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Abstract

In this paper, from Traub’s method and by applying weight function technique, a bi-parametric family of
predictor-corrector iterative schemes with optimal fourth-order of convergence, for solving nonlinear equa-
tions, is presented. By using some algebraic manipulations and a divided difference operator, we extend this
family to the multidimensional case, preserving its order of convergence. Some numerical test are made in
order to confirm the theoretical results and to compare the new methods with other known ones.
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1. Introduction

Solving nonlinear equations and systems is an important task in theory and practice for many branches of
Science and Engineering. Sometimes the nonlinear system is approximated by a system of linear equations but,
when this approximation is not satisfactory, the problem must be confronted directly.

A way to design iterative methods for solving nonlinear systems is to adapt the methods of the scalar case,
but not always these schemes can be extended to multidimensional case, at least, in a direct form. There exist
some methods in the scalar case which are directly extended to system of nonlinear equations, others have been
specially designed for systems. In the design of iterative methods we must bear in mind that, while in the scalar
case functional evaluation of the nonlinear function and its derivatives have the same computational cost, this
is not true in the vectorial case. For solving nonlinear systems, it is much more efficient a scheme that needs
an evaluation of the Jacobian matrix and two functions, per iteration, than a scheme with two evaluations of
the Jacobian matrix and an evaluation of the function per iteration; being both them, in the scalar case, optimal
in the sense of Kung-Traub conjecture [1]. They conjectured that an iterative method that needs d functional
evaluations per iteration has, at most, order 2d−1; when this bound is reached, the method is called optimal.
Moreover, recently many researchers are working on the extension to systems of one-dimensional schemes
which, a priori, do not have direct extension to multidimensional case (see, for example, [2, 3, 4]).

In the last years, the weight function procedure has been used in the development of high order iterative
methods for systems, see for example the papers of Sharma et al. [5], [6], the schemes published in [7], where
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the authors apply them for solving the problem of preliminary orbit determination of artificial satellites, and the
work of Abad et al. [8], where the authors apply the designed methods on the Global Positioning System.

The proliferation of iterative methods for solving nonlinear equations has been spectacular in the last years
(in [9] we can see a good review). Some of these methods can be transferred easily to the context of nonlinear
systems, but others, at least apparently, cannot be extended to multidimensional case. In this paper, we want
to prove that this translation is possible, at least for many of the known multipoint iterative methods designed
for nonlinear equations, making use of tools such as the divided difference operator. We understand that this
translation only has interest if the order of convergence is preserved, so we will pay attention to the conditions
under which the order is kept.

The rest of the paper is organized as follows: in Section 2 we design a fourth-order parametric family
for solving nonlinear equation and we analyze its order of convergence. In Section 3 the previous family is
generalized for solving nonlinear systems preserving its order of convergence. Section 4 is devoted to the
numerical tests that confirm the theoretical results and allow us to compare the proposed schemes with some
known ones. The paper finishes with some conclusions and remarks.

2. Design of a scalar parametric family

We are going to design a parametric family of iterative methods for finding a simple root ξ of a nonlinear
equation f(x) = 0, where f is a real function f : I ⊆ R −→ R, defined in an open interval I .

We consider the multipoint expression:

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)
, (1)

corresponding to the well known Traub’s method (see [10]), with order of convergence three. This scheme
is not optimal in the sense of Kung-Traub conjecture. By using a weight function, we propose the following
generalization of (1):

yk = xk − α
f(xk)

f ′(xk)
,

xk+1 = yk − h(µ(xk))
f(yk)

f ′(xk)
, (2)

where h(µ(xk)) is a function of real variable µ(xk) =
a1f(xk) + a2f(yk)

b1f(xk) + b2f(yk)
and α, a1, a2, b1 and b2 are real

parameters. In the following result, we present the conditions that function h must satisfy for obtaining a class
of iterative methods of order of convergence at least four, becoming optimal schemes.

Theorem 1. Let f : I ⊆ R→ R be a sufficiently differentiable function in an open interval I , such that ξ ∈ I
is a simple solution of the nonlinear equation f(x) = 0. Let h : R → R be any sufficiently differentiable

function such that h(c) = 1, h′(c) =
2b21

a2b1 − a1b2
, |h′′(c)| < ∞, where c =

a1
b1

. If x0 is close enough to ξ,

α = 1 and b1 6= 0 then method defined by (2) has fourth-order of convergence and its error equation is:

ek+1 =
1

2b41

[
(10b41 + 4b31b2 + h′′(c)(−a22b21 + 2a1a2b1b2 − a21b22))c32 − 2b41c2c3

]
e4k +O(e5k), (3)
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where ck =
1

k!

f (k)(ξ)

f ′(ξ)
, k = 2, 3, ... and ek = xk − ξ.

