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Abstract 

The invasion of freshwater ecosystems is a particularly alarming phenomenon in the Iberian 

Peninsula. Habitat suitability modelling is a proficient approach to extract knowledge about species 

ecology and to guide adequate management actions. Decision-trees are an interpretable modelling 

technique widely used in ecology, able to handle strongly nonlinear relationships with high order 

interactions and diverse variable types. Decision-trees recursively split the input space into two 

parts maximising child node homogeneity. This recursive partitioning is typically performed with 

axis-parallel splits in a top-down fashion. However, recent developments of the R packages 

oblique.tree, which allows the development of oblique split-based decision-trees, and evtree, which 

performs globally optimal searches with evolutionary algorithms to do so, seem to outperform the 

standard axis-parallel top-down algorithms; CART and C5.0. To evaluate their possible use in 

ecology, the two new partitioning algorithms were compared with the two well-known, standard axis-
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parallel algorithms. The entire process was performed in R by simultaneously tuning the decision-

tree parameters and the variables subset with a genetic algorithm and modelling the presence-

absence of the Iberian gudgeon (Gobio lozanoi; Doadrio & Madeira, 2004), an invasive fish species 

that has spread across the Iberian Peninsula. The accuracy and complexity of the trees, the 

modelled patterns of mesohabitat selection and the variables importance were compared. None of 

the new R packages, namely oblique.tree and evtree, outperformed the C5.0 algorithm. They 

rendered almost the same decision-trees as the CART algorithm, although they were completely 

interpretable – they performed from four to eight partitions – in comparison with C5.0, which resulted 

in a more complex structure with 17 partitions. Oblique.tree proved to be affected by prevalence and 

it does not include the possibility of weighting the observations, which potentially discourage its 

actual use. Although the use of evtree did not suggest a major improvement compared with the 

remaining packages, it allowed the development of regression trees which may be informative for 

additional modelling tasks such as abundance estimation. Looking at the resulting decision-trees, 

the optimal habitats for the Iberian gudgeon were large pools in lowland river segments with 

depositional areas and aquatic vegetation present, which typically appeared in the form of scattered 

macrophytes clumps. Furthermore, Iberian gudgeon seem to avoid habitats characterised by 

scouring phenomena and limited vegetated cover availability. Accordingly, we can assume that river 

regulation and artificial impoundment would have favoured the spread of the Iberian gudgeon 

across the entire peninsula. 

 

Key words 

Evolutionary tree; Mediterranean river; Mesohabitat suitability model; Oblique tree; R 

 

List of acronyms: 

CART – Classification And Regression Tree 
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HMU – Hydro-Morphological Unit.  

MSE – Mean Squared Error 

Sn – Sensitivity 

Sp – Specificity 

TSS – True Skill Statistic 

 

1 Introduction 

The impacts of foreign fish species are recognised as a major threat to global biodiversity via a 

variety of adverse impacts, such as habitat alteration, predation, hybridisation, vectoring diseases, 

food web alteration and interspecific competition (Almeida and Grossman, 2012). Consequently, it is 

commonly known that the introduction of a foreign species in an ecosystem always poses various 

ecological risks (Gozlan et al., 2010). The Iberian Peninsula is considered one of the freshwater fish 

biodiversity hotspots in Europe (Reyjol et al., 2007), with several species at imminent risk of 

extinction (Leunda, 2010). Lamentably, the rate and extent of invasions in freshwater ecosystems 

are particularly alarming in this region, with constant reports about new successful introductions 

(Ilhéu et al., 2014). 

From an ecological viewpoint, one species artificially moved from one basin to another in the same 

country could generate similar ecological outcomes (e.g., increases in predation, competition or 

hybridisation) as a species moved across a national border. However; fish species that have been 

introduced in other basins, within the same national borders, have benefited from a special status, 

for which non-native and invasive species management policies have typically not been applied 

(Gozlan et al., 2010). Thereby, despite the evidence that these species can impact recipient 

ecosystems in a similar way to foreign ones, the term translocated has been misleadingly coined to 

encompass such fellow species spread throughout their countries of origin (Oscoz et al., 2006; 

Alcaraz et al., 2014). For instance, the Iberian nase (Pseudochondrostoma polylepis; Steindachner, 
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1866) has proven to be a superior competitor and over time it has almost totally displaced the Júcar 

nase (Parachondrotoma arrigonis; Steindachner, 1866) from its historical distribution area. Another 

relevant example is the Iberian gudgeon (Gobio lozanoi; Doadrio & Madeira, 2004) (Doadrio and 

Madeira, 2004), which has proven to be tremendously versatile in its ecological requirements. It has 

been able to successfully spread across the Iberian Peninsula (Comesaña and Ayres, 2009; Ilhéu et 

al., 2014; Ribeiro et al., 2009) increasing the competition for the available habitat resources 

(Almeida and Grossman, 2012; Aparicio et al., 2013).  

River systems in the Iberian Peninsula, specifically Spain, are among the most regulated in the 

world (García de Jalón, 1987) significantly increasing artificial impoundment and conferring water 

managers with an enormous capacity to manipulate the flow regime. For invasive species, risk 

assessment in the Iberian Peninsula has typically been addressed at the basin scale by identifying 

key biological traits that would facilitate successful invasions (Almeida et al., 2013) thus quantifying 

the degree of invasiveness of large sets of fish species (Clavero, 2011; Ribeiro et al., 2008; Ilhéu et 

al., 2014). However, once the invasion took place, management tools and mitigation protocols at the 

appropriated scale have been stressed as necessary (Gozlan et al., 2010; Sadeghi et al., 2013), 

otherwise unsubstantiated manipulative actions (e.g., those necessary to deal with climate change-

induced needs) may be favourable to non-native and invasive species. 

In this regard, habitat suitability modelling based on machine learning techniques is increasingly 

recognised and widely applied to extract knowledge on species ecology (Fukuda and De Baets, 

2012), conferring scientists and researchers with the capability to perform accurate spatial and 

temporal predictions (Olden et al., 2008). To date, a huge number of different techniques are 

available to develop these habitat suitability models – also known as species distribution models – 

from the relatively complex model ensembles (e.g., random forests or multilayer perceptron 

ensembles), where several models are induced and used to perform co-ordinate predictions (e.g., 

Fukuda et al., 2014; Muñoz-Mas et al., 2015) to the relatively simple decision-trees (e.g., Leclere et 

al., 2011; Fukuda et al., 2014). Thus, there are several examples on habitat suitability modelling and 

freshwater ecology proficiently addressed with the aforementioned machine learning techniques 
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(Leclere et al., 2011; Fukuda et al., 2014; Mas et al., 2015) and others, such as support vector 

machines (Fukuda et al., 2014; Kwon et al., 2015), fuzzy logic (Muñoz-Mas et al., 2012), as well as 

comparisons between them (Leclere et al., 2011; Fukuda et al., 2013; Kwon et al., 2015). However, 

based on such comparisons, no consensus has been reached on the optimal technique, since each 

modelling technique has its own unique structure and merits that may tip the balance one way or 

another when deciding which best fits the fundamental requirements of the problem (Lin et al., 

2015).  

