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Abstract 

This paper presents a review of tactical optimization models for integrated production and 
transport routing planning decisions. The objective of this research is to identify current trends 
and future research directions in this field, and to propose a classification framework based on 
the following elements: production, inventory and routing aspects, modelling aspects of the 
objective function structure and solution approach. All these criteria are expected to be relevant 
for readers, and will provide researchers and practitioners a starting point for optimization 
models in the production and routing area at the tactical level.  
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1 Introduction 

Traditionally, production and transportation planning decisions in supply chain environments 
have been made sequentially and independently. The most habitual procedure was to proceed 
first with production planning or lot-sizing calculations, used to determine the quantities of each 
finished good to be produced in a given planning horizon, and to later establish transportation 
decisions for distributing manufactured products to customers in a separated way. However, in 
today’s globalized supply chains and high competitive markets, firms have to guarantee the 
efficiency of their resources, increasing customers’ service level and reducing lead times and 
stocks. In this sense, the simultaneous consideration of production and transportation planning 
activities in an integrated manner may lead to increased efficiency and cost savings as discussed 
by Chandra & Fisher (1994) and reflected in companies such as IBM (Degbotse et al., 2013) 
and McKesson (Katircioglu et al., 2014), among others. The literature that addresses models for 
simultaneous production and transport planning is vast, and several state-of-the-art papers have 
been published on this topic (Bilgen & Ozkarahan, 2004; Bravo & Vidal, 2013; Erengüç, 
Simpson, & Vakharia, 1999; Fahimnia, Farahani, Marian, & Luong, 2013; Josefa Mula, Peidro, 
Díaz-Madroñero, & Vicens, 2010; Vidal & Goetschalckx, 1997).  Nevertheless, most of these 
models oversimplify transportation and only consider direct shipments or full-truck loads as a 
transport strategy because they disregard merge-in-transit operations (Croxton, Gendron, & 
Magnanti, 2003) and the less-than-load distribution mode.  

In this context, production and transport routing models emerge in order to simultaneously plan 
production and distribution decisions by considering less-than-load shipments. This kind of 
integrated production and distribution planning problem is focused on the tactical decision level 
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(Armentano, Shiguemoto, & Løkketangen, 2011) and is called production routing problem by 
several authors (Adulyasak, Cordeau, & Jans, 2014; Ruokokoski, Solyali, Cordeau, Jans, & 
Süral, 2010). At this level, and according to Bard and Nananukul (2010) in a production routing 
problem, four critical decisions have to be made: (1) how many items to manufacture each day; 
(2) when to visit each customer; (3) how much to deliver to a customer during a visit; and (4) 
which delivery routes to use. A production routing problem optimizes jointly production, 
inventory and transport routing planning decisions by integrating a lot-sizing problem to 
determine production amounts and a vehicle routing problem (VRP) to determine delivery 
routes. Hence, the production routing problem is a generalization of the production planning 
problem with direct shipment and of the inventory routing problem (IRP) (Andersson, Hoff, 
Christiansen, Hasle, & Løkketangen, 2010; Coelho, Cordeau, & Laporte, 2014). In the first 
problem, products are directly transported from the production factory to the customers 
minimizing setup, production and direct shipment costs over the considered planning horizon. 
In the second problem, routing aspects are included but production aspects are disregarded. In 
this sense, the inventory routing problem consist of a central warehouse from which products 
are sent to customers by determining the necessary transport routes and the corresponding 
inventory levels in order to minimize the corresponding total costs. Hence, the production 
routing problem combines planning decisions considered by production planning problems with 
direct shipments (production and inventory planning decisions) and by inventory routing 
problems (vehicle routing and inventory planning decisions).  

To the best of our knowledge, despite previous surveys on production and transport planning 
models, and the increase in the number of published papers in this field in recent years, very few 
publications focus on reviewing tactical production and routing models. Only Schmid et al. 
(2013) provide an aggregated overview of basic models for rich routing problems, including 
production lot-sizing decisions.  

In this survey, we briefly describe each paper, but we do not describe or formulate the models 
considered in detail. We provide the reader with a starting point to investigate the literature on 
optimization models for production routing problems and their modelling issues. The main 
contributions of this paper are to: (i) review the literature; (ii) classify the literature based on 
production, inventory and routing aspects, modelling aspects of the objective function structure 
and solution approach; and (iii) identify current trends and future research directions.  

The remainder of the paper consists of five other sections. The next section introduces the 
review methodology. Section 3 describes and presents the production routing problem 
formulation. Section 4 describes the classification criteria of the reviewed papers. Section 5 
includes discussion and provides future research lines. Finally, the last section presents some 
conclusions. 

 

2 References collection methodology 

Given the vast amount of published articles on production and transportation planning, the 
following selection criteria were defined: (1) the production and transport routing planning 
problem is addressed in an integrated manner; (2) the production and transport routing 
integrated planning problem is modelled by mathematical programming approaches; (3) the 
production planning problem is based only on lot-sizing calculations and extensions focused on 
the tactical decision level; hence the models that focus on production scheduling are not 
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considered; (4) transportation planning issues are based on vehicle routing decisions,  and hence 
direct shipments or full-trucks loads are not considered; (5) the collected references are 
published only in journals; conference proceedings and doctoral dissertations are not considered 
since we have assumed their subsequent publication in high-quality research journals.  

The search for papers which consider integrated production and transport routing planning 
decisions was performed using the Sciverse Scopus database. The following search criteria were 
applied to the topic field of this web search engine: production planning and routing; lot sizing 
and routing; production planning and VRP; lot sizing and VRP; supply chain planning and 
routing; supply chain planning and VRP; production and transport planning; production and 
distribution planning, and different combinations of them. Furthermore, the bibliographic 
references of the articles studied have served as a continuous search reference. 

After this process, 22 references were selected for reviewing. The reason for this small number 
of references is that the production and routing planning problem is a recent research area (the 
first paper in this topic was published in 1994) and it has been mainly developed in recent years. 
Among the selected papers, a group of six papers was selected from Computers & Operations 
Research and three came from the European Journal of Operational Research. 

3 Production and transport routing model decisions description  

In general terms, the production and transport routing problem can be defined in a network G = 
(N, A), where N represents the set of nodes comprising production plant and customers, and A 
represents the set of arcs connecting the nodes, where A = {(i, j) : i, j ϵ N, i ≠ j}. Nodes are 
indexed by i ϵ {0, … , n}, where node 0 corresponds to the production plant which acts as a 
central depot, while customers are represented by i ϵ {1, … , n} or the set Nc = N \ {0}. In a 
finite planning horizon, composed of a set of equal planning periods t = {1, … , T}, the 
production plant manufactures items, which can be either stored at the manufacturing 
warehouse or sent to customers, which can also store them at their own warehouses or fulfill 
their corresponding demands during each period. Transportation of products is done by a set of 
identical vehicles k = {1, …, K}over the set of arcs A, which have an associated cost cij to travel 
from node i to node j. Hence, the production routing problem combines a lot-sizing problem, on 
the production side, and a VRP related to the distribution of finished goods to customers, by 
taking into account the inventories in both the manufacturing plants and customer warehouses. 

The integrated production and transport routing problem can be stated as follows: 

Given by:  

• Production costs such as unitary manufacturing costs and setup costs 
• Production capacity at the plant 
• Inventory holding costs at the plant and customer warehouses 
• Inventory capacity at the plant and customer warehouses 
• Initial inventories at each node 
• Transport costs such as travel costs between nodes 
• Number of available vehicles and their capacity 
• Customer demand over the planning horizon 
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To determine: 

• The amount of each product to produce per period 
• The inventory levels of each product at each node per period 
• Transport routes, number of required vehicles and their occupation 

 

The main goal to meet is: 

• Minimization of total costs, including production, inventory and transport costs 

 

Subject to: 

• Production capacity constraints 
• Inventory capacity constraints 
• Typical VRP constraints (Toth & Vigo, 2002) 

 

Moreover, the following assumptions are made: 

• Transport routes start and end at the production plant  
• Waiting, loading and unloading times are not considered. 
• Customer demand must be fulfilled during each period, hence backorders are not 

allowed. 

The production routing problems can be defined with the following notation: 

 
Sets of indices 
 
T Set of time periods (t=1, …, T) 
N Set of nodes (i=0, …, N) and (j=0, …,N) 
 
Parameters 
 
dit Demand at node i during period t 
Ii0 Initial inventory of product p at node i  
pc Unitary manufacturing cost  
sc Setup cost  
ici Holding cost at node i 
cij Travel cost between nodes i and j 
PCap Production capacity at the manufacturing plant 
ICapi Inventory capacity at node i 
VCap Vehicle capacity 
 
Decision variables: 
 
Pt Production amount during period t 
Iit Inventory level at node i at the end of period t 
Qit Amount delivered to customer i with vehicle k during period t 
γt Binary setup variable during period t (γt = 1, if a setup is performed during period t, 0 

otherwise) 
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Xijt  Binary variable equal to 1 if a vehicle travels from node i to node j during period t, 0 
otherwise 

Wit Load of a vehicle before making a delivery to customer i in period t 
 
 
Literature provides different formulations for integrated production and routing planning 
decisions. Some of them are presented in the following as reference models.The integrated 
production and transport routing problem is formulated by (Bard & Nananukul, 2009a, 2010) as 
follows: 
 
 

(BN): min ∑ ∑∑∑
∈ ∈ ∈∈
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The objective function (1) corresponds to the minimization of total costs relating to production, 
setups, inventories at production plant and customers and routing costs over the planning 
horizon. Constraints (2) and (3) represent the inventory flow balance at the plant and customer 
warehouses, respectively, in which it is assumed that the initial inventories are given for all 
customers i∈Nc. Constraints (4) limit the amounts for delivery to the avalilable inventory level 
at the production plant in the previous period. The specific amount delivered to customer I is 
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limited by the parameter max
itD  in Constraints (11). Constraints (5) bound production to the 

capacity of production plant in each period and Constraints (6) ensure that demand on period 1 
can be met by allowing production on period 0. Constraints (7) to (12) deal with the VRP. 
Constraints (7) and (8) ensure that if a customer is serviced on a period, then it must have a 
successor on its route, which may be the production plant. Moreover, Constraints (8) correspond 
to vehicle conservation flow; that is, if a vehicle arrives at customer i during period t, it must 
leave it during the same period. The number of vehicles that can leave the production plant per 
period is limited to the number K, as stated by Constraints (9). Constraints (10) are the vehicle 
loading restrictions and subtour elimination constraints in the form of the Miller-Tucker-Zemlin 
inequalities (Miller, Tucker, & Zemlin, 1960). Constraints (12) establishe the inventory limits at 
each node (e.g., plant or customers) while Constraints (13) limit the amounts loaded at each 
vehicle. Constraint (14) defines the lower bounds and integrality of the production, inventory 
and shipment amounts, while Constraint (15) defines the binary variables relating to setups, 
visits to customers and travelled arcs. 

