

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.127

http://hdl.handle.net/10251/64646

IEEE

Kenyon, S.; López, S.; Sahuquillo Borrás, J. (2015). Impact of partitioning cache schemes
on the cache hierarchy of SMT processors. 17th IEEE International Conference on High
Performance Computing and Communications (HPCC 2015). IEEE. doi:10.1109/HPCC-
CSS-ICESS.2015.127.

Impact of Partitioning Cache Schemes on the Cache
Hierarchy of SMT processors

Samantha Kenyon, Sonia López,
Department of Computer Engineering

Rochester Institute of Technology
Rochester, New York

srk1037@rit.edu

Julio Sahuquillo
Dep. de Informática de Sistemas y Computadores

Universidad Politècnica de València, Spain
Camino de Vera s/n Valencia

jsahuqui@disca.upv.es

Abstract—Power consumption is becoming an increasingly
important component of processor design. As technology node
shrinks both static and dynamic power become more relevant.
This is particularly critical for the cache hierarchy. Previous
implementations mainly focus on reducing only one kind of power
in the cache, either static or dynamic. However, for a more robust
approach that will remain relevant as technology continues to
shrink, both aspects of power need to be addressed.

Recent processors, e.g. Intel Core or IBM Power8, implement
simultaneous multithreading (SMT) cores to hide high memory
latencies. In these systems, the dynamic energy in the L1 cache
is even more stressed since this cache level is shared by several
threads running on the same core. This paper proposes and
evaluates the use of phase adaptive caches in all structures of
a 3-level cache hierarchy of a SMT cores. Compared to the use
of conventional caches, our work results on significant dynamic
and leakage energy savings with scarce performance impact.

I. INTRODUCTION

As manufacturing technology is improved and transistors
shrink, the number of transistors on a chip has increased ex-
ponentially. Power consumption has become a major factor in
microprocessor design. Performance improvements in current
designs are limited by their power consumption and therefore
improvements in speed have diminished over the years.

A large percentage of these transistors are used to increase
the size of the cache hierarchy. This directly results in the
multiple cache structures consuming a large percentage of
the overall power budget in the microprocessor. The cache
hierarchy can contain around 35%-40% of the total number of
transistors on a typical processor [6], making power consump-
tion within the cache critical.

Previous efforts ([1] [4] [5] [8]) have focused on reducing
either static power or dynamic power consumption, applying
techniques that modify the architecture, the circuit design, or
the actual transistor manufacturing. Other research (e.g. [13])
have either focused on increasing performance or reducing
energy due to the inherent trade-offs between both of them.
Typically, an increase in performance will correspond to an
increase in energy consumption. Likewise, decreasing power
consumption will correlate to a decrease in performance. This
work combines distinct techniques to reduce both static and
dynamic power while only slightly affecting the performance.

The drowsy phase-adaptive cache design was first proposed
in [6]; however, the original cache design was implemented

only in the second level cache of a single threaded processor.
In this work, this cache design is applied to all cache structures
of a three-level cache hierarchy in a SMT architecture. We
evaluate and analyze the effect of combined data access
patterns and multithreading on both performance and power
consumption when this design applies to the cache hierarchy
in its entirety. Our results show up to 80% total energy savings
with performance reduction under 5% of the baseline design.

The remainder of this work is organized as follows. Section
II presents the drowsy adaptive cache proposed in this work for
SMT cores. Section III describes the methodology used to run
the experiments and obtain performance and energy metrics.
Section IV evaluates the approaches and analyzes the obtained
results. Section V presents the related work. Finally, in Section
VI, some concluding remarks are drawn.

II. DROWSY PHASE ADAPTIVE CACHE

The drowsy phase-adaptive cache presented in this work
combines the phase-adaptive cache and the drowsy cache. The
phase-adaptive cache attempts to save dynamic power while
the drowsy approach attempts to save leakage power, both of
them while incurring a modest performance penalty.