For instance, one relevant drawback consists of the accuracy-interpretability trade-off (i.e. the 

balance between precise prediction and the capacity to easily comprehend the modelled habitat 

selection patterns) (Fukuda and De Baets, 2012). Accurate models, such as the ensemble ones, 

tend to need excessive parameterisation which makes them less interpretable (Fukuda et al., 

2011b). Furthermore the internalities of every machine learning technique increase or decrease 

such limitations, thus those models termed as black-boxes (e.g., artificial neural networks) may 

aggravate them (Olden and Jackson, 2002). Nowadays several of those black-box approaches 

allow an adequate interpretation of the modelled patterns (e.g., multi-layer perceptron ensembles, 

Muñoz-Mas et al., 2015). Yet, remarkable differences still exist concerning the interpretability of 

each modelling technique. For instance, fuzzy logic-based models (Adriaenssens et al., 2004) are 

highly interpretable models, whereas artificial neural networks or some ensemble approaches, such 

as random forests (Breiman, 2001), require indirect methods to scrutinise them (Friedman, 2001). 

Among these, decision-trees have been highlighted as especially suited for studies where 

interpretability should prevail since they typically render compact models depicted in the form of 

tree-like graphs (Grubinger et al., 2014). In addition, they are able to handle strongly nonlinear 

relationships with high order interactions and different variable types (Olden et al., 2008; Grubinger 

et al., 2014). Furthermore, its induction (training) has demonstrated to be significantly faster than 

other machine learning techniques (e.g., artificial neural networks) (Olden et al., 2008), which is 

especially appealing for big data. Consequently, there are several benchmarking studies that used 
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decision-trees to model the habitat preferences of alpine fish (Vezza et al., 2014) and invasive non-

native species (e.g., Sharma et al., 2009). 

The very basic principle in decision-tree induction consists of splitting the training dataset using 

recursive partitioning algorithms, by which the data set is iteratively divided into two parts 

maximising homogeneity (e.g., minimising an impurity measure) in the child nodes (Grubinger et al., 

2014). This splitting or partitioning typically starts from the largest discriminant split to the least one 

and it is applied in a hierarchical fashion to each of the new branches of the tree until the maximum 

number of allowed partitions or any other constrain is achieved (Vezza et al., 2015). 

Several methods for decision-tree induction exist, from the old fashion CHAID (Chi-Square 

Automatic Interaction Detector) (Kass, 1980), which is restricted to categorical variables, to novel 

methods that use memetic algorithms to induce globally optimal oblique trees (Czajkowski and 

Kretowski, 2013). Each impurity measure has its own merits and demerits, which define different 

optimisation problems (Cantú-Paz and Kamath, 2003). Among possible induction methods, one of 

the most popular algorithm for freshwater fish studies (Fukuda et al., 2014; Parasiewicz et al., 

2012), has been Classification and Regression Trees (CARTs) (Breiman et al., 1984), which later 

triggered the development of other tree-based ensemble machine learning techniques, such as 

random forests (Breiman, 2001). Another series of popular algorithms for decision-tree induction are 

those conformed of the Iterative Dichotomiser (known as ID3) and the superseding C4.5 and C5.0 

algorithms developed by J. Ross Quinlan (1992) with examples on fish and freshwater ecosystems 

(e.g., Baxter and Shortis, 2002; D'heygere et al., 2006). However all of the aforementioned 

algorithms separate the feature space by axis-parallel hyperplanes, which may be sub-optimal 

(Truong, 2009) and ecologically unreliable because they render stair-like decision surfaces (Menze 

et al., 2011). 

Oblique splits may overcome these limitations, producing interpretable and more accurate trees with 

decision boundaries less biased by geometrical constraints of the base learner (Murthy et al., 1994; 

Truong, 2009). However, in oblique tree induction the number of possible splits grows extremely 

quickly with sample size and number of variables (Truong, 2009). Finding the best oblique tree is a 
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NP-complete problem (Heath et al., 1993) and consequently the oblique inducers require greater 

computational resources. As a consequence oblique tree inducers use heuristics to find proficient 

partitions since exhaustive searches are unaffordable (Cantú-Paz and Kamath, 2003). There are 

several approaches to develop oblique trees from the very simple Breiman’s perturbation approach 

(Breiman et al., 1984), to others based on logistic regression (Truong, 2009) or simulated annealing 

(Heath et al., 1993). Despite oblique trees represent a major improvement over axis-parallel ones; 

they typically perform the partition of the input space also in a top-down fashion, without 

consideration of nodes further down the tree (e.g., Breiman et al., 1984; Murthy et al., 1994). 

Sequentially induced trees can be far from the optimal solution thus global searches using 

evolutionary strategies can lead to much more compact and accurate decision-trees (Grubinger et 

al., 2014; Cantú-Paz and Kamath, 2003). Unfortunately, such oblique and evolutionary approaches 

are rarely used, principally because they have not been accessible for potential users (Truong, 

2009; Grubinger et al., 2014).  

To date, several axis-parallel approaches are available in R software; CART and C4.5/C50 are 

actually implemented in several packages such as tree (Ripley, 2015), rpart (Therneau et al., 2015) 

or C50 (Kuhn et al., 2015). The ecosystem of user-contributed R packages has been growing 

steadily at a significantly fast rate (German et al., 2013). Therefore, two new packages for oblique 

tree (oblique.tree, Truong, 2013) and evolutionary tree (evtree, Grubinger et al., 2014) induction are 

already available.  

The present study compared such novel packages, oblique.tree and evtree, with two well-known 

axis-parallel top-down approaches, CART and C5.0, which were developed with the tree and the 

C50 packages respectively. The comparison was carried out modelling the presence-absence 

(suitability) of the invasive Iberian gudgeon (Gobio lozanoi) at the mesohabitat scale. The accuracy, 

the modelled patterns of habitat selection, the tree complexity and the variable importance were 

compared between the four decision-tree induction techniques. Fish ecology and the implication of 

future management actions were briefly discussed. 
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2 Methods 

2.1.1 Iberian gudgeon ecology 

Formerly the distribution area of the Iberian gudgeon encompassed the Ebro and Bidasoa River 

Basins (Doadrio, 2002), thus the remaining populations in the Iberian Peninsula should be 

considered non-native. Its spread has been caused by introduction as fishing bait, and due to inter-

basin water transfers (Clavero and García-Berthou, 2006). Despite its successful dispersion, studies 

describing its habitat preferences are still scarce (Lobon-Cervia et al., 1991; Miñano et al., 2003; 

Ilhéu et al., 2014). This small schooling cyprinid – maximum body length ≈ 150 mm (Doadrio and 

Madeira, 2004) – feeds largely on macroinvertebrates (Oscoz et al., 2006) and inhabits stretches of 

intermediate elevation and flow velocity, preferably with sandy substrates (Doadrio, 2002). It has 

been reported to colonise lentic environment such as reservoirs (Miñano et al., 2003) and the 

species is sensitive to significant reductions in water quality caused by pollution (Ilhéu et al., 2014). 

 

2.2 Habitat data 

Input data were retrieved from previous studies performed in four unregulated segments (i.e., 

upstream of the Contreras dam) of the Cabriel River (eastern Iberian Peninsula) from 2006 to 2009 

(Costa et al., 2012; Vezza et al., 2015) (Fig. 1). The Cabriel River basin is a low-density populated 

area that has been affected by a marked human depopulation during the last fifty years (Instituto 

Nacional de Estadística, 2013). In accordance with this, the surveyed area has been categorised as 

pristine – very low pressure level – by the water administration (Confederación Hidrográfica del 

Júcar, 2005). Accordingly, impacts or differences regarding the physical-chemical predictors 

throughout the study area were considered negligible and the study focused only on the physical 

habitat. Furthermore, the Iberian gudgeon only cohabits with another invasive species (the Iberian 

nase) at C3 and C4 (Alcaraz et al., 2014; Vezza et al., 2015). Therefore the uneven distribution of 

the species lead to preferable modelling the presence-absence of the target species instead of 

using multivariate regression trees to predict multiple species distributions (e.g. Wilkes et al., 2015). 
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Fig. 1. Location of the study sites within the upper part of the Cabriel River (Jucar River basin District – 
eastern Iberian Peninsula). 