Proof. To prove the local order of convergence we use the Taylor series expansion of the functions involved
around the iterative expression

f(xk) = f ′(ξ)(ek + c2e
2
k + c3e

3
k + c4c

4
k) +O(e5k),

f ′(xk) = f ′(ξ)(1 + 2c2ek + 3c3e
2
k + 4c4e

3
k) +O(e4k).

By substituting these expressions in the first step of (2) we obtain

yk = ξ − (1− α)ek + αc2e
2
k − 2α(c32 − c3)e3k + α(−4c32 + 7c2c3 − 3c4)e

4
k +O(e5k).

So,
f(yk) = f ′(ξ)(A1ek +A2e

2
k +A3e

3
k +A4e

4
k) +O(e5k),

where A1 = 1 − α, A2 = (1 − α + α2)c2, A3 = −2α2c22 + (1 − α + 3α2 − α3)c3 and A4 = 5α2c32 −
α2(10− 3α)c2c3 + (1− α+ 6α2 − 4α3 + α4)c4. Hence, using the expansions of f(xk) and f(yk), we obtain
the expression of variable µ(xk):

µ(xk) =
a1f(xk) + a2f(yk)

b1f(xk) + b2f(yk)
= B0 +B1ek +B2e

2
k +B3e

3
k +O(e4k),

where B0 =
m1

m2
, with m1 = a1+a2−αa2 and m2 = b1+ b2−αb2, B1 =

α2m3

m3
2

c2, with m3 = a2b1−a1b2,

B2 =
α2m3

m3
2

[(3b1 + (3 − 3α + α2)c22 + (α − 3)m2c3] and B3 =
α2m3

m4
2

(n1c
3
2 + n2c2c3 + 2n3c2) with

n1 = 8b21+2(3−3α+α2)b2, n2 = (2α−7)b21+(α3−7α2+18α−14)b1b2−(α4−6α3+14α2−16α+7)b22
and n3 = m2

2(6− 4α+ α2).
Taking into account that µ(xk)→ c =

a1
b1

, when xk → ξ, and by using Taylor series expansion of h(µ(xk))

around c, we obtain

h(µ(xk)) ≈ h(c) + h′(c)(µ(xk)− c) +
h′′(c)

2
(µ(xk)− c)2

and we obtain the error equation of (2) in the form:

ek+1 = (1− α)D1ek +D2e
2
k +D3e

3
k +D4e

4
k +O(e5k).

We observe that if α = 1 the order of convergence is at least 2. Then, with this value of α, the error equation
takes the form ek+1 = D′2e

2
k+D

′
3e

3
k+D

′
4e

4
k+O(e5k), whereD′2 = (1−h(c))c2. So, if h(c) = 1 we will obtain

order of convergence at least 3 and the error equation can be expressed as ek+1 = D′′3e
3
k + D′′4e

4
k + O(e5k),

where D′′3 =
1

b21
(2b21 − m3h

′(c))c22. Now, if we take h′(c) = 2b21/m3 we obtain an order of convergence at

least 4 and the error equation takes the form (3).

We note that the family of iterative methods published by the authors in [11] is a particular case of (2) with
a1 = 0. The class of schemes presented by Chun in [12] is also a particular case of (2) with a1 = b2 = 0. On
the other hand, if a1 = 0, a2 = 1, b1 = 1 and we take h(µ) = 1 + 2µ, King’s family [13] is obtained.

For the numerical tests we will use the following members of family (2):
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• if a1 = 0, a2 = 2, b1 = 1/2, b2 = 0 and h(µ) =
6

6− 3µ− µ2
, then the iterative scheme has the

expression

xk+1 = yk −
2f(xk) + 3f(yk)

2f(xk)− f(yk)
f(yk)

f ′(xk)
,

• if a1 = 1, a2 = 0, b1 = 1, b2 = −1 and h(µ) = −1 + 2µ, then the iterative method takes the form

xk+1 = yk −
f(xk) + f(yk)

f(xk)− f(yk)
f(yk)

f ′(xk)
,

where yk denotes in both cases Newton’s iteration. These iterative schemes are denoted by ME1 and ME2,
respectively.