A. Drowsy Phase Adaptive Cache

In this work we define a cache structure with two partitions.
The A partition remains in an active state, while the B partition
is placed in a drowsy state. The partitions are phase-adaptive
and the partitions’ configurations are determined based on cost
functions. For our design, L1, L2, and L3 caches implement
an associativity degree of 4-, 8-, and 16-way, respectively. The
total number of ways in the cache is kept constant however
the different configurations allow for each partition to have a
varying number of ways. For example, the L1 4-way cache
has three possible configurations: 1/3, 2/2 or 4/0 ways in A/B
partitions respectively.

The access protocol for this cache design takes advantage
of this dual partition structure. The cache first looks up the
requested data in the A partition. MRU (Most Recently Used)
counters are used to control when the cache changes between
different configurations. If the data is found, the corresponding
MRU counter is updated and the data is delivered to the
processor. If the data is not found, then the B partition is
searched and on a hit, the MRU counter is updated and the
block swapped into the A partition. On a L1 cache miss, the

block is looked up on the L2 cache and if it is found, then
the block is brought up to the A partition. The victim block is
placed into the B partition, and a block from this partition is
evicted into the next cache level. After that, the MRU states
are updated to reflect these changes.

Fig. 1: Example access pattern with MRU counters and states.

Figure 1 shows an example access pattern with updates to
the MRU counters and states for a 4-way set-associate cache. A
different color has been associated to each MRU state. MRU
state 3 refers to the least recently used (LRU) block. First,
block B is accessed and its MRU counter is increased. Since
the requested data is located in the A partition (green area), this
is all that is necessary. After that, block C is accessed and the
MRU state counter is incremented; however, block C is in the
B partition, therefore C needs to be swapped into partition A
with block A (the LRU one). From there, C is accessed again
and its MRU state (MRU 0) counter is again increased. Finally,
D is accessed and the counter for MRU state 3 is increased.

The phase adaptive portion of this design works as that
presented in [6]. The cache design adapts to the phase by
dynamically changing the number of ways in the A and B
partitions, according to cost functions, explained below, that
use the MRU counters as inputs. In this design, the costs
functions are re-evaluated every 15K committed instructions.
This provides small enough granularity without reducing per-
formance.To ensure that the design is not constantly changing
its phase, a warm up period of one phase is given in between
each configuration change. When the data is found in the A
partition, the logic that gives access to the ways in the B
partition remains unaffected, thus saving dynamic power.

In the drowsy phase-adaptive cache, the B partition is
placed in a drowsy state. This is done by dropping the voltage
from 0.9V to 0.7V in the B partition. This voltage level was
determined to be the most optimal by Brendan Fitzgerald et
al. in [6]. Whenever the B partition is accessed it takes one
cycle to raise the voltage back to 0.9V and read the data,
meaning that each time the B partition is accessed performance
is reduced. Since 92% of cache accesses are to MRU 0 and
98% of cache access are to MRU0 or MRU1 this does not incur
a large performance hit [9]. The majority of accesses are to
partition A, therefore the majority of the time there will be no
performance hit from accessing the drowsy cache. This allows

for a large amount of leakage savings when the B partition is
large, with a small performance hit.

This design takes advantage of the energy saving tech-
niques used by the accounting cache and phase-adaptive cache
to save dynamic power. It also saves leakage power by placing
the B partition in a drowsy state. This design, however, does
affect performance. One additional cycle is needed to access
data in the B partition and swap blocks between partitions.
There is also an additional one cycle latency to bring the B
partition voltage back up to an active state to access data in
the B partition. However this design takes advantage of cache
locality and access patterns. When a majority of the data in the
cache is accessed multiple times, the energy savings is high
and the performance penalties are small making this a good
cache design for many applications.

1) Cost Functions: The ideal cache configuration in this
phase adaptive cache is determined using different cost func-
tions. The generic cost function shown below was derived
previously by Fitzgerald [6]. This function is based off of the
work presented by Dropsho et al. [4]. The cost is based either
on delay or energy. The general cost function is shown in
equation 1.