 

The presence-absence of the Iberian gudgeon and the characteristics of the physical habitat were 

surveyed at the mesohabitat scale, equalling mesohabitats with Hydro-Morphological Units (HMUs). 

In particular, each year, the four river segments were stratified in five different types of HMUs, 

namely: pool, glide, run, riffle, and rapid (Costa et al., 2012; Vezza et al., 2015) and the sequences 

of HMUs were selected to encompass complete HMUs summing river lengths that slightly exceeded 

one km. After the three campaigns, the percentages of occurrence of each HMU class, which were 

used as an ordinal input variable (HMU type), were of 32 %, 5 %, 2 %, 47 %, and 14 % respectively. 

Once the set of HMUs were selected, three groups of dimension-related, flow-related and cover-

related attributes were measured. 

The dimensions of the HMUs were measured in terms of length, measured with CMII Hip Chain 

(CSP Forestry Ltd. Alford, Scotland), average width, measured with laser distance meter DISTO A5  

(Leica Geosystems, Heerbrugg, Switzerland) obtained from four to eight cross-sections, mean 

depth (depth), measured with a wading rod and calculated from 20 to 40 point measurements at a 

rate of 5 measurements per transect, maximum depth (max. depth) measured in the corresponding 

point and, in case of significant discontinuities between HMUs, the offset depth was also measured 

with the wading rod (Vezza et al., 2015). Then the areas and volumes of the HMUs were calculated 

by considering the corresponding length, width and depth. 
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The flow rate at the time of the survey was gauged and was used to calculate the mean flow 

velocity (velocity). The HMU gradient was measured with a Haglöf HEC Electronic Clinometer 

(Haglöf Sweden AB, Långsele, Sweden) and the backwater and pocket water areas were recorded 

if present; i.e. if waters were visibly stagnated or backed up by lateral (backwaters) or big rocks 

(pocket waters) obstructions. The percentages of substrate types were visually estimated following 

a simplified classification from the American Geophysical Union (Muñoz-Mas et al., 2012) and 

summarised in the substrate index (Mouton et al., 2011), which ranges from 0 (vegetated silt) to 8 

(bedrock). The percentage of the HMU area covered by silt and mud was also recorded (% 

embeddedness). 

The cover-related group of attributes were visually estimated. It included % shade (percentage of 

the overall HMU’s area), % undercut banks (percentage of the HMU’s length), % aquatic vegetation 

(percentage of the overall HMU’s area) and % reeds (percentage of the HMU’s length). Additionally 

the cover index ranging from 0 to 10 (García de Jalón and Schmidt, 1995) was determined to 

characterise the available refuge due to caves, shade, large substrate, aquatic vegetation and water 

depth. The amount of big boulders (# boulders) and woody debris (# woody debris) were counted 

and considered as input variables. The density of these countable items was calculated by dividing 

their number by the HMU area (i.e. density of woody debris and density of boulders). Finally, for 

pocket waters and backwaters the same procedure was followed (‰ pocket waters and % back 

waters) (Table 1). 

The biological survey was concomitantly performed with the physical habitat survey by snorkelling 

the aforementioned HMUs. Two divers conducted the underwater counts in three independent 

passes from downstream to upstream (Costa et al., 2012; Vezza et al., 2015). Divers were trained 

to maintain the fish sampling effort constant during the three replicate counts, ensuring a reasonably 

uniform probability of detection (Schill and Griffith, 1984). In order to keep each pass independent 

(i.e. unaffected by previous passes) a time delay of about two hours was programmed between 

replicate counts (Bain et al., 1985). The snorkelling technique was chosen due to the hydraulic and 
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morphological characteristics of the river (i.e. clear water and deep pools, max. depth ca. 4 m) and 

the accuracy previously demonstrated (Heggenes et al., 1990). 

Presence-absence modelling was the selected choice, as it is likely to yield robust results and 

allows the potential influence of density-dependent phenomena to be ruled out (Fukuda et al., 

2011a). In addition it better fits the probabilistic-like outputs required in physical habitat simulation 

studies (Bovee et al., 1998). Because the spatial dependency in fish distributions was evaluated to 

be random with no evidence of spatial autocorrelation (Vezza et al., 2015), the data were pooled 

with no major consideration about year, study site or HMU sequence. In the end Iberian gudgeon 

was observed in 100 out of 268 HMUs resulting in high prevalence (i.e. ratio of presence cases over 

the entire dataset) of 0.37.  
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Table 1. Summary and units of input variables collected in the upper segment of the Cabriel River. 

Variable Type Min. 1st Qu. Median Mean 3rd Qu. Max. Units 

Length Continuous 5.3 22.95 37.7 47.84 64.9 191.6 m 

Width Continuous 2.7 6.53 7.98 8.509 10.36 20.03 m 

Area Continuous 25.92 154.5 317.9 732 694.4 11970 m
2
 

Volume Continuous 10.98 115.4 253.3 748.5 668.4 12860 m
3
 

Depth Continuous 0.27 0.598 0.85 0.937 1.17 3.52 m 

Max. depth Continuous 0.34 1 1.39 1.498 1.892 4 m 

Offset depth Continuous 0.1 0.48 0.66 0.76 0.95 3.52 m 

Velocity Continuous 0.04 0.13 0.225 0.275 0.36 1.05 m/s 

Gradient Continuous 0 0.01 0.02 0.022 0.03 0.093 m/m 

% aquatic vegetation Discrete 0 10 15 21.47 25 95 % 

Substrate index Continuous 0.3 3.65 4.4 4.235 5.1 8 - 

Density of woody debris Continuous 0 0 0 0.003 0 0.04 #/m
2
 

# woody debris Discrete 0 0 0.25 0.854 1 9 # 

% embeddedness Discrete 0 0.05 0.125 0.206 0.35 1 % 

% shade Discrete 0 0.2 0.35 0.392 0.6 1 % 

Cover index Continuous 2.5 4.25 5 5.41 6.25 9 - 

Pocket waters Continuous 0 0 0 0.035 0.01 1.3 m
2
 

‰ pocket waters Discrete 0 0 0 0.203 0.012 5.23 ‰ 

% backwaters Discrete 0 0 0.01 0.04 0.05 0.53 % 

Back waters Continuous 0 0 3.8 12.54 15 389.1 m
2
 

Density of boulders Continuous 0 0 0.01 0.028 0.04 0.28 #/m
2
 

# boulders Discrete 0 0 3 6.153 9 87 # 

% undercut banks Discrete 0 0 0.05 0.174 0.25 1 % 

% reeds Discrete 0 0.13 0.3 0.341 0.5 0.98 % 

 

2.3 Decision-tree induction 

The parameters controlling complexity (Olden et al., 2008) and the number of input variables 

(D'heygere et al., 2006) determine the capability of the decision-tree to accurately predict unseen 

data (i.e. generalisation). Complexity can be restricted a priori or a posteriori (Olden et al., 2008). 

For instance, a priori the maximum number of terminal nodes can be restricted (Olden et al., 2008) 

whereas pruning has become the most popular approach a posteriori because knowing beforehand 

when to stop tree growing is problem–dependent (Galathiya et al., 2012). However, there are 

several pruning approaches, which may lead to dissimilar decision-trees (Esposito et al., 1997). 

