7% 9% Average Time(s) 

Noisy 39.99 30.46 26.02 23.10 20.91 28.10  

NL-PCA (step=1) 44.85 38.99 36.46 34.77 33.47 37.71 3090 

NL-PCA (step=2) 44.83 38.97 36.44 34.76 33.45 37.69 576 

NL-PCA (step=3) 44.80 38.93 36.39 34.70 33.39 37.64 169 

PRI-NL-PCA (step=1) 45.24 39.44 36.74 34.99 33.65 38.01 3160 

PRI-NL-PCA (step=2) 45.23 39.43 36.72 34.98 33.64 38.00 647 

PRI-NL-PCA (step=3) 45.20 39.40 36.69 34.94 33.61 37.97 288 

 

3.3. Noise estimation validation 

To validate the proposed PCA-based local noise estimation methods a set of experiments were 

performed. We used the error ratio (ER) and mean error ratio (MER) to measure the different 

methods noise accuracy for stationary and spatially varying noise respectively. 

 

̂1ER                                                                  (13) 

            








i

ii ̂1
1

MER                                                    (14) 

where ̂  and    are the estimated and real global noise standard deviation. 

 

3.3.1. Stationary Gaussian noise 

 

In the first experiment, we corrupted the brainweb phantom with different levels of homogenous 

Gaussian noise. Table 3 shows the noise estimation results when using the compared methods 

for the 5 different noise levels of Gaussian noise (the image noise level was computed 

averaging all local estimates). As can be noticed both methods obtained accurate results for 

medium and high noise levels. The best method over all noise levels was the one based on the 

trimmed median (eq. 9) as expected due to its ability to estimate the noise level even at low 

noise conditions.  

 

Table 3. Comparison of the different noise estimation schemes (ER) 

 Method  Noise level  

1% 3% 5% 7% 9% Average 

Median (Eq. 8) 0.2100 0.0715 0.0474 0.0395 0.0367 0.0810 

Trimmed median (Eq. 9) 0.1141 0.0490 0.0387 0.0356 0.0345 0.0544 

 

 

 



16 
 

3.3.2. Spatially varying Gaussian noise 

 

Although the proposed noise estimation method obtained good results estimating the global 

noise level of the images, its real potential is its ability to accurately estimate the local noise 

level present in an image with spatially varying noise patterns. To highlight this point we have 

compared the proposed method with a related recently proposed local noise estimation method 

(Maggioni and Foi, 2012). This method, based on the Discrete Cosine Transform (DCT), uses 

high frequency components of a local set of patches to locally estimate the noise level. This 

noise estimation method is used internally in an adaptive version of the BM4D denoising 

method (Maggioni and Foi, 2013). We will refer to this adaptive version as ABM4D to 

differentiate it from the non-adaptive method BM4D.  

 

During our experiments, stationary and spatially varying conditions were analyzed. In table 4 we 

can compare the ER results for the proposed method and the ABM4D method for different 

levels of homogenous Gaussian noise. As can be noticed the proposed method provides more 

accurate estimates of the noise level for all the considered cases. Most significant differences 

can be found at low noise levels. This can be understood taking into consideration the fact that 

the DCT estimations are affected by the overlapping of signal and noise contributions at high 

frequencies.    

 

Table 4. Comparison of the two different noise estimation schemes (ER) 

Method Noise level ER 

1% 3% 5% 7% 9% Average 

ABM4D 0.3700 0.1171 0.0729 0.0576 0.0525 0.1340 

NL-PCA (Eq. 7) 0.1141 0.0490 0.0387 0.0356 0.0345 0.0544 

     

To evaluate the compared methods over spatially varying noise conditions a new experiment 

was performed but this time using a spatially varying noise field similar to those that can be 

found on parallel imaging (see figure 5). To generate the noise filed a modulation map with 

factors 1 to 3 was multiplied with different levels of Rician noise (1% to 9%). In this case the 

MER measure was used to compare local noise estimations. Table 5 summarizes the results of 

this experiment. The proposed method obtained the best results for all the noise levels. 