Cost = hitsA ∗ costA + hitsB ∗ costB +misses ∗ costmisses

(1)
In this equation hitsA and hitsB are the number of hits in
the A and B partitions. These are calculated by summing the
MRU counters for the ways that correspond to each partition.
The variable misses is the number of misses in the cache
level and costmisses is the cost of accessing the next cache
level. The cost variables represent the cost to either power,
latency, or both, of accessing the partition or incurring a miss
in the partition. Since this work is primarily looking at energy
equation 2 represents the energy cost.

EnergyCosti = hitsA ∗DynamicEnergyA + hitsB

∗DynamicEnergyB +misses ∗ costmisses

+ LeakageEnergyA + LeakageEnergyB

+ swaps ∗ (DynamicEnergyA

+DynamicEnergyB)

(2)

The delay cost function defined in [6] is shown below in
equation 3.

(3)DelayCost = hitsA ∗ LatencyA + hitsB

∗ LatencyB +misses ∗ Latencymisses

The total cost can be described as either the total energy
cost or the total delay cost. These equations have been derived
for the L1, L2, and L3 cache configurations. In the work
presented int his paper, all the ways in the A and B partitions
of each cache level are shared among the threads with no
restrictions. The MRU counters collect the number of accesses
to the different blocks without tracking the thread ID for each
access. This approach simplifies the data collection and logic
necessary for the phase adaptive implementation with in [4]
was estimated to be below 5,000 gates.

III. METHODOLOGY

To perform the proposed work multiple tools were used.
SPICE was used to determine the drowsy voltage used in
this work. CACTI was used to perform hardware simulations
for a 32nm technology node to determine the appropriate
latency and power values for each configuration’s cost function
described bellow. Finally, detailed performance and timing
results were obtained using Multi2sim, which was modified
to implement the drowsy phase-adaptive cache hierarchy in all
three levels of our architecture.

A. CACTI

As shown in the cost functions in Section II-A1, latency
and power numbers are required to be able to evaluate each
of the configuration options. These hardware parameters were
determined using CACTI 6.5. For each cache level Uniformed
Cache Access (UCA) was used ensuring that accessed to each
block of the cache would be the same. Also, for each cache
there are two exclusive read ports and two exclusive write
ports. Sequential access mode is used, meaning that the tag
array is accessed first and then the data array. This reduces
energy consumption in comparison to other access modes. The
drowsy simulations require the voltage used in the CACTI
model to be set to 0.7 volts instead of the normal 0.9 volts by
modifying the CACTI source and recompiling for all drowsy
parameters.

1) Latency: CACTI only allows for associativities in pow-
ers of two. Linear interpolation has been applied to determine
the latency values for configurations where the B partition is
not a power of two. All of these simulations assume a 3 GHz
processor. These simulations are done for both the Drowsy
case, where the voltage is reduced, and the normal case for
all cache levels. From there, this data is plotted and linear
interpolation is used to determine an equation for the latency in
relation to the associativity. These latencies are used in the cost
equations discussed above, to determine overall performance
of the system. Table I shows the latency values for the different
partitions of the studied L1, L2, and L3 caches. The latency
values used for the baseline case, when all caches are held
un-partitioned, are the values shown in I when the B partition
has 0 ways.

L1 partition L2 partition L3 partition
Name A B A B A B

C0 1-way 3-way 1-way 7-way 1-way 15-way
2-cycle 3-cycle 3-cycle 5-cycle 7-cycle 14-cycle

C1 2-way 2-way 2-way 6-way 2-way 14-way
3-cycle 3-cycle 4-cycle 4-cycle 9-cycle 14-cycle

C2 4-way 0-way 4-way 4-way 4-way 12-way
4-cycle 0-cycle 5-cycle 4-cycle 12-cycle 13-cycle

C3 – – 8-way 0-way 8-way 8-way
– – 5-cycle 0-cycle 14-cycle 12-cycle

C4 – – – – 16-way 0-way
– – – – 16-cycle 0-cycle

TABLE I: Configurations and latencies of the studied caches.
NA: not applicable.

2) Energy and Power: Just like with the latency values,
linear interpolation is used to find the energy and power values
for cache configurations that are not a power of two. Both
leakage power and dynamic power are found for each level

of the cache, for each of the possible configurations that are
powers of two. This is done for both the Drowsy case, where
the voltage is reduced, and the normal case.