Consequently, the use of a priori constraints gained certain relevance (Garofalakis et al., 2000). The 

group of selected input variables also control complexity because large sets tend to increase the 

number of partitions and terminal nodes (D'heygere et al., 2006; Inza et al., 2004). Several 
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approaches exist to address the variable selection problem such as filters (Inza et al., 2004), greedy 

approaches (Sadeghi et al., 2013) and wrappers (Inza et al., 2004). Filters evaluate inputs prior to 

modelling by scrutinising input-output relationships and thus are irrespective to the modelling 

approach eventually used (Inza et al., 2004). Conversely greedy or wrapper approaches select the 

variables on the basis of their predictive capability through the selected modelling approach 

(Sadeghi et al., 2013; Inza et al., 2004). Greedy approaches rely on iteratively adding or removing 

inputs whereas wrappers do so by globally searching optimal subsets (D'heygere et al., 2006). 

Genetic algorithms (GAs) (Holland, 1992), which are based on the process of natural selection – 

selection, reproduction and mutation – (Huang and Wang, 2006), have demonstrated a proficient 

global searching strategy of the best set of inputs for decision-tree induction (D'heygere et al., 2006; 

Inza et al., 2004; Sadeghi et al., 2013) and they are suited to perform searches over complex 

parameter structures (Olden et al., 2008). Consequently GAs have demonstrated to be proficient 

wrappers simultaneously searching optimal parameters and input variable sets (Huang and Wang, 

2006). 

The optimisation of the decision-tree parameters and the best inputs subset was performed co-

ordinately with the GA comprised in the rgenoud package (Mebane Jr and Sekhon, 2011) (Fig. 2-A). 

GAs encode each combination of parameters and variables in sequences (chromosomes) where 

each value corresponds to a gene whereas the group of chromosomes is the population. During 

every iteration of the GA, one decision-tree is developed for each chromosome and the evolution of 

the population takes place in accordance with the accuracy related to every chromosome, which 

conditions its probability of selection (i.e. the probability to be directly transferred from generation to 

generation) and of reproduction (i.e. recombination with other competing chromosomes). Finally, to 

adequately sampling the searching space, a relevant proportion of chromosomes are also mutated 

(i.e. their values are randomly modified). The evolution halts if the maximum number of generations 

is achieved or if the GA is unable to find a better solution after a specified number of generations. 

The chromosomes were composed of integers; the first part, which varied in length, encompassed 

the decision-tree parameters (covering adequate ranges) whereas the second part was composed 
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of a bit string of length equalling the number of variables within the training dataset (Fig. 2-B). The 

parameters that required real numbers (e.g. the alpha parameter) were obtained by dividing the 

corresponding gene by 100 (i.e. accuracy = 0.01). 

 

 
Fig. 2. Flowchart (A) and example of the structure of the chromosomes used in the genetic optimisation (B). 
The depicted chromosome (B) shows one of the tested alternatives for the evtree approach for decision-tree 
induction. The parameter tuning part set the minimum number of cases in a terminal node (minbucket) and to 
allow the node split (minsplit) to 1, the maximum number of splits (maxdepth) to 5 and the alpha parameter to 
0.01 (i.e. 1/100). The selected variables in the next part were those encoded with a 1 (they appear labelled 
below the chromosome) whereas those encoded with a 0 were ruled out (for clarity, they are not labelled in 
the figure). 

 

The rgenoud function presents 9 different operators driving the optimisation (Mebane Jr and 

Sekhon, 2011). To avoid premature convergence on sub-optimal solutions (Fogel, 1994) it is 

necessary to balance the population diversity and the selection pressure (Pandey et al., 2014). 

Consequently, the cloning operator that controls selection was restricted (0.25) whereas those 

operators addressed to increase diversity (i.e. those that control mutation and crossover) were 

favoured with relatively high values (0.75, 0.75 and 0.35) (see Table 2 for a complete depiction of 

parameters’ settings). However, the operators leading genes towards the extreme values (boundary 
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mutation and whole and standard non-uniform mutation) were kept low since (as most of the 

chromosome was composed of bits) they only switch their value to the opposite option. Finally, the 

population size and the number of generations were set at 500 and the optimisation halted after 50 

generations without improvement. 

 

Table 2. Genetic algorithm (Rgenoud) parameter settings. 

Number Operator Setting 

1 cloning 0.25 

2 uniform mutation 0.75 

3 boundary mutation 0.15 

4 non-uniform mutation 0.10 

5 polytope crossover 0.15 

6 simple crossover 0.75 

7 whole non-uniform mutation 0.00 

8 heuristic crossover 0.35 

9 local-minimum crossover 0.00 

 

The objective function corresponded to the maximisation of the True Skill Statistic (TSS) following a 

repeated k-fold scheme (Borra and Di Ciaccio, 2010). However, owing to the number of decision-

trees potentially tested, instead of the standard fivefold or tenfold cross-validation, which may also 

be sub-optimal (Arlot and Celisse, 2010), a three times threefold cross-validation 

(                    ) scheme was followed because it demonstrated to be adequate to induce 

genetically optimised decision-trees (Stein et al., 2005) (Fig. 2-A). Every fold presented a 

prevalence similar to the original dataset whereas the number of variables was restricted by 

favouring its use in every of the nine developed decision-trees (i.e. 

                                                                                                      ). Unlike previous studies (Sadeghi et al., 2013) and to 

avoid redundancy in the input data, correlated (r2 > 50 %) combinations of variables were not 

allowed. The input database was a combination of ordinal and continuous variables; then, the 

function hetcor in the package polycor (Fox, 2010) was used to calculate variable correlations 

(Appendix A). Following previous studies (i.e. Fukuda et al., 2013), once the optimal parameters 

and variables were obtained, a single decision-tree was calculated to inspect its predictive capability 

and differences with the cross-validated decision-trees. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

16 

 

 

2.3.1 Classification And Regression Tree - CART 

The CARTs were developed with the package tree (Ripley, 2015). In addition to the input variables 

subset four parameters were optimised: mincut, minsize, mindev and split.impurity, which 

respectively correspond to the minimum number of observations to include in either child nodes, the 

smallest allowed node size, the minimum ratio between the within-node and the root node for the 

node to be split (default set to 0.01), and the impurity index used (i.e. deviance or Gini) with larger 

values of mincut, minsize or smaller of mindev reducing the risk of over-fitting. The tested values 

ranged from 1 to 236 (i.e. the maximum number of training data in a given fold) for mincut and 

minsize, from 1 to 1000 for mindev, which was pertinently divided by 1000 instead of 100 (effective 

range between 0.001 and 1), and 0 or 1 for split (i.e. deviance or Gini) (Table 3). 

 

2.3.2 Quinlan’s decision-trees - C5.0 

Quinlan’s algorithms render axis-parallel decision-trees similar to CARTs, although they differ in the 

approach used to determine the ultimate splits (Quinlan, 1992). Thereby, C4.5/C5.0 use the 

normalised information gain (difference in entropy) to select the optimal splits (Quinlan, 1992) and, 

unlike CARTs, the ultimate partition is determined anytime in a forward/backward procedure. First, 

the tree is completely grown until the a priori constraints are met and then those branches of minor 

importance are pruned in accordance with the confidence factor. Further, C4.5/C5.0 introduced an 

alternative compact structure of the former tree consisting of a list of rules of the form IF-THEN 

sequences, where rules for each class are grouped together – if a case fulfils a rule, it is assigned to 

the corresponding category otherwise it is assigned to the default class (Quinlan, 1992). The 

package C50 (Kuhn et al., 2015) was used to develop a single decision-tree based on Quinlan’s 

C5.0 (1992). Although C5.0 makes several improvements in regard to C4.5, especially the option of 

development of ensembles of decision-trees by recursively boosting the subsequent trees (i.e. the 

subsequent trees are trained more intensely on the data that presented a greater misclassification 
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rate), we restricted the developed model to one single decision-tree to maintain the interpretability 

because the ensemble typically behave as a black box. Seven parameters were optimised in 

addition to the input variables subset; rules, subset, bands, noGlobalPruning, CF (Confidence 