Boudia, Louly, & Prins (2007, 2008) propose a vehicle index model considering the additional 
following decision variables: 

Decision variables: 
 
Xijkt  Binary variable equal to 1 if vehicle k travels from node i to node j during period t, 0 

otherwise 
Zitku  Binary variable equal to 1 if and only if the demand dit for day t is brought by vehicle k 

in period u ≤ t, 0 otherwise 
 
The vehicle index formulation by Boudia, Louly, & Prins (2007, 2008)  is detailed as follows: 
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iit ICapI ≤  TtNi ∈∀∈∀ ,  (27) 

Pt, Iit ≥ 0 and integer TtNi ∈∀∈∀ ,  (28) 

γt, Xijkt, Zitku ∈ {0,1} KkTutNji ∈∀∈∀∈∀ ,,,,  (29) 

 

The objective function (16) represents the total cost to be minimized, taking into account setup 
costs, transportation costs and inventory holding costs in production plant. Constraints (17) to 
(20) come from VRP. Constraints (17) and (18) are equivalent to Constraints (7) and (8) 
respectively. Constraints (19) forbid exceeding vehicle capacity VCap. Subtours defined over 
the set Nc are prevented by the exponential number of Constraints (20). In Constraints (21), the 
demand of each customer in each period must be delivered by only one vehicle in one day u ≤ t. 
Constraints (22) determine that if vehicle k does not visit customer i on day u, it cannot bring 
this customer a demand for this period u or beyond. Constraints (23) and (24) correspond to 
inventory balance equations related to customers and production plant, respectively. Constraints 
(25) enforce a FIFO rule, that is, for each customer i, the demand on period t+1 cannot be 
delivered before the demand of period t.Constraints (26) and (27) correspond to setup, 
production capacities and inventory limits, respectively. Constraints (28) determine the non-
negativity and integrality of decision variables related to production and inventories while 
Cosntraints (29) are related to the binary conditions of setups and routing decision variables. 

Previous formulations deal with the production of one single item. Based on Fumero & 
Vercellis (1999), a multiproduct and index vehicle formulation is proposed by Armentano, 
Shiguemoto, & Løkketangen (2011) as follows, by adding to the previous notations the 
following parameters and decision variables: 

Parameters: 

dpit Demand of product p at node i during period t 
bp Time required to produce one unit of item p 
pcp Unitary manufacturing cost of product p 
scp Setup cost of product p 
icpi Holding cost of product p at node i 
f Fixed cost per used vehicle 
PCap Production capacity at the manufacturing plant (in time units) 
ICappi Inventory capacity for product p at node i 
IMinpi Minimun inventory level for product p at node i 
L Maximun length of each route 
M Large number, as for example ∑∑∑

∈ ∈ ∈Pp Ni Tt
pitd  

 
Decision variables: 
 
Ppt Production amount of product p during period t 
Ipit Inventory level of product p at node i at the end of period t 
Qpikt Amount of product p delivered to customer i with vehicle k during period t 
Vpijkt Amount of product p transported from customer i to customer j with vehicle k during 

period t 
γpt Binary setup variable for product p during period t (γpt = 1, if a setup is performed for 

product p during period t, 0 otherwise) 
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Xijkt  Binary variable equal to 1 if vehicle k travels from node i to node j during period t, 0 
otherwise 

 
The multiproduct model by Armentano, Shiguemoto, & Løkketangen (2011) is detailed as 
follows: 
 
(FV-ASL): 

 min ∑ ∑ ∑∑∑ ∑∑∑
∈ ∈ ∈ ∈ ∈ ∈ ∈∈
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Ppt, Ipit, Qpikt,Vpijkt   ≥ 0 and integer TtKkNjiPp ∈∀∈∀∈∀∈∀ ,,,,  (43) 

γpt, Xijkt ∈ {0,1} TtKkNjiPp ∈∀∈∀∈∀∈∀ ,,,,  (44) 

The objective function (30) determines the minimization of production costs, setups cost, 
inventory cost at production plant and at customers, and transportation costs, considering fixed 
per vehicle and variable distance-dependent costs. Constraints (31) and (32) represent the 
inventory balance at production plant, and customers, respectively. Constraints (33) establish 
the limits according to production capacity while Constraints (34) ensures that a setup cost is 
incurred in period t only if there is production in this period. Constraints (35) and (36) express 
the product conservation flow at the customers and at the production plant. According to 
Fumero & Vercellis (1999) the demand fullfillment in these constraints preclude the existence 
of subtours. On the other hand, Constraints (37) and (38) determine limits on vehicle capacity 
and route length, respectively. Constraints (39) ensure that each vehicle is assigned to at most 
one route, in each period. Moreover, each vehicle has to return to the production plant at the end 
of the route, as stated by Constraints (40), and no more than one vehicle can visit a customer in 
every period, as determined by Constraints (41). Inventory lower and upper bounds are 
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indicated in Constraints (42). Constraints (43) define the lower bounds and integrality of the 
production, inventory and shipment amounts, while Constraints (44) defines the binary variables 
relating to setups, visits to customers and travelled arcs. 

Other alternative formulations have been reviewed and classified in the next section. 

 

4 Classification criteria 

The production and transport routing problem has been tackled mainly in recent years (more 
than 80% of reviewed papers have been published in the last 10 years). For this reason, we 
propose a classification scheme based on five groups of aspects relating to modelling and 
solving the production routing problem: production, inventory, routing, the model of objective 
function and solution approach. The classification criteria corresponding to all these categories 
are described as follows: 

1. Production aspects: 
a. Number of products: it refers to the number of manufactured products 

considered in each model 
b. Number of production plants: if there is/are only one single production plant or 

several manufacturing facilities 
c. Production capacity: it refers to the capacities of the resources available in the 

production system 
d. Setups characteristics: consideration of setups by including the corresponding 

setup costs and/or setups times, and any other characteristics relating to 
complex setup structures, such as sequence-dependent setups and setup carry-
overs, are identified. 

2. Inventory aspects: 
a. Inventory modelling: it refers to the modelling of a production plant and 

customer warehouses in which products can be stored 
b. Inventory capacity: the limitation of the amounts of product at the plant and/or 

customer warehouses imposed by inventory capacities is identified 
c. Inventory policies: it details whether the vendor-managed inventory policies for 

the replenishment of customers, such as, order-up-to level, maximum level, fill-
fill-dump, have been considered. The existence of safety stocks levels is also 
described. 

3. Routing aspects: 
a. Fleet of vehicles: characteristics of the available vehicles in relation to their 

number (single or multiple, and limited or unlimited) and capacity (if vehicles 
are capacitated and if capacity is equal in all the vehicles or differs) 

b. Number of trips and visits per vehicle: it refers to the numbers of trips each 
vehicle can do during one period by starting and finishing at the central depot 

c. Transport data: they detail the consideration of different transport parameters, 
such as transport time between a pair of nodes; transport distance between a 
pair of nodes; service, unloading or loading times; waiting times; time 
windows; and available operations time to complete a route 

4. Modelling aspects of the objective function structure: it identifies the composition of the 
objective functions and enumerates their members 
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5. Solution approaches: these are mathematical methods and solution algorithms that have 
been developed to solve the proposed production and routing models, such as 
mathematical programming-based approaches, Lagrangian heuristics, decomposition 
heuristics, metaheuristics and other heuristics 

 

 Production aspects 4.1

According to Pochet and Wolsey (2006), production planning can be defined as planning the 
manufacturing activities required to transform raw materials into finished products by meeting 
customer demand in the most efficient or economical way possible. In this sense, production 
planning decisions are related to the determination of the size of the production lots for the 
different manufactured products, the time at which these lots have to be produced, and 
sometimes sequencing the production lots. The complexity of not only the production planning 
problem, but also its modelling and resolution, may be influenced by the number of items 
manufactured in the production system, the number of production facilities, and the restrictions 
imposed by the available productive resources. However, the consideration of production 
facilities manufacturing multiple products with capacity constraints enables more realistic 
models. Additionally, setup issues are often included in production models by considering setup 
costs to be a penalty in the objective function, and the setup times that can model the production 
changeovers between several products and the decreasing production available time capacity. In 
this sense, additional more complex setup types can also be considered, such as setup carry-
overs and sequence-dependent setups (Karimi, Fatemi Ghomi, & Wilson, 2003), which also 
increase the complexity of the models because they are usually modelled by introducing zero-
one variables. 

Table 1 shows the above-described production aspects for each reviewed article. Among the 
analyzed papers, it is highlighted that the majority include models with a single production 
plant. Only Lei et al. (2006) and Calvete et al. (2011) propose production and routing models 
with production systems composed of several manufacturing plants. However, in relation to the 
number of products whose production planning is addressed, the difference is not as clear as in 
the previous case. The number of papers that propose single product models is slightly higher 
than the number of papers that consider manufacturing multiple products, with a difference of 
only four.  

The capacity constraints related to available productive resources also prominate in the 
reviewed papers. In this sense, the authors opt for different ways to formulate production 
bounds, such as the maximum number of units to produce during a period, the maximum 
available production time, or a combination of both these options. Among them, the 
consideration of the maximum number of units to produce is the commonest, while the 
maximum available production time is addressed only in Chandra and Fisher (1994), Fumero 
and Vercellis (1999), Kuhn and Liske (2011) and Amorim et al. (2013). Moreover, Çetinkaya et 
al. (2009) include two kinds of production capacity constraints, the first corresponding to an 
aggregated production capacity expressed in time units, and the second is related to product-
based capacity constraints, expressed in production units. A group of five references (Archetti, 
Bertazzi, Paletta, & Speranza, 2011; Bertazzi, Paletta, & Speranza, 2005; Chen, Hsueh, & 
Chang, 2009; Shiguemoto & Armentano, 2010; Van Buer, Woodruff, & Olson, 1999) assumes 
unlimited production capacity or productive resources with excess of production capacity 
without constraining the amount to manufacture during each period. 
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Of all the reviewed works, the vast majority deal with setups and include an associated penalty 
cost in the objective function. Among them, only Kuhn and Liske (2011) and Amorim et al. 
(2013) consider setup costs and setup times simultaneously. Moreover, Amorim et al. (2013) 
include sequence-dependent setup times and setup costs in their model because they address a 
production lot-sizing and scheduling problem which focuses on the short term. Van Buer et al. 
(1999) consider only sequence-dependent setup times. Despite setup carry-overs being a typical 
lot-sizing extension and the possibility of carrying over a setup between periods being a 
common practice in many industries, none of the reviewed papers includes this additional class 
of setup issue. 