B. Multi2sim

A modified version of Multi2sim 3.2 [14] was used for
the work described here. These modifications required adding
MRU counters and cost functions as described in [6] in order to
determine the next cache configuration based on the statistics
for the just finished phase. From there, it sets the latency for the
B partition and records the energy usage of the previous phase.
The configuration costs are determined using Equation 2 and
Equation 3. The next configuration is determined by comparing
the energy usage from all of the possible configurations of the
just finished phase. The counters and variables are reset for
the next execution interval.

1) Simulation Configurations: To evaluate the proposal we
used the cache hierarchy and processor parameters shown in
Table II.

Cache hierarchy
L1-Data Cache 32KB, 4 way, 4 cycle

L2 Cache 256KB, 8 way, 5 cycle
L3 Cache 8MB, 16 way, 16 cycle
All caches LRU, 64B line, 2 Read ports, 2 Write Ports

Processor
Fetch Queue 64 bytes

Branch Predictor Combined, 1024 entry Biomodal,
Two level 8K history table

Decode, Issue & Commit Width 4 instructions
Reorder Buffer Size 129

TABLE II: Cache-hierarchy and processor configuration

We assume that the core is deployed in a multicore processor
as that shown in Figure 2, which depicts the cache hierarchy.
Local caches include private L1 and L2 caches, and shared last
level cache (SLLC) refers to the L3 cache, where it is important
to keep low the SLLC cache interferences. The main processor
and cache hierarchy parameters used in the experiments are
shown in Table II.

Fig. 2: Multicore Processor block diagram [2]

2) Benchmarks: The SPEC2006 benchmark suite [3] was
used for all of the simulations. For the multithreaded and
multicore simulations different mixes of specific benchmarks
were chosen. These combinations were chosen based on the

Benchmark IPC MPKIL1 MPKIL2

mcf 0.58 102 5
hmmer 1.19 4 0.001

milc 0.66 19 9
dealII 1.6 4 0.1
lbm 0.43 57 26

TABLE III: Spec2006 benchmark characteristics

Configuration name Description
Baseline The cache configuration was held unpartitioned

Phase The cache configuration is determined on the
MRU statistics, energy and leakage.

Drowsy The cache configuration is determined on the
MRU statistics, energy and leakage with the B

partition being put into the drowsy state.
PhaseED The cache configuration is determined on the

MRU statistics and the energy-delay product.
DrowsyED The cache configuration is determined on the

MRU statistics, and the energy-delay product
with the B partition being put into the drowsy state .

TABLE IV: Compared Cache Schemes and Descriptions

performance (i.e. IPC) of each of the different benchmarks
shown in Table III. The combinations of these benchmarks
simulate both mixes of high performance benchmarks as
well as benchmarks with low IPC. Mixes are also created
considering the Misses Per Kilo Instruction (MPKI) for both
cache level 1 (MPKIL1) and level 2 (MPKIL2). Each of
these benchmarks will be run for a minimum number of cycles
to obtain representative results.

IV. RESULTS

Different variants of drowsy phase-adaptive cache design
have been devised to improve the tradeoff between perfor-
mance and energy consumption. Table IV shows the compared
cache schemes. These caches have been compared working in
SMT cores.

A. SMT Core Results

This section evaluates the studied cache schemes work-
ing in a two-threaded and in a four-threaded SMT core.
For comparison purposes, we built four-benchmark mixes by
replicating some two-benchmark mixes (i.e. lbm+dealII and
lbm+milc). In other words, in the four-thread mixes we have
the interference of the two-thread mixes plus the interference
of the added benchmarks (see Table V).

Name Thread 1 Thread 2 Thread 3 Thread 4
fourA lbm dealII lbm dealII
fourB lbm lbm milc milc

TABLE V: Experiments with four threads: combined bench-
marks in fourA and fourB

1) Performance: Figures 3, 4, and 5 show the percentage
of time spent in each possible configuration for the studied
approaches across the different cache levels. Results vary
across the different caches according to the data locality and
how often each cache is accessed.