Factor), minCases and fuzzyThreshold. The parameter rules determines if C5.0 should convert the 

decision-tree into IF-THEN rules whereas if doing so bands controls the ultimate amount of 

developed rules with lower values favouring generalisation. Subset controls whether groups of 

discrete predictors for splits should be evaluated. MinCases controls tree growth (i.e. the smallest 

allowed terminal node size) and CF controls the intensity of the ultimate pruning whereas 

noGlobalPruning disables the latter step thus large values of MinCases and low values of CF favour 

generalisation whereas enabling noGlobalPruning has the opposite effect. Finally, fuzzyThreshold 

controls the way predictions are done by dividing each split into three ranges and if a given case lies 

in the middle range, two of the three branches are investigated and the results combined 

probabilistically. Finally, C5.0 can automatically winnow the input variables to remove those that are 

irrelevant; however, this option was disabled because the optimal variables subset was sought by 

means of the GA. The tested values ranged from 0 to 999 for bands, from 0 to 100 for CF and from 

1 to 236 for minCases whereas the remainder parameters ranged from 0 to 1 (i.e. false or true) 

(Table 3). 

 

2.3.3 Oblique tree 

The oblique trees were developed with Truong’s oblique.tree package (Truong, 2013), which is able 

to develop decision-trees mixing oblique and axis-parallel splits This approach infers the oblique 

splits by developing linear decision boundaries (linear classifiers) with logistic regression. Therefore, 

for every split the oblique.tree function tests 2R−1−1 logistic regressions models (where R is the 

number of residual classes) and selects the one that maximises the separation between the two 

classes (Truong, 2009). As with the other approaches, the process continues until leaves are 

homogeneous or the maximum number of allowed splits is achieved. Oblique.tree presents exactly 

the same parameters as the CART algorithm implemented in the package tree (Ripley, 2015). 
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Therefore they were set as in the previous case, mincut and minsize ranged from 1 to 236 and 

mindev from 1 to 1000; whereas two values were allowed for split.impurity, which corresponded to 

deviance or Gini (Table 3). The variable selection was performed simultaneously with the parameter 

optimisation then, the use of axis-parallel and oblique splits was enabled (oblique.splits = "on") but 

the methods to perform variable selection (e.g. based on AIC or BIC) were disabled because the 

optimal variables subset was sought by the GA. 

 

2.3.4 Evolutionary tree - evtree 

The evtree function in the package evtree (Grubinger et al., 2014) follows the same principles 

described for the GA although the genes – instead of integers representing parameters and 

variables – encode the splits (variable and value) of the decision-tree. Therefore evtree presents 

two groups of parameters; the first parameterises the evolutionary process and is used internally by 

the function and the second constrains the decision-tree eventually rendered. Unlike rgenoud, the 

evtree evolution is controlled by five parameters, psplit, pprune, pmutatemajor, pmutateminor and 

pcrossover, in addition to the population size and the number of generations without improvement 

that are run before stopping. If psplit is applied one random terminal-node is selected and an 

alternative split is reassigned, pprune chooses a random internal node and prunes it into a terminal 

node, pmutatemajor selects a random internal node and changes the split variable and value 

whereas pmutateminor changes the split value but not the splitting variable. Finally, pcrossover 

exchanges branches between two trees. We assumed that the population and the number of 

iterations run before stopping should be larger in those trials that involved a larger amount of input 

variables thereby the population was set to                         and the number of iterations 

varied following                         . Finally, the parameters driving the evolution were all 

set to 0.2 because all of them hinder premature convergence. Regarding the constrains applied to 

the decision-tree finally rendered, evtree presents four parameters; minbucket, minsplit, maxdepth 

and alpha, which control the minimum number of cases in a terminal node (i.e. leaf), the minimum 

number of cases in a branch to split it, the maximum number of splits and the ultimate complexity of 
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the tree. In accordance with the premises described above minbucket and minsplit ranged from 1 to 

236, maxdepth from 1 to 15 and alpha, which was pertinently divided by 100, from 1 to 1000 (Table 

3). 
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Table 3 Summary of the optimised parameters, with the considered ranges, for the four decision-tree induction methods. 

Method Parameter 
Bounds 

Description 
Lower Upper 

CART 

mincut 1 236 Minimum number of observations to include in either child node 

minsize 1 236 Smallest allowed number of observation in a terminal node 

mindev 0.001 1 Minimum within-node and root node ratio of deviation for the node to be split 

split deviance Gini Splitting criterion to use 

C5.0 

rules Yes No Should the tree be decomposed into a rule-based model? 

subset Yes No Should the model evaluate groups of discrete predictors for splits? 

bands 0 999 Group the rules into the specified number of bands 

noGlobalPruning Yes No Should the global pruning step to simplify the tree to be toggle? 

CF (Confidence Factor) 0 1 Threshold of allowed error in data while pruning the decision tree 

minCases 1 236 Smallest allowed number of observation in a terminal node 

fuzzyThreshold Yes No Should C5.0 evaluate possible advanced splits of the data? 

Oblique tree 

mincut 1 236 Minimum number of observations to include in either child node 

minsize 1 236 Smallest allowed number of observation in a terminal node 

mindev 0.001 1 Minimum within-node and root node ratio of deviation for the node to be split 

split.impurity deviance Gini Splitting criterion to use 

Evtree 

minsplit 1 236 Minimum number of observations to include in either child node 

minbucket 1 236 Smallest allowed number of observation in a terminal node 

maxdepth 0 15 Maximum number of nodes in the tree 

alpha 0 10 Factor regulating regulates the complexity tree size 

ntrees 25 625 Population size (25 × # variables selected ) 

niterations 100 2500 Number of generations run before premature stopping (100 × # variables selected) 

psplit, 0.2 Evolutionary splitting operator for terminal nodes 

pprune, 0.2 Evolutionary pruning operator of internal nodes 

pmutatemajor, 0.2 Evolutionary mutant operator of variables and values for internal nodes 

pmutateminor 0.2 Evolutionary mutant operator of values for internal nodes 

pcrossover 0.2 Evolutionary mutant operator to exchange branches 
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2.4 Model comparison 

Model transparency is fundamental to rule out ecologically unreliable models (Austin, 2007). 

Accordingly, on an equal footing (e.g. similar accuracy), simple models are preferred over complex 

ones because they allow better interpretation (Grubinger et al., 2014; Truong, 2009; Wu et al., 

2008). To date several approaches exist to quantify decision-tree complexity (e.g., Breiman et al., 

1984; Murthy et al., 1994) but each one is addressed to the corresponding approach. To allow 

comparison, tree complexity was evaluated following Truong’s approach (2009; 2013), which 

consists of aggregating the number of variables involved in every split plus one (if only axis-parallel 

splits are used, this approach coincides with the number of leaves) (Fig. 2-A). This approach 

allowed comparison with C5.0 regardless of the ultimate nature of the rendered model, tree-like or 

rule-based, because the path to each leaf can be assimilated to one rule. In that case, the number 

of splits in each rule plus the default value was also calculated because we realised that although 

C5.0 is able to render compact rule sets, these rules can be highly complex. 