 

 Inventory aspects 4.2

Since production routing problems are simultaneously composed of a production lot-sizing 
problem and an inventory routing problem, the corresponding mathematical programming 
models can present inventory balance equations that model the amounts of products stored at 
production plants and customer warehouses (e.g., Constraints (2) and (3)). Generally, the 
storage space for parts, raw materials and finished products is limited, hence upper limits for 
inventory can be set to model this limitation. These upper bounds for storage capacities can also 
determine several inventory replenishment policies on the customers side. In this sense, by 
assuming that there is a single decision maker responsible for providing finished products to the 
customer warehouses from production plants, one can distinguish models with different 
policies, such as a maximum level (the level of inventory on the customer side after delivery 
and consumption is not higher than its maximum level or upper limit), the order-up-to level (the 
quantity shipped to customers is such that the inventory level in the customer warehouse 
reaches exactly the maximum level at the end of the delivery time instant after delivery and 
consumption) and fill-fill-dump (the order-up-to level quantity is shipped to all but the last 
retailer on each delivery route, while the minimum between the order-up-to level quantity and 
the residual transportation capacity is shipped to the last retailer). Readers are referred to 
Bertazzi et al. (2005) and to Archetti et al. (2011) for a description and analysis of these 
policies. Moreover, the lower limits for inventories can also be taken into account in order to 
protect against uncertainty or due to technical restrictions, among others. 

Table 2 summarizes the works reviewed in terms of modelling inventory amounts at production 
plants and customer warehouses, inventory capacity constraints and inventory policies. Sixteen 
of the analyzed papers model inventories at both the production plants and customer warehouses 
by setting proper inventory balance equations to the corresponding production and routing 
models. Two references (Kuhn & Liske, 2011; Metters, 1996) consider only inventories at the 
production plant because they address a different problem in which transport routes are related 
to inbound logistics, hence customers are not contemplated. Conversely, four references do not 
consider inventories at any node because they present allocation and aggregated models 
(Calvete et al., 2011) or short-term planning models with scheduling operations for perishable 
products which cannot be stored (Amorim et al., 2013; Chen et al., 2009; Van Buer et al., 1999).  

Most of the reviewed papers taken into account maximum level inventories in order to 
reproduce realistic conditions relating to industrial environments with warehouses that have 
limited storage space. They all include upper levels of inventories at production plants and at 
customer warehouses, except Archetti et al. (2011), which consider only limitations at the 
customer warehouses. Order-up-to level and fill-fill-dump policies always address customers’ 
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inventories levels in the reviewed papers (Adulyasak, Cordeau, & Jans, 2013; Archetti et al., 
2011; Bertazzi et al., 2005). Minimum inventory levels or safety stocks simultaneuosly at the 
plants and customer warehouses are mentioned only in Lei et al. (2006) and in Armentano et al. 
(2011). 

 

 Routing aspects 4.3

Transportation planning in production routing problems is based on capacitated vehicle routing 
problems (CVRP) principles. According to Toth and Vigo (2002), the basic version of CVRP 
assumes that there is a set of identical and sufficient vehicles, each with capacity C, available at 
the central depot, to serve all the customers’ demand. Each vehicle may cover one route at the 
most and each customer can be visited only once per period at the most; that is, each customer 
demand cannot be split into several vehicles. Moreover, each customer demand is known 
deterministically. However, in order to capture more realistic constraints relating to routing 
aspects and available transport resources, some papers neither consider nor modify these 
assumptions, but may add other data parameters which address additional contraints for 
transportation and routing activities. 

Table 3 classifies the references reviewed according to the nature of the vehicle fleet, the 
number of trips and visits to customers, and additional transport data. The assumption of having 
a homogeneous fleet of vehicles with an identical capacity available at the central depot is made 
in all of the reviewed papers, except Metters (1996), Lei et al. (2006) and Çetinkaya et al. 
(2009), which address problems closer to real-world production and routing environments. 
Hence they reflect the existence of several kinds of vehicles with different capacities. Moreover, 
this assumption implies that the fleet is composed of a set of multiple vehicles. Only Archetti et 
al. (2011) present different models that consider the existence of only one single vehicle 
available at the depot, as well as multiple vehicles. The dimension of this fleet of vehicles is 
mostly modelled as a limited set, although some references consider that there are no fleet size 
constraints (Amorim et al., 2013; Çetinkaya et al., 2009; Pankaj Chandra & Fisher, 1994; Kuhn 
& Liske, 2011; Metters, 1996). According to Amorim et al. (2013), this assumption is realistic 
since reference contracts with logistics suppliers are usually established to ensure that a fleet of 
sufficient size is always available. 

According to the CVRP assumptions, the number of trips per vehicle during each period is 
limited to only one. This condition is explicitily considered in most of the papers under study 
because it is more appropriate because completing several routes is difficult if the considered 
time periods are short (e.g., days). Nevertheless, the possibility of reutilizing vehicles which 
have returned to the central depot after visiting all their corresponding nodes can be considered 
a way of making transport cost savings. In this sense, four papers allow multiple trips per period 
per vehicle (Adulyasak et al., 2013; Çetinkaya et al., 2009; Chandra and Fisher, 1994; Van Buer 
et al., 1999). Yet when customer demands exceed vehicle capacity, assuming only one visit per 
customer means that the routing problem becomes unfeasible. In this case, it is necessary to 
allow visits of multiple vehicles to each customer. This relaxation of the original CVRP 
conditions is known as splitting demand or SVRP (a split vehicle routing problem) and has been 
proposed in the following reviewed papers: Chandra and Fisher (1994), Fumero and Vercellis 
(1999), Lei et al. (2006), Çetinkaya et al. (2009) and Shiguemoto and Armentano (2010). 
Routing costs reductions can be obtained when split deliveries are allowed given the possibility 
of  reducing the number of delivery routes. Readers are referred to Archetti et al. (2008) and to 
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Archetti and Speranza (2012) for a detailed study of possible savings and a survey on SVRP, 
respectively. 

From the review process, it can be concluded that additional data parameters are linked to the 
time contraints to complete the corresponding routes in production routing problems. Along 
these lines, the papers proposed by Van Buer et al. (1999), Lei et al. (2006), Chen et al. (2009) 
and Amorim et al. (2013) include the travelling times between each pair of nodes and the 
service times related to the loading and unloading of goods. These service times are also 
considered explicitly as an independent parameter in Lei et al. (2006), Chen et al. (2009) and 
Amorim et al. (2013), while they are considered to be included in the travelling time in Van 
Buer et al. (1999) and Lei et al. (2006). The time spent on transport and the loading and 
unloading activities is limited by using two kinds of constraints: by defining a maximum 
available time to complete routes, or by setting time windows in each customer. In line with 
this, Lei et al. (2006) establish a maximum duration time for each transport route, while Van 
Buer et al. (1999) consider an available maximum operation time during which production and 
transport activities must be completed. Amorim et al. (2013) perform a set of strict time 
windows during which customers must be served. On the contrary, Chen et al. (2009) define 
soft time windows, which imply that if any vehicle arrives late at a node, it will incur a penalty, 
while if any vehicle arrives early, it will have to wait until the beginning of the time window. 
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Table 1. Production aspects of the reviewed papers 

 Production aspects 

 
Plants Product 

Production capacity 

Setups 

 
Single Multiple Single Multiple Setup cost Setup time Sequence-dependent Setup carry-over 

Chandra and Fisher (1994) ● 
  

● ● ● 
   Metters (1996) ● 

 
● 

 
● 

    Fumero and Vercellis (1999) ● 
  

● ● ● 
   Van Buer et al. (1999) ● 

  
● 

   
● 

 Bertazzi et al.  (2005) ● 
 

● 
  

● 
   Lei et al.  (2006) 

 
● ● 

 
● 

    Boudia et al. (2007) ● 
 

● 
 

● ● 
   Boudia et al.  (2008) ● 

 
● 

 
● ● 

   Bard and Nananukul (2009a) ● 
 

● 
 

● ● 
   Bard and Nananukul (2009b) ● 

 
● 

 
● ● 

   Boudia and Prins (2009) ● 
 

● 
 

● ● 
   Chen et al. (2009) ● 

  
● 

     Çetinkaya et al.  (2009) ● 
  

●  ● 
    Bard and Nananukul (2010) ● 

 
● 

 
● ● 

   Shiguemoto and Armentano (2010) ● 
  

● 
 

● 
   Calvete et al. (2011) 

 
● ● 

 
● 

    Archetti et al. (2011) ● 
 

● 
  

● 
   Armentano et al. (2011) ● 

  
● ● ● 

   Kuhn and Liske (2011) ●     ● ● ● ●     
Adulyasak et al. (2012) ● 

 
● 

 
● ● 

   Adulyasak et al. (2013) ● 
 

● 
 

● ● 
   Amorim et al. (2013) ● 

  
● ● ● ● ● 

  

 



 15 

 

 

 

Table 2. Inventory aspects of the reviewed papers 

 Inventory aspects 
   Inventory 

 modelling 
Inventory  
Capacity 

Inventory  
policies 

 Plant(s) Customer(s) Plant(s) Customer(s) Safety stock Maximum level Order-up-to level Fill-fill-dump 

Chandra and Fisher (1994) ● ● 
      Metters (1996) ● 

       Fumero and Vercellis (1999) ● ● 
      Van Buer et al. (1999) 