 

Table 5. Comparison of the two different noise estimation schemes for non stationary noise 

(MER) 

Method Noise level MER 

1-3% 3-9% 5-15% 7-21% 9-27% Average 

ABM4D 0.2115 0.0715 0.0540 0.0527 0.0549 0.0889 

NL-PCA (Eq. 7) 0.0765 0.0409 0.0370 0.0363 0.0365 0.0454 
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In figure 5 a visual comparison of the results of the compared methods can be performed for 

both stationary and spatially varying noise cases. The normalized local noise estimation was 

obtained dividing the estimated noise by the real noise at each point. Perfect match between 

estimated noise and real noise should produce a normalized value equal to 1, so deviations 

from this value represents local under and over estimations of the noise level.  
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Figure 5. Comparison of ABM4D and NL-PCA noise estimation methods for homogeneous (two 

first rows) and inhomogeneous (two last rows) Gaussian noise fields. From left to right. First 

row: Noise free image, ABM4D noise estimation and normalized local noise estimation 

distribution. Second row: Noisy image, NL-PCA noise estimation and normalized local noise 
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estimation distribution. Third row: Noise free image, ABM4D noise estimation and normalized 

local noise estimation distribution. Fourth row: Applied inhomogeneous noise field, NL-PCA 

noise estimation and normalized local noise estimation distribution.  

 

3.3.3. Stationary Rician noise estimation 

 

Since MR images are typically corrupted with Rician noise, we performed several experiments 

to evaluate the Rician noise estimation method described in section 2.4. We compared the 

method based on Koay approach (Koay and Basser, 2006) with our new mapping based 

approach (eq. 9). We also compared two different options to estimate the original noise field 

prior the Rician correction, 1) using the NL-PCA noise estimation (eq. 7) and 2) using the local 

standard deviation of the image residuals (difference between noisy and NL-PCA filtered 

images). In this later case the local standard deviation was estimated using a local region of 

3x3x3 voxels and the resulting noise field was multiplied by a experimentally estimated 

correction factor (1.05) to compensate the noise underestimation in the residuals to compensate 

the remaining noise present in the filtered images. The advantage of using the residual image 

can be explained by the fact that in the filtering process each point is estimated using multiple 

contributions providing a good approximate of the noise free image which contributes to obtain 

a more stable and regular noise field estimation. In table 6 the ER results are presented for the 

different options commented for several levels of homogenous Rician noise (in this case we 

used a wider noise range to further explore noise underestimation effects at very high noise 

conditions).  

 

Table 6. Comparison of the different Rician correction methods for homogeneous noise (ER). No 

correction stands for the NL-PCA noise estimation without any bias correction.  

Method Noise level  

1% 7% 15% 23% 29% Average 

No correction 0.0468 0.1746 0.2194 0.2548 0.2767 0.1944 

Koay  0.0300 0.1131 0.1386 0.1585 0.1725 0.1166 

Koay residuals  0.1660 0.1243 0.1225 0.1308 0.1401 0.1367 

Mapping (Eq. 11) 0.0518 0.0438 0.0579 0.0688 0.0760 0.0597 

Mapping residuals (Eq. 11) 0.1029 0.0432 0.0200 0.0070 0.0005 0.0347 

 

In Figure 6 the estimates of each method for different noise levels are shown. As can be seen, 

the proposed mapping method based on the image residuals provides acceptable estimates 

while the other methods tend to underestimate the amount of noise for medium and high noise 

levels. 
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Figure 6. Comparison of different noise estimation methods (Blue line represents the perfect 

estimation while red line represents the NL-PCA estimation without any underestimation 

correction). Most of compared methods underestimated the noise variance (especially at low 

SNR areas) while the proposed mapping technique (using image residuals) provides the most 

accurate estimation. 