In accordance with the two types of decision-trees potentially obtained, tree-like or rule-based, the 

tree-like structure was not scrutinised (they can be consulted in the Appendix B) and the 

relationship between the input variables and the probability of presence was graphically 

characterised with the partial dependence plots (Friedman, 2001), as implemented in the package 

randomForests (Liaw and Wiener, 2002) (Fig. 2-A). Partial dependence plots depict the average of 

the response variable vs. a predictor variable and account for the effects of the remaining variables 

within the model (Friedman, 2001). Consequently, partial dependence plots are a useful way to 

visualise the marginal effect of the selected variables on the predicted probability of presence 

(Cutler et al., 2007). The function being plotted is defined as: 

 

      
 

 
         

 
    (1) 
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where n corresponds to the amount of points in which the function is being plotted, x is the variable 

for which partial dependence is sought, and xiC are the remaining variables in the dataset. In this 

case   corresponded to the predictions exerted by the decision trees and the partial dependence 

were computed for each of 50 equally spaced points over the range of each examined variable. 

Furthermore, the relative importance of input variables is useful in guiding conservation policy, 

monitoring and sampling strategies, and formulation of testable scientific hypotheses (Kemp et al., 

2007), however, there is not a unified approach for every of the four tested approaches. Therefore, 

we evaluated the variable importance following Kemp’s et al. (2007) approach, which is based on 

the perturbation of the inputs and thus is irrespective of the model structure (Fig. 2-A). It consists of 

(i) sequentially feeding the model with the test set but replacing the values of the target input by 

uniformly distributed random values in the interval (0.1, 0.9), the range over which the model was 

originally trained, (ii) calculating each time the performance criteria (TSS), and (iii) repeating the 

procedure for each input parameter. The calculated TSS is then compared with the reference value 

(i.e. the TSS obtained in the corresponding fold) and the variables importance is scrutinised by 

developing box-plots of the     . The most important variable shall produce the largest      

whereas the least important the smallest. 

 

3 Results 

3.1 Performance 

Based on the optimum parameters sought with the GA depicted in the Table 4, the four techniques 

presented practically the same values of the performance criteria during the cross-validation phase 

but C5.0 that presented marginally superior performance (Table 5). All the techniques proved 

underpredictive (sensitivity < specificity), especially C5.0, and such phenomenon increased for the 

models developed with the complete dataset (overall). In that case C5.0 presented significantly 

better performance than the remaining techniques. The lapse of the optimisation of CART and C5.0 
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was of few minutes whereas for the oblique tree it increased one order of magnitude and for the 

evtree, by two orders. For the oblique tree the number of tested individuals was ca. 30 % larger than 

for the remaining techniques. Although in accordance with the lapse to optimise one single oblique 

tree, this was not considered the main reason for such differences in the lapses in the optimisation. 

 

Table 4. Optimum parameter values for the four decision tree algorithms. 

Method Parameter Optimum value 

CART 

mincut 7 

minsize 18 

mindev 0.039 

split deviance 

C5.0 

rules Yes 

subset No 

bands 56 

noGlobalPruning No 

CF (Confidence Factor) 0.44 

minCases 2 

fuzzyThreshold No 

Oblique tree 

mincut 4 

minsize 19 

mindev 0.234 

split.impurity Gini 

Evtree 

minsplit 22 

minbucket 68 

maxdepth 6 

alpha 1.71 

 

Table 5. Model performance for the four selected decision tree algorithms. Summary of the; True Skill 
Statistics (TSS), Sensitivity (Sn), Specificity (Sp) and Mean Squared Error (MSE) calculated during    
                  (nine models) and for the ultimate models, lapse of the optimisation and number of tested 
combinations of parameters and variables (chromosomes). 

 
Cross-validation Overall Time 

[min] 
# tested 

individuals 
 

                                TSS Sn Sp MSE 

CART 0.65±0.18 0.82±0.14 0.84±0.08 0.15±0.05 0.61 0.78 0.83 0.15 2.54 8983 

C5.0 0.69±0.14 0.79±0.12 0.89±0.06 0.15±0.06 0.83 0.86 0.97 0.08 5.35 8230 

Oblique tree 0.65±0.18 0.82±0.13 0.83±0.09 0.15±0.05 0.62 0.80 0.81 0.14 42.32 10901 

Evtree 0.65±0.18 0.82±0.14 0.84±0.08 0.14±0.04 0.61 0.78 0.83 0.15 332.47 8208 
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3.2 Decision-tree complexity 

CART and evtree rendered the simplest decision-trees with only 4 leaves whereas oblique tree 

presented a marginally larger complexity because it presented few oblique splits (one to three) (Fig. 

3). The optimal C5.0 consisted of a set of rules (ca. 13 rules plus the default value) nevertheless it 

presented the largest complexity because these rules included large sets of conditions, as a 

consequence the complexity rose up to ca. 40 different splits (see Appendix B for a tree-like 

depiction of the models). 

 

 
Fig. 3. Complexity of the decision-trees as the overall number of partitions (i.e. sum of the number of times a 

variable was used to split the input space) during the 3×3cross-validation (nine models). For C5.0, the number of 

rules as well as the overall number of partitions are depicted. 

 

3.3 Variable selection and partial dependence plots 

The optimal CART selected two variables % of aquatic vegetation and density of boulders (Fig. 4). 

The Iberian gudgeon selected preferably HMUs with small % of aquatic vegetation and density of 

boulder although it avoided the HMUs without aquatic vegetation. 
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Fig. 4. Partial dependence plots of the Classification And Regression Tree (CART). The solid line depicts 
those for the ultimate model whereas dashed lines correspond to the cross-validated models. Ticks close to 
the x-axis depict collected data. Only two variables were selected, therefore on the right side, the 3D plot 
depicts the variables and the corresponding suitability (probability of presence). 

 

In the optimal C5.0, seven predictors, namely HMU type, width, % of aquatic vegetation, % of 

embeddedness, % of backwaters, density of boulders and % of back waters were selected (Fig. 5). 

The Iberian gudgeon preferably selected pool-type HMUs of large to intermediate width and small % 

of aquatic vegetation. The fish had a preference for straight segments (low % of backwaters) with 

depositional area (high % of embeddedness) and low density of boulders. The Iberian gudgeon 

slightly preferred non incised HMU (low % of undercut banks). 
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Fig. 5. Partial dependence plots of the C5.0 model tree. The solid line depicts those for the ultimate model 
whereas dashed lines correspond to the cross-validated models. Ticks close to the x-axis depict collected 
data. 

 

The optimal oblique tree also selected % of aquatic vegetation and density of boulders. While 

smoother partial dependence plots were obtained from the oblique tree, practically the same pattern 

of habitat selection was observed in the partial dependence plots for CART; Iberian gudgeon 

selected HMUs with small % of aquatic vegetation and density of boulders (Fig. 6). The 3D plot 

highlighted the larger flexibility to adjust the discriminant hyperplane. 
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Fig. 6. Partial dependence plots of the oblique tree. The solid line depicts those for the ultimate model 
whereas dashed lines correspond to the cross-validated models. Ticks close to the x-axis depict collected 
data. Only two variables were selected, therefore on the right side, the 3D plot depicts the variables and the 
corresponding suitability (probability of presence). 

 

The optimal evolutionary tree (evtree) selected the same variables as the CART and the oblique 

tree (Fig. 7). Moreover the modelled preferences were similar; the Iberian gudgeon selected the 

HMUs with small % of aquatic vegetation and low density of boulders and avoided the HMUs 

without aquatic vegetation. 

 

 
Fig. 7. Partial dependence plots for the evolutionary tree (evtree). The solid line depicts those for the ultimate 
model whereas dashed lines correspond to the cross-validated models. Ticks close to the x-axis depict 
collected data. Only two variables were selected, therefore on the right side, the 3D plot depicts the variables 
and the corresponding suitability (probability of presence). 