        Bertazzi et al.  (2005) ● ● 
 

● 
  

● ● 
Lei et al.  (2006) ● ● ● ● ● ● 

  Boudia et al. (2007) ● ● ● ● 
 

● 
  Boudia et al.  (2008) ● ● ● ● 

 
● 

  Bard and Nananukul (2009a) ● ● ● ● 
 

● 
  Bard and Nananukul (2009b) ● ● ● ● 

 
● 

  Boudia and Prins (2009) ● ● ● ● 
 

● 
  Chen et al. (2009) 

        Çetinkaya et al.  (2009) ● ● ● ● 
 

● 
  Bard and Nananukul (2010) ● ● ● ● 

 
● 

  Shiguemoto and Armentano (2010) ● ● ● ● 
 

● 
  Calvete et al. (2011) 

        Archetti et al. (2011) ● ● 
 

● 
 

● ● 
 Armentano et al. (2011) ● ● ● ● ● ● 

  Kuhn and Liske (2011) ●               
Adulyasak et al. (2012) ● ● ● ● 

 
● 

  Adulyasak et al. (2013) ● ● ● ● 
 

● ● 
 Amorim et al. (2013) 
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Table 3. Routing aspects of the reviewed papers 

 Routing aspects 

 Fleet and 
number of vehicles Number of trips and visits Transport data 
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Chandra and Fisher (1994) ● 
  

● ● 
 

●  ● ● 
     Metters (1996) 

 
● 

 
● ● 

 
● ●   

     Fumero and Vercellis (1999) ● 
  

● 
 

● ● ●  ● 
     Van Buer et al. (1999) ● 

  
● 

 
● ●  ●  ● 

 
● 

 
● 

Bertazzi et al.  (2005) ● 
  

● 
 

● ● ●   
     Lei et al.  (2006) 

 
● 

 
● 

 
● ● ●  ● ● 

 
● 

 
● 

Boudia et al. (2007) ● 
  

● 
 

● ● ●   
     Boudia et al.  (2008) ● 

  
● 

 
● ● ●   

     Bard and Nananukul (2009a) ● 
  

● 
 

● ● ●   
     Bard and Nananukul (2009b) ● 

  
● 

 
● ● ●   

     Boudia and Prins (2009) ● 
  

● 
 

● ● ●   
     Chen et al. (2009) ● 

  
● 

 
● ● ●   ● 

 
● ● 

 Çetinkaya et al.  (2009) 
 

● 
 

● ● 
 

●  ● ● 
     Bard and Nananukul (2010) ● 

  
● 

 
● ● ●   

     Shiguemoto and Armentano (2010) ● 
  

● 
 

● ● ●  ● 
     Calvete et al. (2011) ● 

  
● 

 
● ● ●   

    
● 

Archetti et al. (2011) ● 
 

● ● 
 

● ● ●   
     Armentano et al. (2011) ● 

  
● 

 
● ● ●   

     Kuhn and Liske (2011) ● 
  

● ● 
 

● ●   
     Adulyasak et al. (2012) ● 

  
● 

 
● ● ●   

     Adulyasak et al. (2013) ● 
  

● 
 

● ●  ●  
     Amorim et al. (2013) ● 

  
● ● 

 
● ●   ● 

 
● ● 
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 Modelling aspects of the objective function structure  4.4

In the last few decades, mathematical programming formulations have been proposed for a wide 
range of production and transport planning problems. These formulations are optimization 
methods based on operations research, which determine the best possible production and/or 
transport plans by generally minimizing total costs, maximizing total profit, or considering other 
objective functions. Of the different mathematical programming techniques, most reviewed 
papers opt for integer linear programming or mixed integer linear programming approaches with 
total costs minimization objective functions, except Van Buer et al. (1999), Bertazzi et al. 
(2005) and  Archetti et al. (2011), who propose non-linear programming models, and Chen et al. 
(2009), who present a non-linear programming model with a maximization profit function. 
Absence of transportation-related objectives, such as travel distance minimization, minimization 
of delays, etc., is emphasized. Indeed only Van Buer et al. (1999) address a production routing 
problem with a model that contains an objective function which minimizes the total travel time. 

Table 4 presents the different costs included in the objective functions of the reviewed papers. 
Production costs, setup costs, inventory costs, and transport costs associated with travelling 
between a pair of nodes are the commonest costs included in the production and routing 
mathematical programming models. Regarding manufacturing costs, only seven references 
(Adulyasak et al., 2013, 2014; Amorim et al., 2013; Archetti et al., 2011; Armentano et al., 
2011; Bertazzi et al., 2005; Shiguemoto & Armentano, 2010), mainly published in recent years, 
contemplate jointly production and setup costs.  On the contrary, it is reported that the 
consideration of only setup costs was more usual in those papers published until 2011 (Bard & 
Nananukul, 2009a, 2009b, 2010; Boudia et al., 2007, 2008; Boudia & Prins, 2009; Pankaj 
Chandra & Fisher, 1994; Fumero & Vercellis, 1999; Kuhn & Liske, 2011). Inventory costs are 
included in all the reviewed models, except in those inventories where they are not allowed 
because of their short-term or operational orientation (Amorim et al., 2013; Chen et al., 2009; 
Van Buer et al., 1999) or in those where they are not modelled due to the model’s level of 
aggregation (Calvete et al., 2011). Despite Metters (1996) explicitly considering the decision 
variables representing inventory levels, their corresponding warehousing costs were not 
included in the objective function. Generally, these decision variables represent inventory levels 
at the end of each planning period, hence total inventory costs in the objective functions 
represent the total ending inventory costs. However, Lei et al. (2006) propose an objective 
function with ending inventory levels and total costs for customers and an average level of 
inventory costs for plants.  

Transportation costs can be considered differently. The most habitual way is to include 
transportation costs between nodes, which are generally proportional to the distances between 
them. However, Metters (1996), Fumero and Vercellis (1999), Van Buer et al. (1999) and Chen 
et al. (2009) neglect such transport costs in order to include others. For example, Metters (1996) 
includes fixed costs per vehicle used in each route, as do Fumero and Vercellis (1999), who also 
consider fixed costs per empty vehicles returning to the production plant and variable shipping 
costs per unit transported between nodes. Although they can be similar to the transport costs 
between nodes, some authors prefer considering the transport costs between location according 
to the time required to complete a journey (Chen et al., 2009; Lei et al., 2006; Van Buer et al., 
1999). Additionally, other costs, such as the fixed costs per delivery made to a customer, and 
the costs of acquiring and unloading purchased items at customer warehouses, are considered in 
Bard and Nananukul (2009a) and in Calvete et al. (2011), respectively. 
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The progressive consideration of unitary production costs in objective functions over the years 
is highlighted. While setup, inventory holding and transportation costs were considered jointly 
in first published references, except Metters (1996), Van Buer et al. (1999) and Lei et al. (2006), 
the production unitary costs appear for the first time in the objective function proposed by 
Bertazzi et al. (2005). In recent years, production costs in addition to setup, inventory and 
transportation costs can be considered a common pattern in the objective function models for 
production routing problems. However, the consideration of fixed costs per vehicle is more 
prevalent in those papers published until 2005. The reviewed papers do not mention whether the 
vehicle fleet is owned by the manufacturing company or if it is outsourced to logistics suppliers. 
In this context, fixed costs are associated with the vehicles owned by companies and can relate 
to the acquiring, maintenance or depreciation costs, while outsourced transport corresponds 
proportionally to distance costs, which are more frequent in those articles dealing with 
production routing problems which were published after 2005.  

 

 Solution approach 4.5

In this work, we have taken into account the classification for production planning models 
proposed by Buschkühl et al. (2010), who differentiate among several solution approaches 
types, such as mathematical programming-based approaches, Lagrangian heuristics, 
decomposition heuristics and metaheuristics, etc. 

Among the mathematical programming-based approaches relating to the reviewed papers, it is 
possible to distinguish among exact methods (EX), branch and price (B&P) approaches, branch 
and cut (B&C) approaches and mathematical programming-based heuristics. This work 
considers EX as those embedded in default solvers, such as the typical branch and bound 
algorithm for solving mixed-integer programs, and which stop after an optimal solution has 
been found, regardless of any efforts made in terms of the required computation time and 
memory. Based on the idea that most variables are non-basic and assume a value of zero in the 
optimal solution, in theory, it is necessary to consider only one subset of variables when solving 
the production routing problem. Hence the column generation method takes into account only 
those variables that have the potential to improve the objective function. Column generation can 
be hybridized with the branch-and-bound algorithm to generate a solution method called 
branch-and-price (B&P). Another possibility to cut the size of the solution space is to generate 
valid inequalities in order to cut off irrelevant parts. If valid inequalities are introduced into the 
course of a branch-and-bound algorithm, the solution approach is called branch-and-cut (B&C). 
The hybridization of mixed-integer mathematical programming solution procedures with 
heuristics (MP-H) can help find high quality solutions in a reasonable computational time by 
profoundly exploring the promising parts of the solution space (Archetti et al., 2011). 

Other solution approaches to solve a difficult optimization problem by approaching it with a 
simpler one are Lagrangian heuristics and decomposition heuristics. Lagrangian heuristics 
includes iterative solution approaches based on Lagrangian relaxation (LR). This method incurs 
an additional cost for violating relaxed inequality constraints by using Lagrangian multipliers. 
The solution to the relaxed problem comes very close to the optimal solution of the original 
problem. Decomposition heuristics divides the original problem into subproblems (generally 
production subproblems and routing subproblems), and then coordinates the solutions obtained 
by applying improvement heuristics. 
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According to Verdegay et al. (2008), the impossibility of discovering exact solutions 
corresponding to optimization problems, and the need to respond to the practical situations 
considered in many real-world cases, have led to an increased use of heuristic-type algorithms, 
which have proven valuable tools to provide solutions where exact algorithms do not. 
Metaheuristics has emerged as a result of the extensive application of these heuristic-type 
algorithms to many optimization problems. A metaheuristics can be defined as an iterative 
master process that guides and modifies subordinate heuristics operations to efficiently produce 
high quality solutions (Voss, Osman, & Roucairol, 1999). Metaheuristic procedures start from 
an initially provided solution. By exploring the search space and by exploiting accumulated 
search experience, they are able to obtain non-optimal solutions, which can largely satisfy the 
decision maker. Examples of metaheuristics algorithms include genetic algorithms (Holland, 
1975), tabu searches (TS) (Glover & McMillan, 1986; Glover, 1989, 1990), simulated annealing 
(SA) (Černý, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983), the greedy randomized adaptive 
search procedure (GRASP) (Feo & Resende, 1989), memetic algorithms (MA) (Moscato, 1989), 
ant colony optimization (ACO) (Dorigo, Maniezzo, & Colorni, 1996), the ant colony system 
(ACS) (Dorigo & Gambardella, 1997a, 1997b), adaptive large neighbourhood search (ALNS) 
(Ropke & Pisinger, 2006), scatter searches and path relinking (Glover, Laguna, & Martí, 2000; 
Glover, 1998), etc. 