 

The proposed mapping approach provides more accurate noise estimation than Koay approach 

(applied to both NL-PCA noise estimation and residual based estimation) for all noise levels. 

The mapping method based on the image residuals gave the lower global error among all 

compared methods. Therefore, we choose it as our default Rician noise estimation method due 

its improved overall performance. Figure 7 shows a visual example of output of the different 

compared methods for stationary Rician noise.     
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Figure 7.  Example of stationary Rician noise estimation results (9%). The noise fields are 

shown in the [0,1] range after dividing the estimated noise field by the real noise field. From left 

to right. First column: NL-PCA without Rician correction and corresponding histogram. Second 

column: NL-PCA output with Koay correction and corresponding histogram. Third column: NL-

PCA residual-based noise estimation with Koay correction and corresponding histogram. Fourth 

column: NL-PCA output, with the proposed mapping correction and corresponding histogram. 

Firth column: NL-PCA residual-based noise estimation with the proposed mapping correction 

and corresponding histogram. 

 

The proposed residual based mapping approach method was compared with the ABM4D 

method. Table 7 shows the noise estimation results for stationary Rician noise. The proposed 

method obtained the best results in all the cases. 

  

 

Table 7. Comparison of the two different noise estimation schemes for different levels of 

stationary Rician noise (ER). 

Method Noise level  

1% 3% 5% 7% 9% Mean 

Mapping residuals (Eq. 11) 0.1029 0.0661 0.0514 0.0432 0.0361 0.0599 

ABM4D 0.4965 0.1860 0.1388 0.1315 0.1387 0.2183 
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3.3.4. Spatially varying Rician noise estimation 

 

The proposed residual based mapping approach method was also compared with the ABM4D 

method for spatially varying noise conditions. In this case, we used also a simulated noise field 

similar to those that can be found on parallel imaging. To generate the noise field a modulation 

map with factors 1 to 3 was multiplied with different levels of Rician noise (1% to 9%). Table 8 

shows the noise estimation results for the two compared methods. The proposed method 

obtained the best results in all the considered cases. 

 

Table 8. Comparison of the two different noise estimation schemes for different levels of 

spatially varying Rician noise (MER). 

Method Noise level  

1-3% 3-9% 5-15% 7-21% 9-27% Mean 

NL-PCA 0.0850 0.0517 0.0400 0.0356 0.0355 0.0496 

ABM4D 0.3524 0.1781 0.1745 0.1868 0.2012 0.2186 

     

  



23 
 

3.4 Methods comparison 

 

We compared the proposed methods with state-of-the-art methods in MRI denoising. 

Specifically, for stationary noise, we used the ODCT and PRI-NLM methods (Manjón et al., 

2012) and the BM4D (Maggioni et al., 2013a) method. The SANLM filter (Manjón et al., 2010) 

and the adaptive BM4D (ABM4D) (Maggioni et al., 2013b) were used for the spatially varying 

noise case.   

 

In the experiments, the exact level of noise added to the images was supplied to the ODCT, 

PRI-NLM, ONL-PCA, OPRI-NL-PCA and BM4D methods while NL-PCA, PRI-NL-PCA, SANLM 

and ABM4D methods directly estimated the noise level internally (ONL-PCA and OPRI-NL-PCA 

are the oracle corresponding versions were the true known noise level was supplied to evaluate 

the effect of the noise estimation in these methods). PSNR and SSIM measures were obtained 

only from the foreground areas to avoid background effects.  

 

In table 9 shows the results for stationary Gaussian and Rician noise. As can be noticed the 

proposed PRI-NL-PCA method obtained the best results in all the cases (note also that the NL-

PCA method also improved the BM4D method in all the cases). From table 9, it can be 

observed that NL-PCA and PRI-NL-PCA results are nearly the same as their Oracle versions 

highlighting the good behavior of the noise estimation process. A visual example of these 

results can be observed at figure 8. 