 

3.4 Variable importance 

The four techniques concomitantly indicated % of aquatic vegetation as the most important variable 

followed by density of boulders (Fig. 8). C5.0 selected five additional variables of minor importance, 
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which, in decreasing order, presented the following rank, HMU type, % undercut banks, width, % 

backwaters and % embeddedness. 

 

 
Fig. 8 Variable importance computed by the four decision-tree approaches. The greatest importance 
corresponds to the variable showing the highest variability and magnitude (    ) whereas the least important 
presents the smallest. 

 

4 Discussion 

4.1 Comparison of the decision-tree induction methods 

Four different R packages to induce decision-trees have been compared in modelling the presence-

absence of the invasive Iberian gudgeon. The optimal parameters and the variables subset was 

simultaneously sought with a GA obtaining accuracy (TSS) similar to studies that used decision-

trees to classify the presence or absence of other aquatic organisms (e.g., Parasiewicz et al., 2012; 

Sharma et al., 2009). Results indicated no marked differences on the predictive capability of any of 

the techniques and the accuracy obtained for the four decision-trees was marginally superior to 

other comparable examples that used logistic regression, although accuracy depends on the 

interaction between the technique and the training dataset (Parasiewicz et al., 2012; Vezza et al., 

2012). However, with respect to model performance, random forests (i.e. the ensemble counterpart 
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of CARTs) could outperform the four methods we applied in this study (as was shown in Vezza et 

al., 2015). The Random forests technique typically achieves higher performance than the others 

(e.g., Fukuda et al., 2013; Vezza et al., 2014) although it always requires indirect methods to be 

scrutinised (Friedman, 2001), which may discourage its use when high interpretability is desired. 

Focusing on the results obtained through the cross-validation and the optimal single model, C5.0 

performed slightly better than the other three approaches. Therefore, in spite of having selected a 

larger input subset (seven variables instead of only two), the larger amount of optimised parameters 

and the possibility of converting the decision-tree into a rule-base model allowed C5.0 to sustain 

good generalisation. This suggests C5.0 to be an appealing technique, especially when accuracy 

must prevail. Further, while we disabled the option of boosting and ensemble of decision-trees, such 

options may potentially result in accuracy similar to random forests but it will be always at the 

expense of model interpretability. Moreover, the use of rules, especially when they become as 

complex as the ones rendered in this case, drives out the interpretability, which is one of the 

appealing characteristics of decision-trees. Therefore depending on the objectives of the study C5.0 

should not automatically relegate the other alternatives. 

Although the oblique tree used oblique splits, it did not signify a marked improvement in accuracy 

and the modelled patterns of habitat selection were practically the same as those obtained with 

CART. These results agreed with other studies on oblique tree induction where they achieved 

similar or less accurate results than with the axis-parallel approaches (Heath et al., 1993; Murthy et 

al., 1994), although other studies do not allow comparison because they used only oblique decision-

tree approaches (Cantú-Paz and Kamath, 2003). Thus, it can be arguably concluded that oblique 

trees do not render obligatory better results either in terms of accuracy and/or in terms of flexibility 

to adjust the discriminant surface. However, taking into account that model performance depends 

on the interaction between the input data and the training algorithm and considering that the lapse 

of the optimisation was not excessive, a trial with oblique trees would be always worthwhile. 

Conversely, evtree was found to be practically the same decision-tree as CART, they only slightly 

differed in the values of the splits (e.g. from 0.035 to 0.04 boulders/m2), but the lapse in the 
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optimisation rose two orders of magnitude. Further, the authors themselves acknowledged that 

evtree was not intended to relegate other approaches to develop decision-trees, rather to enable 

scientist to explore different facets of data structure by testing different data partitions (Grubinger et 

al., 2014). In order to keep comparison focused on the methods for decision-tree induction, as far as 

possible, we used the same approach and settings for the GA, but other strategies could be used. 

The alpha parameter is able to eventually control tree complexity and hence the ultimate set of 

selected variables. Therefore an alternative approach may rely on the modification of alpha. Several 

values could be tested, keeping a sufficiently large population and number of generations, and 

finally selecting the value of alpha that maximises accuracy and minimises the size of the variable 

subset (e.g. following Muñoz-Mas et al., 2015). In that case, we would expect a significant reduction 

in the time of calculus, which would increase interest in the algorithm. Furthermore, unlike C50 

(Kuhn et al., 2015) and Truong’s (2009) approach the evtree package (Grubinger et al., 2014) is 

able to optimise regression trees thus it could increase significantly the value of the package. 

One common pitfall observed in the four methods has been underprediction (sensitivity < 

specificity), which was of similar magnitude as the one observed using datasets of similar 

prevalence (Parasiewicz et al., 2012; Sharma et al., 2009). Such demeanour has been noted as 

being hardly defensible from an ecological viewpoint (Fukuda, 2013) because, while presences 

indicate the use of such habitat, absences indicate uncertainty. They may signify unsuitable habitat 

but they can be also caused by a deficient colonisation or by a low probability of detection (Fukuda, 

2013; Muñoz-Mas et al., 2014). It is therefore necessary to at least balance the omission and 

commission error instead of favouring the majority class (Muñoz-Mas et al., 2014). The prevalence 

of the dataset was enviable in comparison with other studies (Parasiewicz et al., 2012; Muñoz-Mas 

et al., 2012). Therefore, it posed no major concern and the only precaution relied on maintaining the 

original prevalence in every fold. Common approaches to favour over-prediction consist of weighting 

cases (e.g. Parasiewicz et al., 2012) or resampling to obtain the desired prevalence (e.g. Muñoz-

Mas et al., 2012). All the tested packages except oblique.tree allow case weighting, which may 

discourage its use. Furthermore, the package implemented to develop the oblique tree ensembles 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

31 

 

(i.e. obliqueRF - Menze et al., 2011) suffers similar limitation. Therefore, it can be concluded that the 

development of oblique decision-trees (single or assembled) in R (R Core Team, 2015) are still in 

an incipient stage and thus further enhancement of these packages with respect to case weighting 

or resampling is needed. Summing up, C5.0 (C50, Kuhn et al., 2015) would be the most appealing 

technique in accordance with the actual implementation of the other packages. 

 

4.2 Habitat preferences of the Iberian Gudgeon 

In regard to the habitat preferences of the Iberian gudgeon, the four models indicated % of aquatic 

vegetation and density of boulders as the most important predictors rendering similar partial 

dependence plots, whereas C5.0 increased the number of selected predictors up to seven. Though 

prima facie the partial dependence plots for % of aquatic vegetation and density of boulders would 

be uninformative for management purposes, they provided evidence of the actual distribution and 

habitat preferences. Firstly, both variables describe not only the study sites, but also some HMU 

characteristics. On the one hand, at C1 the Cabriel River crosses a narrow canyon with a high 

gradient, which turns C1 in the river segment with the highest heterogeneity (it presented the largest 

number of HMUs with the smaller HMU areas). As a consequence, the numerous boulders fallen in 

the river channel raised the values of density of boulders for that segment, which presented low 

Iberian gudgeon occurrence. Although C1 presents several pools, typically colonised by the Iberian 

gudgeon, it is characterised by riffle and rapid type HMUs with relatively high flow velocity, which in 

accordance with the partial dependence plots for C5.0 are unfavourable for its settlement. On the 

other hand, rapids are typically characterised by a small area and prominent boulders, thus the 

density of boulders was evaluated to be high in the remaining river segments. Further, the Iberian 

gudgeon has been demonstrated to prefer lowland river segments (Comesaña and Ayres, 2009; 

Ilhéu et al., 2014; Ribeiro et al., 2009), which is concordant with the partial dependence plot for 

width though the ultimate model suggested a decrease for the larger width several folds suggested 

monotonic increments. Nevertheless, the Iberian gudgeon proved adaptive in their habitat 

requirements. For instance, in the Segura River it colonised the river basin through the water 
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transfer canal that disembogues in the upstream part of the river (Martinez-Morales et al. 2010). 