Table 5 provides the solution approaches proposed in the reviewed papers. Metaheuristics and 
decomposition heuristics emerge as the commonest solution methods to tackle complex 
production routing problems. Eight reviewed papers propose different metaheuristic algorithms, 
while decomposition heuristics are proposed in six of the analyzed works. Mathematical 
programming-based approaches are proposed only by seven references. Finally, Lagrangian 
relaxation and ε-exact solution methods are presented only in Fumero and Vercellis (1999) and 
in Kuhn and Liske (2011), respectively. The progressive utilization of mathematical 
programming-based approaches is highlighted, especially B&P, B&C and MP-H to the 
detriment of decomposition heuristics, which has been proposed until 2009. Metaheuristics has 
been considered to be solution methods throughout the time frame corresponding to this survey. 
Among them, TS is the most frequent given its simplicity and the good results obtained, 
especially when combined with complementary improvement methods, such as path relinking. 
The rest of the metaheuristics are found only in one reference each, and they progressively 
appear in the corresponding references in performance and sophistication order.  

Next, details of each solution approach adopted by the different reviewed works are provided. 

 

4.5.1 Mathematical programming-based approaches 
 

Metters (1996) focuses on a practical application of a combined production routing problem 
about postal service division. The proposed model is solved near optimality after eliminating 
infeasible routes to hence reduce the possible number of routes and integer variables, and by 
using a mixed integer linear programming solver based on EX, such as a Simplex algorithm. 
Moreover, Amorim et al. (2013) quantify the impact of considering lot sizing versus batching in 
the production and distribution planning of perishable goods by solving the corresponding 
models with EX embedded in commercial solvers for small randomly generated instances. 
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In Bard and Nananukul (2009b) and Bard and Nananukul (2010), the original production 
routing problem is decomposed into a restricted master problem (relating to production 
problem) and several subproblems (corresponding to distribution and routing decisions) as they 
apply a column generation procedure. Bard and Nananukul (2009b) propose a two-step solution 
approach, which improves the initial B&P algorithm proposed by these authors to solve the 
corresponding subproblems based on firstly determining delivery quantities and then finding 
delivery routes by applying a VRP tabu search code (Carlton & Barnes, 1996) within the B&P 
framework. The computational results obtained by this solution approach improve the results 
obtained by the CPLEX solver within 1 hour of the CPU time by an average 12.2% for 
instances with up to 8 time periods and 50 customers. This improvement of solution approach 
performance in relation to the CPLEX solver is confirmed by the B&P algorithm used by Bard 
and Nananukul (2010), which adds a new branching strategy to deal with master problem 
degeneracy, to reduce the effects of symmetry, and to combine rounding heuristics and a tabu 
search with the original branch-and-price method. 

Adulyasak et al. (2013) present B&C approaches for both vehicle and non-vehicle index 
formulations. The vehicle index uses the minimum s-t cut algorithm of the Concorde callable 
library (Applegate, Bixby, Chvátal, & Cook, 2001). Moreover, subtour elimination inequalities 
are added to improve the proposed algorithm’s performance. For the non-vehicle index 
formulation, three different separation algorithms are employed to address the three different 
subtour eliminations constraints. Since it is very time-consuming to solve all the separation 
problems at each node of the branch-and-bound tree, an improvement cut generation strategy is 
adopted. Moreover, a heuristics to compute the upper bounds used in branch-and-cut algorithms 
is proposed. This heuristics is based on the adaptive large neighbourhood search (ALNS) 
framework proposed by Ropke and Pisinger (2006) for the VRP. Maximum level (ML) and 
order-up-to level (OU) inventory replenishment policies are made in the proposed index and 
non-index vehicle formulations. The results reveal that the vehicle index formulations are much 
better at finding optimal solutions. Problem instances with up 35 customers, 3 periods and 3 
vehicles are solved to optimality for the ML policy within 2 hours, as are problem instances 
with up 25 customers for the OU policy. Moreover, problem instances with up to 50 customers, 
3 time periods and 3 vehicles for the ML policy, and 35 customers, 6 time periods and 3 
vehicles, can also be solved with a multi-core CPU with 8 processors in an average computing 
time of 2.1 hours and 0.8 hours, respectively. 

Archetti et al. (2011) present two production and routing mathematical programming models. 
The first, which corresponds to a problem in which only one vehicle can be used in each 
delivery time instant, is solved by using a B&C algorithm in which the subtour elimination 
constraints by Gendreau et al. (1998) are introduced by using the separation algorithm of 
Padberg and Rinaldi (1991), and other valid inequalities (Archetti, Bertazzi, Hertz, & Speranza, 
2012) are added at the beginning of the optimization process. A set of generated instances is 
used to evaluate the proposed B&C algorithm’s performance, which obtains optimal results for 
instances with up 15 nodes in few seconds of computational time. Moreover, a model that 
considers an homogeneous fleet of vehicles with limited capacity is also presented. A three-step 
hybrid heuristic algorithm is proposed to solve the multivehicle problem by decomposing the 
problem into two subproblems, one on production and the other dealing with distribution, which 
are solved sequentially. Firstly, the distribution problem is solved by assuming infinite 
production capacity at the plant. The distribution subproblem is solved by applying a heuristics 
in which one retailer is inserted into the solution in each iteration. For each retailer, a mixed 
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integer linear programming model, referred to as the single retailer problem, is solved by 
applying an exact algorithm based on the properties of the optimal solution, and also on the 
feasibility and dominance relations among the partial solutions. The production subproblem is 
optimally solved because it’s a Wagner and Whitin (1958) class problem. Finally, the obtained 
solution is improved iteratively by removing and reinserting two retailers at a time, provided the 
solution is improved. The performance of this solution method is evaluated with the same data 
sets as in the B&C algorithm, and results that come close to optimality can also be obtained in 
short CPU times. 

 

4.5.2 Lagrangian heuristics 
 

Fumero and Vercellis (1999) consider a Lagrangian relaxation solution method based on 
relaxing balance inventory and vehicle capacity constraints, and by applying Lagrange 
multipliers to transform the original production routing problem into a dual model composed of 
four subproblems: (1) production; (2) inventory; (3) distribution; and (4) routing. These 
subproblems are solved by applying a simple procedure based on all-or-nothing criteria for the 
production subproblem; by a simple greedy procedure for the inventory subproblem; by using a 
linear programming solver with a distribution subproblem; and by transforming the routing 
subproblem into a minimum cost flow formulation. Moreover, a primal feasible solution and 
upper bounds are obtained heuristically to evaluate the effectiveness of the proposed solution 
method, which obtains an average gap of 5.5% if compared to this upper bound for instances 
with up to 12 customers, 10 finished goods and 8 time periods. 

 

4.5.3 Decomposition heuristics 
 

Chandra and Fisher (1994) decouple the original production routing problem to solve 
production and distribution subproblems separately and sequentially. Production scheduling is 
solved to optimality by adding valid inequalities and by using exact algorithms from the 
literature (Barany, Roy, & Wolsey, 1984; Leung, Magnanti, & Vachani, 1989). The distribution 
scheduling problem is then solved by taking into account the available inventories and 
production amounts obtained in the first step, and by also applying different heuristics, such as 
sweep (Gillett & Miller, 1974), neighbour rule (Rosenkrantz, Stearns, & Lewis, 1974) and 3-opt 
interchange (S. Lin & Kernighan, 1973), for each route created. Moreover, a coordinated 
production and distribution approach is proposed by using a local improvement heuristics to 
search for cost-reducing changes in the decoupled approach through the consolidation of 
deliveries and production schedules changes. Computational experiments run with three datasets 
demonstrate the value of coordinating production and routing with savings ranging between 3% 
to 20%, if compared to the decoupled approach, of 6% on average. 

Two hierarchical algorithms are proposed by Bertazzi et al. (2005) to solve a production routing 
problem after its decomposition. The first, referred to as VMI-PDP, is similar to that proposed 
by Chandra and Fisher (1994). In the VMI-PDP, the production subproblem is firstly solved by 
assuming that all the retailers are served daily. Then given the production quantities, the 
distribution subproblem is solved. Given the quantity to ship to each retailer in each time 
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instant, the production subproblem is solved again. The second algorithm, referred to as 
heuristic VMI-DP, is based on firstly solving the distribution subproblem, fixing the quantity 
that suffices to serve retailers as the initial production quantity, and then solving the production 
subproblem. The production problem is solved to optimality by building an acyclic network 
reformulation and by also determining the shortest path, as described in Lee and Nahmias 
(1993). The distribution and routing problem is solved by an iterative heuristic algorithm which 
inserts a retailer in each iteration. The solution obtained by hierarchically solving the 
subproblems can be improved by applying the iteratively improvement and coordination 
procedures between the production and distribution problems. In each iteration in the former, 
two retailers are temporarily removed from the current solution. Then retailers are inserted into 
the current solution and the production subproblem is solved in order to determine the optimal 
quantity to produce in each time instant. If this reduces the total cost, then the solution is 
modified accordingly. This iteration is repeated as long as the total cost is improved. The 
proposed algorithms are compared for the OU and fill-fill-dump inventory policies in relation to 
a traditional retailer managed inventory (RMI) policy based on randomly generated instances 
with 50 customers and 30 periods. The results illustrate the quality of the solutions obtained by 
using VMI-DP, which outperforms the RMI policy for all the considered instances, despite the 
required computational time being an average of 4 minutes. 