 

Table 9. PSNR and SSIM results of the compared methods for stationary noise (Gaussian and Rician). 

Noise Filter Noise level 

1% 3% 5% 7% 9% Average 

 
 
 
 
 
 
 

Gauss. 

 Noisy 39.99|0.970 30.46|0.814 26.02|0.656 23.10|0.530 20.91|0.433 28.10|0.681 

ODCT 43.78|0.992 37.53|0.971 34.88|0.951 33.18|0.932 31.91|0.913 36.27|0.952 

PRI-NLM 44.22|0.993 38.34|0.976 35.58|0.959 33.75|0.940 32.37|0.922 36.85|0.958 

ONL-PCA 44.80|0.993 38.93|0.978 36.39|0.964 34.70|0.949 33.39|0.935 37.64|0.964 

NL-PCA 44.80|0.994 38.97|0.979 36.40|0.964 34.67|0.948 33.32|0.931 37.63|0.963 

OPRI-NL-PCA 45.20|0.994 39.40|0.981 36.69|0.968 34.94|0.955 33.61|0.941 37.97|0.968 

PRI-NL-PCA 45.38|0.994 39.33|0.981 36.63|0.968 34.90|0.955 33.58|0.941 37.96|0.968 

BM4D 44.02|0.992 38.35|0.975 35.91|0.960 34.31|0.945 33.10|0.930 37.14|0.960 

 

 
 
 
 
 
 
 

Rician 

Noisy 40.00|0.970 30.49|0.815 26.09|0656 23.20|0.529 21.04|0.431 28.16|0.680 

ODCT 42.96|0.991 37.38|0.970 34.70|0.949 32.90|0.927 31.53|0.905 35.89|0.948 

PRI-NLM 44.14|0.993 38.28|0.976 35.42|0.957 33.47|0.935 31.98|0.913 36.66|0.955 

ONL-PCA 44.80|0.993 38.89|0.978 36.31|0.963 34.53|0.957 33.11|0.925 37.53|0.962 

NL-PCA 44.79|0.994 38.90|0.978 36.23|0.962 34.37|0.943 32.88|0.923 37.43|0.960 

OPRI-NL-PCA 45.20|0.994 39.35|0.981 36.59|0.967 34.75|0.952 33.28|0.935 37.83|0.966 

PRI-NL-PCA 45.31|0.994 39.34|0.981 36.58|0.967 34.74|0.952 33.28|0.935 37.85|0.966 

BM4D 44.09|0.992 38.35|0.975 35.84|0.959 34.17|0.942 32.88|0.924 36.99|0.958 
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Figure 8. Example results of the compared filters for 9% of Rician noise. A Closed up is shown 

to better appreciate the differences between compared methods (the method differences can be 

better appreciated at sulcus areas). 

 

In table 10 the results for spatially varying Gaussian and Rician noise are presented. The 

proposed PRI-NL-PCA method obtained the best results in almost all the cases. Although 

ABM4D method showed a good behavior for high levels of Gaussian noise it did not perform as 

well for Rician noise (probably due to an inaccurate bias correction). A visual example of these 

results can be observed at figure 9. 

 

Table 10. PSNR and SSIM results of the compared methods for spatially varying noise. 

Noise Filter Noise Level 

1-3% 3-9% 5-15% 7-21% 9-27% Average 

 

 

 

Gauss. 