Remember that in SMT cores, the L1 cache is private to
the core but shared among all the threads in the core. This

means that intra-core interferences among the cache accesses
of the threads sharing the core appear in the L1 cache. Due
to the high data locality, most of the accesses concentrate
on the MRU block when running a given application in
isolated execution [9]. However, because of interferences this
percentage is expected to decrease in SMT processors. This is
the reason why in the results for the dual-threaded architecture,
some applications spent a significant amount of time in C1
instead of concentrating almost all the time in C0 as it can be
appreciated in Figure 3. Of course, interferences increase with
the number of threads in the core, thus lowering the percentage
of time in the C0 configuration. This can be appreciated in the
results for the four-threaded processor.

Fig. 3: L1 configuration distributions

Fig. 4: L2 configuration distributions

Fig. 5: L3 Configuration distributions

Regarding the L2 cache, it can be appreciated (see Figure 4)
that, compared to the L1 behavior, there is a high configuration
variation for the Phase and PhaseED caches. The main reason
is due to the fact that L1 caches capture much of the memory
requests issued by the processor, thus L1 caches hide most
of the data locality to L2 caches. Consequently, unlike what
happens in first-level caches, most of the accesses to the L2
caches do not hit the MRU block. The Drowsy cache spends
most of its time in C0 to optimize for the most energy savings
and the DrowsyED approach spends time in the first few cache

Fig. 6: Overall speedup results over the static baseline —as
the harmonic mean of the individual per-thread speedups—
for each one of the four schemes Phase, Drowsy, PhaseED
and DrowsyED

schemes to optimize for both energy and delay. Since the L3
cache is much less accessed than the L2 cache there is again
a lot of configuration variation for the Phase and PhaseED
simulations (see Figure 5). The Drowsy scheme spends most
of its time in C0 to optimize for the most energy savings
and the DrowsyED simulation spends time in the first few
configurations to optimize for both energy and delay.

Figure 6 shows the speedup for each of the benchmarks run
with a drowsy phase-adaptive approach across all the cache
hierarchy with respect to the baseline machine as shown in
Table I. It can be seen that the performance improves in some
cases and incurs a small penalty in others. The speedup ranges
from 95.2% to 108.1%. Since the cache access time varies with
the size of the A partition, in some cases the access can be
faster than in the baseline. In other cases, accesses to the B
partition can contribute to a larger overall access latency, hence
the various contributions to speedup depend on the benchmark
locality. When performance is hurt, the damage stays below
5% of the baseline performance with our proposed architecture.
The Drowsy approach shows the worst performance. Due to
the energy benefits of having a large B drowsy partition, a
small A partition is selected more often; which can incur in
more misses in the A partition, more hits in the B partition,
and hurt overall performance even when delay is taken into
account in the cost function.

2) Energy and Power: The average energy savings for all
the cache levels is shown in figure 7. In our experimental
results, the dynamic energy savings dominate the overall
energy savings. The Drowsy and DrowsyED approaches hold
the most dynamic energy savings. One of the simulations has
negative energy savings for the Phase and PhaseED cases.
This can be explained by looking at the L1 miss-cost (i.e. the
cost of an L2 access). This cost in the Phase and PhaseED
cases is higher for all phase configurations.This allows for
the possibility of higher energy consumption in some cache
schemes than that of the baseline.

The leakage energy savings dominates the overall energy
savings for L2 since this cache is much less accessed than
the L1 cache. In our experimental results, there is large

Fig. 7: Total energy savings of each cache level for the single
SMT core

amount of leakage energy savings for L2, ranging from 44.5%
to 69.7%.The total energy savings for L3 is more balanced
between both dynamic and leakage energy.