Lei et al. (2006) propose a two-step solution approach to solve a production routing problem. In 
the first step, the model is solved as a mixed integer linear programming problem that is subject 
to all the constraints in the original model, except the vehicle routings are restricted to direct 
shipments. This phase determines production quantities, the inventory levels in the plants and 
distribution centres, and the number of shippings and trips per vehicle, during each time period. 
Then a heuristic algorithm to consolidate less than load shipments to the distribution centres is 
proposed to avoid direct shipments proving inefficient in the first phase by determining the 
routes per vehicle at each plant during each period by dropping the respective indices. When 
compared to the CPLEX solver, the proposed two-step approach provides the same, or a better, 
solution in most of the numerical instances generated with a single plant and up to 12 
distribution centres, 2 vehicles and 4 time periods. Moreover, the proposed solution method is 
validated in a real-life supply network relating to a chemical company. 

In Boudia et al. (2008), two heuristics are proposed to solve the production routing problem. 
The first corresponds to an uncoupled approach in which the production plan is firstly 
calculated to optimality with a Wagner and Whitin (1958) method and after determining the 
distribution plan without modifying production decisions. Firstly, the set of deliveries to 
customers is calculated, then the routing problem is solved by applying Clarke and Wright 
(1964) heuristics for VRP. Finally, a local search improvement based on 2-opt and customer 
exchanges with two different strategies is performed. Two coupled heuristics are also proposed, 
which differ only as far as the local search procedure applied at the end is concerned. The first 
algorithm uses the same local search improvement as the decoupled approach. The second 
solution method considers a local search improvement procedure which can modify the quantity 
delivered to each customer in 1 day, the production day, the delivery date, the delivery trip and 
the position in this trip. These heuristics are composed of three phases prior to the local search 
improvement procedure: (1) determination of the quantities to deliver each day; (2) trip 
construction; and (3) determination of the definitive production dates. The first phase returns a 
provisional amount to produce and to deliver to each customer. The second phase also applies 
Clarke and Wright (1964) heuristics for VRP. The third phase determines the definitive 
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production plan based on the Wagner and Whitin (1958) algorithm. Computational tests are 
performed with benchmark instances, as presented in Boudia et al. (2005), which contain 
datasets with 50, 100 and 200 customers, 20 time periods and only one single product. The best 
results are obtained for the instances with 200 nodes by reducing total costs by an average of 
13.40% for the first coupled version algorithm and by 15.22% for the second coupled approach 
if compared to the decoupled solution method. Moreover, the corresponding average running 
times are 3.42 seconds and 10.43 seconds, respectively. 

An integer non-linear mathematical programming model for production and vehicle routing 
planning with time windows (VRPTW) and perishable products is proposed by Chen et al. 
(2009). The original model is converted into a non-linear programming model with non-
negative constraints and a VRPTW in the objective function. Hence two subproblems are 
obtained: production scheduling and VRPTW. The production scheduling problem is solved by 
using a direct search algorithm, called the Nelder-Mead method, which considers boundary 
constraints. The routing problem is solved by applying a heuristic insertion algorithm by 
considering production quantities and the time start production obtained in the production 
phase. Then customers are inserted with a minimum cost criteria or new routes are created. 
Finally, routes are improved by inserting or removing nodes. For the purpose of evaluating the 
proposed solution method, a group of instances has been generated and is based on the 
benchmark instances by Solomon (1987), with 3 products and a number of customers ranging 
from 5 to 100. The results illustrate that the proposed algorithm can solve the considered 
problem for instances with up to 75 retailers within 10 minutes. Small sized instances with 5 
and 6 retailers are generated to compare the performance of the proposed solution method in 
relation to the LINGO solver. The solutions of the proposed algorithm are better than the local 
optimal solutions found by LINGO with CPU times under 1s in most cases, while LINGO takes 
hours to find a local optimal solution.  

In Çetinkaya et al. (2009), the original problem is decomposed into inventory and routing 
subproblems, which are solved iteratively until a cost-based improvement for the overall 
solution cannot be found or the limit of the maximum number of iterations is reached. The 
inventory subproblem seeks to determine the weekly replenishment and shipment quantities at 
the distribution centres, bins, and direct delivery (DD) customers, and also considers 
requirements at other plants. Given the weekly replenishment and shipment quantities, the 
routing subproblem specifies the truck routes and minimizes the actual loading and routing 
costs. The algorithm starts with an initial solution in which the shipment quantities for each 
potential DD customer is set, based on that customer's corresponding demand, to satisfy the 
demand constraints. The replenishment quantities from the factory warehouse to the distribution 
centres, bins, and other plants are set, based on the remaining overall requirements of the 
corresponding locations, using inventory balance constraints. The load balance constraints and 
demand constraints are also taken into account to determine the remaining overall requirements 
by the shipment quantities of the other customers. After obtaining an initial solution, the routing 
subproblem is solved to determine the route-based setup costs and routes by applying pre-
processing to check the possible full-truck-load shipments and to then determine less-than-
truck-load routes. The routing subproblem is solved for each period separately by using the 
Clarke and Wright (1964) algorithm with an additional improvement phase. Finally, the 
production subproblem is solved optimally by using the CPLEX solver. The proposed model is 
validated by the real data from Frito-Lay North America and is compared with benchmark 
instances in relation to the policies used in the considered firm. The obtained results are up to 
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11% better than current policies on total costs and are calculated within approximately 10 
minutes.  

 

4.5.4 Metaheuristics 
 

Van Buer et al. (1999) solve a production routing problem based on the newspaper industry by 
using two local search algorithms and by also considering the option of recycling empty trucks 
at the end of routes to obtain cost savings. Starting with an initial solution obtained by a 
heuristic sort, a neighbourhood search relating to full insertion moves, lot and trucks insertion, 
and whole trucks insertions are included in the TS and SA heuristics. By means of 
computational experiments with real data from a newspaper producer, the authors conclude that 
the use or non-use of recycling is much more important than the choice between the better 
performing search algorithms. Furthermore, based on other nature behaviours, Calvete et al. 
(2011) present a bi-level ACS algorithm to solve the production-distribution-routing problem 
with multiple depots. In order to obtain an initial feasible solution, a nearest neighbour 
heuristics is applied. That is to say, while it is possible to add another retailer to the route, the 
nearest retailer to the incumbent retailer is selected to be visited from the set of accessible 
retailers that have not yet been visited. Then the lower level problem is solved to optimality. 
Next the algorithm parameters are initialized. In each iteration, a prescribed number of M 
feasible solutions for the bi-level problem is computed. The ant-based procedure starts with an 
ant that constructs a feasible multi-depot VRP solution. For this purpose, the ant, which 
represents a vehicle, starts at the super-depot (which is connected to the rest of depots with a 
null cost) and selects the depot to visit first. Afterwards, it successively selects the following 
retailer from the set of accessible retailers still to be visited. Whenever the selection of a retailer 
leads to an unfeasible solution due to the bounds imposed by vehicle capacity or because the 
driver's working time is exceeded, the ant returns to the super-depot via the depot visited and 
starts again until all the retailers have been visited. After crossing an arc, the local pheromone 
trail is updated. At the end of this iteration phase, the ant provides a set of routes that start and 
end at any depot. Then the lower level production problem is solved to optimally consider the 
information provided by the previous phase. Once the M feasible solutions of the bi-level 
problem have been obtained, the global pheromone trail is updated to reflect the quality of the 
solutions found. This process is iteratively run until a stop condition is reached. A set of small-
sized generated instances and a group of benchmark problems ranging from 48 to 288 retailers 
and 4 or 6 depots and plants have been used to perform computational experiments, and have 
shown efficiency in terms of the CPU time consumed. 

Boudia et al. (2007) propose a GRASP and two improved versions using either a reactive 
mechanism or a path-relinking process. The basic GRASP algorithm is based on a construction 
phase and a local search phase. The first phase determines the subset of customers to be visited, 
the amount to be delivered to each one (this amount may cover several consumption days), and 
the associated trips. First of all, the goal is to fulfil all the unmet demand for period t. A second 
step attempts to meet some of the demand during period t for future periods. In a third step, the 
Clarke and Wright (1964) savings heuristics is applied to improve the routing plan of vehicles. 
The production plan is also modified in a second phase by shifting some production days to 
achieve the best compromise between the setup and storage costs at the plant. The subsequent 
local search phase is based on changing the following for each customer in one day: the quantity 
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delivered; the production day; the delivery date; the delivery trip; the position in this trip. The 
proposed GRASP becomes reactive by allowing the algorithm to find the best value on the 
restricted candidate list (RCL) in a small set of allowed values. Moreover, a path relinking 
method is proposed to improve the basic GRASP. The benchmark instances from Boudia et al. 
(2005) are used to compare the results obtained by the basic GRASP, the reactive version and 
the two versions with the path relinking procedure with the decomposition heuristics proposed 
in Boudia et al. (2008). The four GRASP methods obtain better results in total costs terms 
despite the increase noted as far as computational times are concerned, which both depend on 
the number of customers of the problem instances. The savings obtained through integration 
increase with the instance size (18.5% on average if compared with the basic heuristics two-
phase decomposition method), while running times range from approximately 2 minutes (for 
instances with 50 customers) to 35 minutes (for instances with 200 customers). Bard and 
Nananukul (2009a) develop a two-phase approach to design a reactive TS algorithm to solve a 
production routing problem. In the first part of phase 1, an initial solution is found by solving an 
allocation model which determines customer delivery quantities. In the second part, these values 
become the demand for T independent routing problems, where T is the number of periods in 
the planning horizon. An efficient CVRP subroutine, also based on TS  (Carlton & Barnes, 
1996), is called to find the solutions. In phase 2, a neighbourhood search is performed to 
improve the allocations and routing assignments found in phase 1. The results obtained by 
performing computational experiments using the benchmark instances by Boudia et al. (2005) 
show improvements in all cases which range from 10% to 20% if compared to those obtained 
by the previous GRASP procedure of Boudia et al. (2007). However, the increase of between 3 
and 5 times in running times is emphasized. 

Later, Boudia and Prins (2009) address the same production routing problem by proposing an 
MA which creates an initial solution in 3 steps. In step 1, a production plan is determined 
without considering production capacities limitations. It is assumed in this step that the total 
amount to produce equals the total customer demand throughout the planning horizon minus the 
initial plant inventory. In step 2, the savings algorithm of Clarke and Wright (1964) is applied to 
determine the vehicle trips. Finally, the production plan is adjusted and repaired by applying a 
modified version of the Wagner and Whitin (1958) algorithm. Next, selection and crossover are 
performed to generate new solutions, which are improved with the local search procedure 
proposed in Boudia et al. (2007) before being selected by population management mechanisms. 
Computational tests are carried out with the dataset of instances in Boudia et al. (2007). Hence 
results obtained by the MA are compared to those obtained by the GRASP procedures and the 
decomposition heuristics proposed by the same authors. The experiments show that the MA can 
tackle the biggest instances (200 customers and 20 periods) in an average CPU time of 68 
minutes, and that it obtains 23% more savings if compared to a classical decoupled approach. 