Noisy 34.34|0.900 24.80|0.621 20.36|0.442 17.44|0.328 15.26|0.253 22.44|0.508 

ONL-PCA 41.60|0.987 35.94|0.959 33.23|0.928 31.41|0.897 30.07|0.867 34.45|0.928 

NL-PCA 41.66|0.987 35.95|0.958 33.17|0.925 31.31|0.891 29.92|0.857 34.40|0.924 

OPRI-NL-PCA 42.19|0.989 36.33|0.965 33.53|0.939 31.59|0.911 30.10|0.882 34.75|0.937 

PRI-NL-PCA 42.25|0.989 36.30|0.965 33.52|0.939 36.61|0.911 30.16|0.883 34.77|0.937 

ABM4D 40.45|0.980 35.48|0.960 33.10|0.930 31.48|0.900 30.24|0.870 34.15|0.928 

SANLM 40.38|0.980 34.50|0.940 31.57|0.890 29.61|0.830 28.11|0.780 32.83|0.884 

 

 

 

 

Rician 

Noisy 34.35|0.900 24.87|0.621 20.50|0.441 17.64|0.325 15.50|0.247 22.57|0.507 

ONL-PCA 41.59|0.987 35.87|0.958 32.99|0.925 30.93|0.890 29.28|0.854 34.13|0.923 

NL-PCA 41.64|0.987 35.77|0.956 32.74|0.917 30.48|0.873 28.42|0.824 33.81|0.911 

OPRI-NL-PCA 42.18|0.989 36.20|0.964 33.16|0.933 30.92|0.897 29.22|0.861 34.34|0.930 

PRI-NL-PCA 42.23|0.989 36.19|0.964 33.15|0.934 30.87|0.897 28.83|0.856 34.25|0.928 

ABM4D 40.43|0.980 34.41|0.940 31.27|0.890 28.80|0.820 26.55|0.740 32.29|0.874 

SANLM 40.28|0.980 34.29|0.940 31.16|0.870 28.73|0.810 26.43|0.740 31.18|0.868 
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Figure 9. Example results of the compared filters for 9-27% of Rician noise. A Closed up is 

shown to appreciate the differences between compared methods. Note that NL-PCA method 

showed some artifacts for very high levels of noise due to non-cancelled components. Note 

though that the PRI-NL-PCA method does not show any artifact due the different behavior of 

the averaging process compared to the truncation PCA based process.  

 

Finally, the processing times of the different compared methods were analyzed. The faster 

method was the ODCT method with just 5 seconds on average followed by the PRI-NLM with 

45 seconds. The SANLM took around 300 seconds. The proposed NL-PCA and PRI-NL-PCA  

methods took 185 and 320 seconds respectively while the BM4D took 567 seconds when the 

noise level was externally supplied to the method and 1900 seconds when it was internally 

estimated from the data (we should note here that the increased processing time of ABM4D 

may be caused by implementation issues since authors reported that ABM4D has only a slightly 

higher processing time than BM4D). 
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Real data comparison 

To compare the methods on real clinical data two datasets were used. The first was an MP-

RAGE T1w volumetric sequence from OASIS dataset acquired on a Siemens 1.5T Vision 

scanner (Erlangen, Germany) with TR = 9.7 ms, TE = 4 ms, TI = 20 ms, TD = 200 ms, flip angle 

= 10º, voxel resolution = 1x1x1.25 mm
3
 and 256x256x128 voxels.  

We compared visually the proposed PRI-NL-PCA method with the BM4D method since the 

noise in this volume is expected to be stationary. The stationary noise level in this case (2%) 

was estimated using the Rician noise estimator proposed by Coupe et al (2010). BM4D method 

used the estimated noise level provided by the Coupe´s method while the PRI-NL-PCA method 

internally estimated the noise level as previously described. The filtering results for this first 

dataset are shown in Figure 10. Both methods performed very well on this dataset (the BM4D 

method seems to slightly over blur sulcal areas). The processing time for this dataset was 240 

seconds for PRI-NL-PCA method while the BM4D method took 502 seconds.  

The second dataset was obtained with a SENSE T1w volumetric sequence from Quirón 

Hospital of Valencia (Spain) acquired on Philips Achieva 3 Tesla scanner (Netherlands) with 

TR=9.5 ms, TE=4.6 ms and flip angle=8º, 256x256x120 voxels and voxel resolution of 

0.96x0.96x1 mm
3
.  