V. RELATED WORK

Srikantaiah et al. propose a reconfigurable adaptive multi-
level cache design called a MorphCache [13]. This cache
dynamically changes the cache hierarchy to improve perfor-
mance. From there the MorphCache either merges slices or
splits them, dynamically, to change the slices and configu-
rations available to each core. The MorphCache will merge
slices when either one slice is highly-utilized while the other
is under-utilized, or both are highly-utilized and shared by
threads sharing the same address space. This implementation
is focused on improving performance. The work proposed
here differs from this because it is focused on saving power
with a small performance hit. Also the MorphCache requires
modifications to the interconnection network where as the
proposed design does not.

Keramindas et al. proposes a new framework for efficient
cache resizing in terms of both power and performance [7].
The cache proposed here dynamically reconfigures memory
based on the behavior of the running application. In a typical
resizing cache, when the cache size is decreased the discarded
part of the cache is immediately deactivated. Instead, here the
discarded part is kept active and they gradually deactivate.
When all of these parts are deactivated the transition has
officially completed. Overall this method results in cache size
reduction of anywhere from 13% to 30% with a very low
performance impact of 4% to 10%. This work focuses on
reducing the area of a cache in a way that is efficient in terms
of both energy and performance. The implementation proposed
here differs from this because it focuses saving leakage and
dynamic energy, by modifying the cache configuration, while
keeping the cache area the same.

Agrwal et al. proposes a Data Retention Gated-Ground
Cache, or a DRG-Cache. This cache uses gated-ground tech-
niques to reduce leakage power consumption in cache memory
systems [1]. The gated-ground technique in [10] inserts an
NMOS transistor between the ground line and the SRAM
cell. This allows for the supply voltage to be effectively off,
substantially reducing leakage energy dissipation. This tech-
nique allows for a large reduction in leakage energy, however

it increases dynamic energy for read and write operations.
Also turning off the supply voltage results in the possible of
destroying data stored in the SRAM cell. Another component
to this technique is determining the optimal size of this
Gated-Ground transistor. Increasing the size of this transistor
improves performance as well as data retention but lowers the
overall power savings. The work proposed here differs from
this because it is state-preserving. Also the proposed work aims
to save both dynamic and leakage power whereas this work
only saves leakage power while increasing dynamic energy.

Jason Nemeth et al. proposes a location cache that has a
low power second level cache using gated-ground techniques
[8]. Combining these two ideas the goal is to save on both static
and dynamic power. This second level using the gated-ground
techniques discussed in [10] similarly to the DRG-Cache in
[1]. This implementation combines this low power structure
with a location cache. This location cache is a direct-mapped
cache that provides the second level cache with accurate access
way location information. This additional cache runs in parallel
with the L1 cache. This reduces L2 power consumption more
than the typical set-associative cache. This implementation is
shown to save between 2% and 43% of total power, however
it has the same limitations as the DRG-Cache [1] because it
uses the same gated-ground technique.

Farahani et al. proposes a modification to the general
drowsy cache configuration [5]. This work proposes two
different methods for saving leakage in a cache. In the first
design cache words are placed in a drowsy mode at the end
of a period of time called an update window (UW). When
a word is needed only that word is brought back up to an
active voltage level and the rest of the cache line remains in
a drowsy state. The second approach identifies actives words
and does not place them into drowsy mode at the end of a
UW. This allows for a performance savings as well as leakage
savings with the words that are placed in the drowsy state.
The first implementation reduces leakage power by an average
of 88% with an average performance loss of just 0.7%. The
second implementation reduces leakage power by an average
of 89% with an average performance loss of 0.5%. Although
this implementation reduces leakage power significantly with
a low performance penalty it does not reduce dynamic power
at all.

Other approaches try to partition the cache in two indepen-
dent structures, each one devoted to exploit the localities of the
data it stores [11], [12]. This way tries to improve performance
by making shorter the cache access time.

VI. CONCLUSION

This paper presented a drowsy phase-adaptive cache design
that saves both static and dynamic power while having a
scarce impact on performance. While exploiting the temporal
locality of memory accesses and using two-partition caches
these goals were met for all cache levels in a three-level
cache hierarchy of a processor with SMT cores. In most
cases, energy savings occur in the Drowsy cache approach. In
these cases the applications generally spend most of their time
in the C0 configuration, which is the one with the smallest
A partition and largest B partition. Since these simulations
have the highest energy savings, while incurring a low and

acceptable performance hit, it can be concluded that for many
applications the C0 configuration is optimal for the Drowsy
cache approach.