Other TS applications are found in Shiguemoto and Armentano (2010) and in Armentano et al. 
(2011). A TS algorithm with a relaxation mechanism that allows the evaluation of infeasible 
solutions to guide a solution search is proposed in Shiguemoto and Armentano (2010). This 
algorithm constructs an initial solution by setting equal amounts to deliver to the demand levels 
by applying the Clarke and Wright (1964) algorithm to determine not only the routes per period, 
but also the production plan using an implementation of the Wagner and Whitin (1958) 
algorithm. A composite move is examined for each item, each customer and all the periods, and 
the move that leads to the smallest total cost is executed and stored in the short-term memory as 
a tabu. The composite move is based on three components: (1) transferring the maximum 
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quantity from one period to another without violating inventory bounds; (2) inserting this 
quantity into one route; and (3) determining a new production plan based on a Wagner and 
Whitin (1958) algorithm by taking into account the shift of the transferred amount. Finally, a 
diversification strategy is performed. This TS procedure is applied to the sets of single item 
instances generated by Bertazzi et al. (2005), whose results, which were obtained by their 
heuristics for the order-up-to level inventory policy, are compared to those obtained by the TS 
algorithm for a maximum level policy at the customer warehouses. The computational results 
indicate that TS provides an average total cost reduction of 48-50% if compared to the 
decomposition heuristic algorithm by Bertazzi et al. (2005), while the average computational 
time required by the TS procedure is approximately the same as that required by the previous 
heuristics with properly set stopping criteria values. A set of generated instances has also been 
used to evaluate the performance of the proposed TS procedure for multi-item production 
routing problems if compared to a decoupled approach. For a set of instances of 5 and 10 items, 
12 and 24 time periods, and 30, 50 and 100 customers, the proposed TS algorithm achieves 
58.97% total savings on average, while the overall computational time mean is more than 6 
times longer than that of the decoupled approach. Armentano et al. (2011) present two TS 
variants for the production routing problem: one with two phases, namely, construction and 
short-term memory, and one that also incorporates longer term memory to be used in a path 
relinking procedure. This approach also allows some infeasible solutions in the TS and path 
relinking procedures, which renders it easier to proceed to good solutions. Construction and 
short-term memory are determined in the same way as in Shiguemoto and Armentano (2010), 
but by considering the additional capacity constraints (production and trip length). Finally, a 
path relinking procedure is proposed to integrate intensification and diversification strategies 
into the solution method. All these solution procedures are tested in instances with multiple 
items generated by the authors, and also in the single item instances by Boudia et al. (2005). 
The two variants of the proposed TS algorithm yield good tradeoffs between the obtained 
savings and computational time. Moreover, these approaches outperform the MA developed by 
Boudia and Prins (2009) and the reactive TS proposed by Bard and Nananukul (2009a) in all the 
single item instances considered. The best results are obtained by the path relinking version, 
which achieves improvements in relation to up 8.57% for instances with 200 customers if 
compared to the reactive TS algorithm, although the increased computational time is an average 
of 46.82%. 

Adulyasak et al. (2012) propose an ALNS framework based on reducing the complexity of the 
production routing problem by decomposing it into several subproblems, which are easier to 
solve. The initial solution is obtained by solving a production-distribution problem with a fix-
and-optimize approach and a routing problem by using the Clarke and Wright (1964) heuristics. 
In additional, an initial solution is generated by applying a setup move procedure based on 
iteratively adding the inequalities by Fischetti and Lodi (2003) for local branching. These initial 
solutions are then improved in the next phase by applying ALNS. Binary variables are handled 
by the selection and transformation operators in the ALNS algorithm, whereas the optimal value 
of the remaining continuous variables is determined by a minimum cost network flow algorithm 
with an exact optimization algorithm. In order to evaluate the efficiency of the proposed  
solution method, computational experiments are performed with the benchmark instances 
proposed by Archetti et al. (2011) and Boudia et al. (2005). For the first dataset, the results 
obtained by the ALNS method are compared to those generated by the heuristic algorithm 
proposed by Archetti et al. (2011). For the second dataset, this comparison is made with the 
GRASP by Boudia et al. (2007), the reactive TS by Bard and Nananukul (2009a), the MA by 
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Boudia and Prins (2009) and the reactive TS with path relinking by Armentano et al. (2011). 
The proposed ALNS solution approach outperforms all the previous heuristics approaches as it 
provides high quality solutions. Thus, the improvements prove more relevant for the larger 
instances of the Boudia et al. (2005) datasets as the savings in total costs obtained is 7.8% 
versus the reactive TS with path relinking by Armentano et al. (2011) and the best previous 
solution method evaluated with this benchmark’s instances. However, the additional 
computational time required by ALNS is an average of 96.56 minutes, which is 47.58% longer 
than that used by the TS with path relinking.  
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Table 4. Modelling aspects of the reviewed papers 

 Modelling of 
objective function structure 

 

 

Production 
costs 

Setup 
costs 

Inventory 
costs 

Transport 
costs 

between 
nodes 

Transport 
time costs 

Fixed 
cost per 
vehicle 

Fixed 
cost per 
empty 
vehicle 

Variable 
cost per 
product 

transported 

Fixed cost 
per 

delivery 
made to a 
customer 

Acquiring 
and 

unloading 
cost 

Chandra and Fisher (1994) 
 

● ● ● 
 

● 
    Metters (1996) ● 

    
● 

    Fumero and Vercellis (1999) 
 

● ● 
  

● ● ● 
  Van Buer et al. (1999) 

    
● ● 

    Bertazzi et al.  (2005) ● ● ● ● 
 

● 
    Lei et al.  (2006) ● 

 
● ● ● 

     Boudia et al. (2007) 
 

● ● ● 
      Boudia et al.  (2008) 

 
● ● ● 

      Bard and Nananukul (2009a) 
 

● ● ● 
   

  
 Bard and Nananukul (2009b) 

 
● ● ● 

   
● ● 

 Boudia and Prins (2009) 
 

● ● ● 
      Chen et al. (2009) ● 

   
● 

     Çetinkaya et al.  (2009) 
  

● ● 
 

● 
    Bard and Nananukul (2010) 

 
● ● ● 

      Shiguemoto and Armentano (2010) ● ● ● ● 
 

● 
    Calvete et al. (2011) ● 

  
● 

     
● 

Archetti et al. (2011) ● ● ● ● 
      Armentano et al. (2011) ● ● ● ● 
 

● 
    Kuhn and Liske (2011) 

 
● ● ● 

      Adulyasak et al. (2012) ● ● ● ● 
      Adulyasak et al. (2013) ● ● ● ● 
      Amorim et al. (2013) ● ● 

 
● 

 
● 
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Table 5. Solution approaches of the reviewed papers 

 
Mathematical programming-

based approaches 
Lagrangian 
heuristics Decomposition 

heuristics 

Metaheuristics Other 
heuristics 

 EX B&P B&C MP-H LR TS SA GRASP MA ACS ALNS ε-exact 
 Chandra and Fisher (1994)      ●        

Metters (1996) ●             
Fumero and Vercellis (1999)     ●         
Van Buer et al. (1999)       ● ●      
Bertazzi et al.  (2005)      ●        
Lei et al.  (2006)      ●        
Boudia et al. (2007)         ●     
Boudia et al.  (2008)      ●        
Bard and Nananukul (2009a)       ●       
Bard and Nananukul (2009b)  ●            
Boudia and Prins (2009)          ●    
Chen et al. (2009)      ●        
Çetinkaya et al.  (2009)      ●        
Bard and Nananukul (2010)  ●            
Shiguemoto and Armentano (2010)       ●       
Calvete et al. (2011)           ●   
Archetti et al. (2011)   ● ●          
Armentano et al. (2011)       ●       
Kuhn and Liske (2011)             ● 
Adulyasak et al. (2012)            ●  
Adulyasak et al. (2013)   ●           
Amorim et al. (2013) ●             
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5 Discussion and further research directions 

Although production lot-sizing and VRP problems have been traditionally classified as mid-
term problems by Karimi et al. (2003) and Crainic and Laporte (1997), respectively, most of the 
reviewed articles do not explicitly state their correspondence to the tactical decision level. 
Moreover, different nomenclatures for the names of the periods into which the planning horizon 
is divided are identified according to the particular issues dealt with by the addressed problems. 
For those multiperiod models oriented to mid-term problems, the authors opt to use generic 
periods or to contemplate a planning horizon divided into several days. Obviously, the vehicle 
routing and the distribution of final products to customers can strongly impact on production 
planning and scheduling, especially where perishable goods are concerned. In this context, in 
which operational issues are prevalent, the time periods correspond to short frames, e.g., hours, 
or the planning horizon reduces to include a single period. This kind of production routing 
problem is found less frequently in the literature; indeed we have identified three papers that 
deal with the operational decision level (Amorim et al., 2013; Chen et al., 2009; Van Buer et al., 
1999). The main difference between tactical and operational production and the routing problem 
lies in the fact that, at the tactical level, distribution activities start at the end of each period, 
after production has been completed, while at operational level, the delivery process may start 
once customers’ orders have been completed to more accurately and better synchronize the two 
planning processes (Amorim et al., 2013). Moreover in this operational decision level context, 
with products that have a very short lifespan, no inventory is carried from one planning horizon 
to the next. Hence the inventories equations at the production plant and customer warehouses 
are not included in the problem. 

The majority of the reviewed papers assume that a single global manager coordinates the 
decisions made on production, inventories and routing with a centralized approach (Perea-
López, Ydstie, & Grossmann, 2003). Accordingly, this decision maker has total visibility and 
control over the production plants and retailers, and can individually manage the inventory 
levels at his/her customer warehouses, as in a VMI system enriched with production and routing 
decisions. Along these lines, some of the reviewed papers focus on evaluating different 
inventory policies (maximum level, order-up to level and fill-fill dump) for the replenishment of 
capacitated retailer warehouses.  