Thereby the greater part of the population occurs in the headwater rather than in the low part of the 

river. Apparently, in the Cabriel River the colonisation took place between C3 and C4 (there is also 

another invasive species in that segment, the Iberian nase) and thus the distribution would be more 

consonant with the habitat preferences described in the literature (Comesaña and Ayres, 2009; 

Ilhéu et al., 2014; Ribeiro et al., 2009). In regards to the % of aquatic vegetation, the Iberian 

gudgeon selected preferably low values but it avoided the HMU without aquatic vegetation. The 

riverbed in C1 and C2 was largely covered by aquatic vegetation, the former by aquatic liverworts 

and mosses (e.g. Fossombronia sp.) whereas the latter was covered by a thick layer of tangled and 

mineralised macrophytes (e.g. Chara sp.). Such kind of vegetation did not provided cover whereas 

Iberian gudgeon was observed taking shelter in the vicinity of clumps of Potamogeton sp., then the 

preference for small to intermediate % of aquatic vegetation described in the partial dependence 

plots. That pattern on habitat selection corroborates previous studies that found larger densities in 

those sites with intermediate abundances of aquatic vegetation followed by those with large 

abundances and lastly by those sites without vegetation (Lobon-Cervia et al., 1991). Finally, C4, 

which is the lowermost stretch, presents typically the highest flow, which combined with the 

numerous bends on the river channel, favoured scouring (% of undercut banks). Scouring impeded 

the establishment of vegetation in the shores (% reeds) – which we expected to be selected – but 

also favoured the % of backwaters (which was also relevant in C1) thus allowed us to deduce that 

turbulence and lack of cover would be avoided by the Iberian gudgeon. Such a conclusion would be 

supported by the preference described in the partial dependence plot for % of embeddedness. 

Therefore the optimal habitat for the Iberian gudgeon would be those pool-type HMUs with a certain 

amount of aquatic vegetation (providing cover) and depositional areas (most probably in near 

vegetated shores) that typically occur in lower river segments. Such overall description largely 

matches the correlation between aquatic vegetation, low flow velocity and presence of bedrock 

described by Leunda et al. (2012). 
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In accordance with such general description of the habitat preferences, the wide spread of the 

species (Comesaña and Ayres, 2009; Ilhéu et al., 2014; Ribeiro et al., 2009) may be a reflex of the 

extensive homogenisation on the habitat conditions occurred in the Iberian Peninsula due to the 

intense river regulation, channelisation and artificial impoundment (García de Jalón, 1987). 

Therefore, removing obsolete weirs and dams and thus reducing the total area of pool-like HMUs is 

likely to reduce the species proliferation (Olaya-Marín et al., 2012) whereas incrementing pulse flow 

may have also benefits tearing off the clumps of aquatic vegetation and disturbing the depositional 

areas (% of embeddedness) where the species takes shelter (Tena et al., 2013). Finally, 

geomorphological restoration and channel re-meandering (i.e. increasing the % of backwaters) 

should discourage the settlement of the species. Fortunately, these particular management actions 

are emphasised in the European Common Implementation Strategy (CIS) guidance on 

Environmental Flows (EU-CIS guidance N° 31) as possible hydro-morphological restoration 

measures for rivers (European Commission, 2015). 

 

5 Conclusions 

None of the new packages, oblique.tree (Truong, 2013) and evtree (Grubinger et al., 2014), 

outperformed the C5.0 algorithm implemented in the package C50 (Kuhn et al., 2015). Rather they 

rendered practically the same decision-trees as the CART developed with the package tree (Ripley, 

2015), although they were fully interpretable in comparison with C5.0 that was largely complex. We 

conclude that oblique trees do not necessarily represent an improvement in accuracy in spite of the 

flexible model structure because it resulted in a similar discriminant surface (the same variables 

were selected). Further it proved affected by prevalence, a drawback that cannot be easily 

addressed because it does not include the possibility of weighting the observations. Although the 

lapse of optimisation of evtree was significantly longer, other approaches can be followed, which 

most probably will reduce it, but maintaining the quality of the ultimate decision-tree. Further it 

allows the development of regression trees which may be interesting for abundance-related 
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modelling tasks. In unspoilt rivers where physical-chemical predictors do not condition the 

distribution of the Iberian gudgeon, the optimal habitat for the Iberian gudgeon would be large pools 

in lowland river segments with depositional areas and vegetated cover present, which typically 

appeared in the form of isolated and scattered macrophytes clumps (low to intermediate % of 

aquatic vegetation). Thereby it avoided habitats characterised high flow velocity, which increased 

bank erosion and limited cover availability. In accordance with these results, the spread of the 

Iberian gudgeon may have been favoured by river regulation and artificial river impoundment. 
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Fig. 1. Location of the study sites within the upper part of the Cabriel River (Jucar River basin 

District – eastern Iberian Peninsula). 

 

Fig. 2. Flowchart (A) and example of the structure of the chromosomes used in the genetic 

optimisation (B). The depicted chromosome (B) shows one of the tested alternatives for the evtree 

approach for decision-tree induction. The parameter tuning part set the minimum number of cases 

in a terminal node (minbucket) and to allow the node split (minsplit) to 1, the maximum number of 

splits (maxdepth) to 5 and the alpha parameter to 0.01 (i.e. 1/100). The selected variables in the 

next part were those encoded with a 1 (they appear labelled below the chromosome) whereas those 

encoded with a 0 were ruled out (for clarity, they are not labelled in the figure). 

 

Fig. 3. Complexity of the decision-trees as the overall number of partitions (i.e. sum of the number of 

times a variable was used to split the input space) during the 3×3cross-validation (nine models). For 

C5.0, the number of rules as well as the overall number of partitions are depicted. 

 

Fig. 4. Partial dependence plots of the Classification And Regression Tree (CART). The solid line 

depicts those for the ultimate model whereas dashed lines correspond to the cross-validated 

models. Ticks close to the x-axis depict collected data. Only two variables were selected, therefore 

on the right side, the 3D plot depicts the variables and the corresponding suitability (probability of 

presence). 

 

Fig. 5. Partial dependence plots of the C5.0 model tree. The solid line depicts those for the ultimate 

model whereas dashed lines correspond to the cross-validated models. Ticks close to the x-axis 

depict collected data. 
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Fig. 6. Partial dependence plots of the oblique tree. The solid line depicts those for the ultimate 

model whereas dashed lines correspond to the cross-validated models. Ticks close to the x-axis 

depict collected data. Only two variables were selected, therefore on the right side, the 3D plot 

depicts the variables and the corresponding suitability (probability of presence). 

 

Fig. 7. Partial dependence plots for the evolutionary tree (evtree). The solid line depicts those for 

the ultimate model whereas dashed lines correspond to the cross-validated models. Ticks close to 

the x-axis depict collected data. Only two variables were selected, therefore on the right side, the 

3D plot depicts the variables and the corresponding suitability (probability of presence). 

 

Fig. 8 Variable importance computed by the four decision-tree approaches. The greatest importance 

corresponds to the variable showing the highest variability and magnitude (ΔTSS) whereas the least 

important presents the smallest. 
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Highlights 

C5.0 outperformed the algorithms: CART, oblique tree and evolutionary tree  

Oblique.tree proved affected by prevalence 

Iberian gudgeon selected wide pools with aquatic vegetation and depositional areas 

River regulation and impoundment favoured Iberian gudgeon’s spread 