There are many opportunities to expand on this work and
investigate this design further. First, since this work only
focuses SMT architectures, it would be useful to explore the
affect that multicore systems have on the overall performance.
In addition, limits to the available number of ways in each
cache level can be set per thread or core to further explore
intelligent optimization of the resources and avoid thread
starvation.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and by FEDER funds
under Grant TIN2012–38341–C04–01.

REFERENCES

[1] A. Agarwal, H. Li, and K. Roy. Drg-cache: a data retention gated-
ground cache for low power. In Design Automation Conference, 2002.
Proceedings. 39th, pages 473–478, 2002.

[2] J. Albericio Latorre, P. Ibez Marin, and J. M. Llaberia Grino. Improving
the SLLC Efficiency by exploiting reuse locality and adjusting prefetch.
PhD thesis, Zaragoza, Universidad de Zaragoza, Zaragoza, Ago 2013.
Presentado: 20 05 2013.

[3] S. P. E. Corporation. Spec cpu2006 benchmark suite, June 2008.
[4] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. Albonesi,

S. Dwarkadas, G. Semeraro, G. Magklis, and M. Scottt. Integrating
adaptive on-chip storage structures for reduced dynamic power. In
Parallel Architectures and Compilation Techniques, 2002. Proceedings.
2002 International Conference on, pages 141–152, 2002.

[5] M. Farahani, F. Eslami, and A. Baniasadi. Application specific low
leakage data cache for embedded processors. In Green Computing
Conference (IGCC), 2013 International, pages 1–6, June 2013.

[6] B. Fitzgerald. Drowsy cache partitioning for reduced static and dynamic
energy in the cache hierarchy, 2012. Copyright - Copyright ProQuest,
UMI Dissertations Publishing 2012; Last updated - 2014-01-19; First
page - n/a; M3: M.S.

[7] G. Keramidas, C. Datsios, and S. Kaxiras. A framework for efficient
cache resizing. In Embedded Computer Systems (SAMOS), 2012
International Conference on, pages 76–85, July 2012.

[8] J. Nemeth, R. Min, W.-B. Jone, and Y. Hu. Location cache design
and performance analysis for chip multiprocessors. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 19(1):104–117, Jan
2011.

[9] S. Petit, J. Sahuquillo, J. M. Such, and D. Kaeli. Exploiting temporal
locality in drowsy cache policies. In Proceedings of the 2Nd Conference
on Computing Frontiers, CF ’05, pages 371–377, New York, NY, USA,
2005. ACM.

[10] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-
vdd: a circuit technique to reduce leakage in deep-submicron cache
memories. In Low Power Electronics and Design, 2000. ISLPED ’00.
Proceedings of the 2000 International Symposium on, pages 90–95,
2000.

[11] J. Sahuquillo and A. Pont. The filter cache: A run-time cache manage-
ment approach1. In 25th EUROMICRO ’99 Conference, Informatics:
Theory and Practice for the New Millenium, 8-10 September 1999,
Milan, Italy, pages 1424–1431, 1999.

[12] J. Sahuquillo and A. Pont. The split data cache in multiprocessor
systems: an initial hit ratio analysis. In Proceedings of the Seventh
Euromicro Workshop on Parallel and Distributed Processing. PDP’99,
University of Madeira, Funchal, Portugal, February 3-5, 1999, pages
27–34, 1999.

[13] S. Srikantaiah, E. Kultursay, T. Zhang, M. Kandemir, M. Irwin, and
Y. Xie. Morphcache: A reconfigurable adaptive multi-level cache
hierarchy. In High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, pages 231–242, Feb 2011.

[14] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez. Multi2sim: A simulation
framework to evaluate multicore-multithreaded processors. In Computer
Architecture and High Performance Computing, 2007. SBAC-PAD 2007.
19th International Symposium on, pages 62–68, Oct 2007.