On the other hand, the modelling of the production system is done in a general way without 
considering typical lot-sizing extensions, such as back-orders, setup carry-overs, sequencing, 
and parallel machines, which relate more to operational issues, but most of the analyzed papers 
consider warehouses with limited capacity in production facilities. Moreover, the considered 
production-distribution systems are always composed of only one production plant (except in 
Calvete et al., 2011 and Lei et al., 2006) and several customers, whose number may vary. In 
fact, the number of customers has a much stronger impact on problem complexity than the 
number of production sites because of the exponential growth of problem size when 
determining transport routes. All the reviewed papers contemplate a routing problem with 
multiple capacitated vehicles, which implies solving another bin packing problem. However, 
classical VRP assumptions are frequently considered, such as a homogenous and limited fleet of 
vehicles that only can perform one trip per period and can only visit each node at least once. In 
this sense, these assumptions oversimplify the routing problem as far as real-world distribution 
networks are concerned which, under dynamic conditions, can render these problems unfeasible. 
Additionally, neither are the trade-offs between several conflicting criteria managed by decision 
makers in such environments contemplated because all the reviewed papers opt for single-
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objective models, which generally offer a minimized total costs function, including the 
production, setups, inventory and transport costs relating to total travelled distances and less 
frequently fixed costs per used vehicles. Given all these assumptions, solutions for real 
production routing problems and practical applications in industrial environments are scarce, 
hence the proposed models are validated mainly with numerical randomly generated datasets. 

The main efforts made by the authors centre more on developing efficient solution methods for 
these production and distribution environments, despite their artificiality. The formidable 
complexity of the considered problem, formed by a combination of a lot-sizing problem and a 
capacitated multiperiod vehicle routing problem, indicates a common pattern for solving such 
problems. In general, most of the reviewed articles opt for decoupling production and routing 
decision,s and for solving the corresponding problems separately with proper solution methods. 
For example, production planning problem is frequently solved to optimality by applying the 
Wagner and Whitin (1958) algorithm, or its variations, or by using the exact methods embedded 
in MIP solvers, while vehicle routing is overcome with several well-known heuristic algorithms 
(e.g., Clarke and Wright, 1964). This approach can also be used as a starting point or an initial 
solution for constructive search heuristics and metaheuristics, which are used as post-processing 
solution improvement methods. Therefore, these solution procedures attempt to interconnect 
both problems in order to preserve the coordination of production and routing planning 
decisions and the corresponding savings. The impossibility of obtaining optimal solutions given 
the heuristic nature of the solution methods proposed is reflected in the progressive evolution 
made by the level of sophistication of the solution methods to obtain better results, despite the 
longer computational times required if compared to previous solution approaches. In this sense, 
a current trend in developing exact algorithms to solve the production routing problem has been 
identified in the works of Bard and Nananukul (2010); Archetti et al. (2011) and Adulyasak et 
al. (2013). 

Apart from the representative seminal works of Chandra and Fisher (1994) and Fumero and 
Vercellis (1999), to the best of our knowledge, there is a core of researchers (Boudia and Prins; 
Bard and Nananukul; Armentano and Shiguemoto; Adulyasak, Cordeau and Jans and Archetti 
and Bertazzi) who offer 12 of the 22 reviewed papers to address production routing problems. 
They can be considered reference authors given their continuous work in this area. Despite their 
shared point of view, in this group of papers, only Armentano et al. (2011) consider a 
multiproduct production routing problem with production capacity constraints, while 
Shiguemoto and Armentano (2010) address a multiproduct, but uncapacitated, problem. On 
occasion, this group of reference papers compares the proposed solution methods with 
decoupled approaches (Chandra and Fisher, 1994; Fumero and Vercellis, 1999) and the optimal 
results obtained by MIP solvers for only small instances (Amorim et al., 2013). Nonetheless, a 
comparison of the performance of the proposed solution methods is generally made with their 
previously published solution methods and by using the typical benchmark instances available 
in the literature (Archetti et al., 2011; Boudia et al., 2005) in accordance with the problem 
parameters considered. For example, the instances of Archetti et al. (2011) take into account 
aspects such as inventory costs at customer warehouses, initial inventory at customer 
warehouses, and varying transportation and production costs, but not production and inventory 
capacity limitations. However, the datasets of Boudia et al. (2005) contemplate only one 
product, zero inventory costs at the customer warehouses, and problem sizes are generally 
larger. One of the drawbacks of both datasets is oversized available capacities.  
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According to the drawbacks detected in the reviewed papers, a set of future research lines can 
be identified to improve current production and routing models: 

 More realistic models  5.1

Firms in industrial sectors need models that provide solutions to their current production and 
routing challenges. Some commercial software suites are able to provide solutions to supply 
chain design and transport planning such as Supply Chain Guru (Llamasoft, 2015), CAPS 
Logistics (Infor, 2015), Insight  (Insight, 2015) and JDA Supply Chain Planning (JDA, 2015), 
However, in the production and routing research field, there is room for improvement by 
developing models which incorporate more realistic planning issues on production, inventory 
and routing aspects. In this sense, the consideration of more accurately modelled production 
systems (e.g., including setup times, several production lines, overtimes, subcontrating 
production, etc.) and other routing problems like the configuration of time windows at customer 
warehouses, backhauling or open routes without having to return to the central depot, among 
others, can enrich production and routing models, and can also facilitate their practical 
application in real-world industries. Accordingly, the additional complexity of the resulting 
models which incorporate these additional and more realistic issues must necessarily be 
accompanied by solution approaches which provide good quality solutions in reasonable 
computational times for industrial and logistics managers or for decision makers in these firms.  

 Consideration of uncertainty 5.2

Production routing problem environments can be subjected to the influence of uncertainties that 
relate to procurement, manufacturing and transportation activities, and also to customer 
preferences or market conditions. However of the reviewed papers, only Chen et al. (2009) 
consider uncertainty conditions relating to demand levels. According to Mula et al. (2006) and 
to Peidro et al. (2009), the literature provides several approaches to address these uncertainty 
conditions, such as the analytical approaches, simulation approaches and hybrid approaches 
(based on the integration of analytical and simulation models) that represent uncertainties based 
on probability distributions, which are generally based on historic data. However, when 
statistical data are unreliable or are not available, models based on probability distributions are 
not the best choice (Wang & Shu, 2005). In this context, fuzzy mathematical programming can 
be an alternative approach to model and integrate all the different types of uncertainty inherent 
to production and routing planning processes to help develop robust models that can give 
flexible, valid plans in these uncertainty environments. 

 Focus on inbound vehicle routing 5.3

The production and transport routing problem is defined by the consideration of simultaneously 
planning production amounts and routes to serve manufactured final products to the respective 
customers. However, the consideration of vehicle routing planning for inbound logistic 
processes that perform the procurement of parts and raw materials in a material requirement 
planning industrial system can be most challenging. In line with this, vehicles would travel 
among multiple suppliers to collect the components required to manufacture finished goods 
according to the bill of materials, and also to the corresponding stock levels at the production 
plants. To address this new problem, procurement vehicle routes can be better synchronized 
with production processes, thus obtaining savings in logistic, production and inventory costs, 
especially in those industries with complex bills of materials, such as automobile and aeronautic 
firms, which are generally responsible for their procurement transport processes.  
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 Globalization and different transport modes 5.4

The increase in worldwide commercial transactions corresponding to the procurement of 
components and raw materials in countries with lower labour costs made by western companies 
and their corresponding sales in different countries or continents implies developing production 
and routing models that explicitly consider long-distance transportation issues and different 
transport modes (e.g., truck, railway, ship, plane) with their corresponding travel transit times, 
costs and inherent routing constraints. Moreover for both short- and long-distance transport 
processes in production routing problems, the simultaneous consideration of different collection 
and delivery strategies, such as direct deliveries, milk runs, grouping and cross-docking 
consolidation, can also improve the flow of products among partners, cut transport delays and, 
hence, lower larger inventory levels at warehouses that go against them. 

 Environmental and social responsible constraints 5.5

Current production and distribution logistics strategies are not sustainable in the long term 
because of their negative impact on environmental and social aspects despite being 
economically feasible. For example, relocation of manufacturing activities in countries with 
lower costs can increase the carbon footprint associated with the production and delivery of 
products, as well as destruction of employment in countries of origin. Hence, a new perspective 
that focuses on evaluating plans from not only the economic cost viewpoint, but also from an 
ecological and social perspective, have to be taken into account when modelling production 
routing problems. In this sense, the new constraints relating to waste management, emission of 
dangerous gases and noises produced by production (Chaabane, Ramudhin, & Paquet, 2012; 
Deif, 2011; Elhedhli & Merrick, 2012) and transport processes (Demir, Bektaş, & Laporte, 
2014; C. Lin, Choy, Ho, Chung, & Lam, 2014; Park & Chae, 2014), and improved worker 
conditions, among others, can be added to current production routing problem models to tackle 
environmental and social requirements. 

 Better benchmarks 5.6

In order to validate proposed production and transport routing problems, and examine the 
effectiveness of solution methods, a set of benchmarks inspired in real industrial and logistics 
environments is required. To the best of our knowledge, current available dataset instances in 
the literature are artificially generated and are oversized if compared with available capacities. 
In this sense, the development of a new group of instances which contains parameters deriving 
from a rich description of constraints related to realistic production routing problems would be 
interesting. The consideration of the above future research lines in designing this new dataset 
would also be valuable, as would their publication on the Internet where they would be 
available for researchers in this field. 

 

6 Conclusions 

This work reviews the optimization models for integrated production and transport routing 
planning decisions given the recent interest shown in this field, and also the increase in the 
number of publications on production routing problems. To examine the selected papers, a 
classification based on the analysis of the following criteria has been proposed: production; 
inventory and routing aspects; modelling aspects of the objective function structure and solution 
approach. Moreover, a discussion of the findings and the proposal of future research lines have 
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been provided in accordance with the detected trends and drawbacks. The reviewed papers 
dealing with production and routing planning decisions present models with simple production 
and transport issues and single objective approaches. Real applications in industrial 
environments are not common because researchers centre more on developing efficient solution 
methods that are validated with artificially generated datasets. In our opinion, the production 
routing problem is extremely challenging. Therefore, effective methods that can obtain good 
quality solutions in a reasonable running time for highly realistic models which consider 
uncertain conditions, inbound logistic processes and different transport modes is a path left open 
to conduct new research works given their possible impact on industrial applications. 
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