Figure 11 enables a visual comparison of the results produced using the PRI-NL-PCA and 

ABM4D methods over this case with spatially varying noise. The PRI-NL-PCA method removed 

the noise successfully while preserving fine details of the image, whereas the ABM4D method 

slightly over smoothed some details. The processing time for this dataset was 227 seconds with 

the PRI-NL-PCA method and 398 seconds with the ABM4D filter. The reduced processing time 

of ABM4D method compared to the results obtained with the brainweb phantom may be 

explained by the fact that background of this volume is set to zero by the scanner due to the use 

of the SENSE sequence and probably the ABM4D method skipped the calculations at this area 

thus reducing significantly the processing time.  
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Figure 10. Example of denoising results (stationary noise). From left to right: Original noisy 

image, PRI-NL-PCA result and BM4D result. Although both methods performed very well the 

BM4D slightly over blurred the image (this can be noticed in the sulcus areas at the close up).  
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Figure 11. Example of denoising results (spatially varying noise). From left to right: Original 

noisy image, PRI-NL-PCA result and ABM4D result. Although both methods performed very 

well, the ABM4D slightly over blurred the image (this can be clearly noticed in the cerebellar 

area).  
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4. Discussion  

 

In this paper we have proposed a novel PCA based filter that takes benefit from sparseness 

properties of groups of similar patches to reduce the noise effectively while minimally affecting 

the underlying signal. We have also shown that using this filter to create a guide image for the 

rotationally invariant non-local means filter enables to obtain the best denoising results in the 

comparison.  

The proposed methods have been compared with state-of-the-art methods for both stationary 

and spatially varying noise conditions with Gaussian and Rician noises and obtained the best 

results. The improved performance of the proposed methods compared to previously proposed 

methods can be explained by the use of self-similarity and sparseness properties of the images. 

In fact, grouping similar patches to create a homogenous group allows obtaining a very sparse 

representation through the use of PCA decomposition. In this sense, our patch selection was 

improved by performing the patch grouping over a pre-filtered image to make it more robust on 

very noisy conditions. Besides, differently from other PCA based methods, the use of the pre-

filtered guide image obtained with the NL-PCA method enables to accurately estimate the voxel 

similarities in a rotationally invariant manner that naturally results in a very effective noise 

reduction within the non-local means strategy.         

One of the most significant contributions of this paper is the noise estimation technique within 

NL-PCA method. Local noise estimation is performed in a local manner from the eigenvalues 

distribution of the local PCA decomposition with allows to estimate and filter spatially varying 

noise fields. Furthermore, a novel Rician bias correction technique has been introduced that 

improves original signal estimation. This technique not only enables the estimation of the local 

noise level but also enables to automatically estimate the number of significant components to 

be retained in a fully automatic manner. It’s worth noting that this technique can be applied to 

many other problems where the number of components has to be estimated (for example for 

dimensionality reduction assuming a random behavior of the non-significant variability sources). 

We have also presented a novel method for correcting the Rician noise underestimation. 

Despite the simplicity of this method it has been experimentally demonstrated its ability to obtain 

very fast and accurate local noise estimations improving a previous existing method.         

From an efficacy point of view, the proposed PRI-NL-PCA method has been shown to be almost 

two times faster than BM4D method and six times faster than the ABM4D method. The 

proposed PRI-NL-PCA method obtained an average improvement of almost 1 dB compared to 

the state-of-the-art BM4D method for stationary Rician noise.  From a practical point of view, the 

proposed method can be applied to both stationary of spatially varying noise cases in a fully 

automatic manner that makes it ideal for a use within a preprocessing pipeline for automated 

MRI analysis tasks. 
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It should be noted though that the proposed methods in this paper assume the presence of 

white noise in the images. This condition may not be satisfied when using acceleration 

techniques such as partial Fourier or compressed sensing. In these cases, the methods 

proposed in this paper cannot be directly applied due to the correlated nature of the noise. This 

situation will be studied in future works.  
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