3. Generalization to multidimensional case

In this section we aim to give a generalization of the family of methods (2) obtained in the previous section,
for solving a nonlinear system F (x) = 0, where F : D ⊆ Rn → Rn, preserving the order convergence.
The idea that we will present can be applied, with the same objective, on many iterative methods designed for
solving nonlinear equations.

To extend the iterative scheme (2), with α = 1, to the multidimensional case, it is necessary to rewrite the
iterative expression so that no functional evaluation of the nonlinear function remains in the denominator (as the

authors did in [2, 3]). To achieve this objective, consider the first step of the iterative process yk = xk−
f(xk)

f ′(xk)

that can be rewritten as f(xk) = (xk − yk)f ′(xk). Using this, we can rewrite the quotient
f(yk)

f(xk)
as

f(yk)

f(xk)
=
f(xk) + f(yk)− f(xk)

f(xk)
= 1− f [xk, yk]

f ′(xk)
.

So, variable µ can be written as

µ(xk) =

a1 + a2
f(yk)

f(xk)

b1 + b2
f(yk)

f(xk)

=
(a1 + a2)f

′(xk)− a2f [xk, yk]
(b1 + b2)f ′(xk)− b2f [xk, yk]

.

By using this transformation, the proposed family (2), with α = 1, is generalizable to several variables in the
following way:

y(k) = x(k) − [F ′(x(k))]−1F (x(k)),

x(k+1) = y(k) −H(η(k))[F ′(x(k))]−1F (y(k)), (4)

where η(k) = M−1N , M = (b1 + b2)I − b2T , N = (a1 + a2)I − a2T , T = [F ′(x(k))]−1[x(k), y(k);F ] and
a1, a2, b1 and b2 are real parameters.

Let us denote by F ′(x(k)) the Jacobian matrix of F evaluated in the kth-iteration and by [x(k), y(k);F ] the
divided difference operator defined in [14] as the function [·, ·;F ] : D×D ⊂ Rn ×Rn → L(Rn) that satisfies
[x, y;F ](x− y) = F (x)− F (y), ∀x, y ∈ D.
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Since the analysis of the local convergence is based on the Taylor series expansion around the solution, we
need to obtain the corresponding development of the divided difference operator. To achieve this, we use the
Genocchi-Hermite formula (see [15])

[x, x+ h;F ] =

∫ 1

0
F ′(x+ th)dt

and, by developing F ′(x+ th) in Taylor series around x, we obtain∫ 1

0
F ′(x+ yh)dt = F ′(x) +

1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3). (5)

Defining e = x− ξ and assuming that F ′(ξ) is nonsingular, we have:

F (x) = F ′(ξ)(e+ C2e
2 + C3e

3 + C4e
4) +O(e5),

F ′(x) = F ′(ξ)(I + 2C2e+ 3C3e
2 + 4C4e

3) +O(e4),
F ′′(x) = F ′(ξ)(2C2 + 6C3e+ 12C4e

2) +O(e3), (6)

F ′′′(x) = F ′(ξ)(6C3 + 24C4e) +O(e2),

where I denotes the identity matrix of size n × n and Cq =
1

q!
[F ′(ξ)]−1F (q)(ξ), q ≥ 2. Replacing these

developments in the formula of Genocchi-Hermite and denoting the second point of the divided difference by
y = x+ h and the error of the first step by ey = y − ξ, we have

[x, y;F ] = F ′(ξ)
[
I + C2(ey + e) + C3e

2
]
+O(e3).

In particular, if y is the approximation of the solution provided by Newton’s method, i.e., h = x − y =
[F ′(x)]−1F (x), we obtain

[x, y;F ] = F ′(ξ)
[
I + C2e+ (C2

2 + C3)e
2
]
+O(e3).

On the other hand, if we denote by X = Rn×n the space of all n× n real matrices, the weight function in
this context is H : X → X such that

(i) H ′(u)(v) = H1uv, being H ′ the first derivative of H , H ′ : X → L(X), H1 ∈ R and L(X) denotes the
space of linear mappings from X to itself.

(ii) H ′′(u, v)(w) = H2uvw, being H ′′ the second derivative of H , H ′′ : X ×X → L(X) and H2 ∈ R.

Then, the Taylor expansion of H around the identity matrix gives

H(η(k)) ≈ H(I) +H1(η
(k) − I) + 1

2
H2(η

(k) − I)2.

In order to establish the order of convergence of (4), we present the following result in whose proof we use
the tools introduced in [16].

Theorem 2. Let F : D ⊆ Rn → Rn be a sufficiently differentiable function in a convex set D and ξ ∈ D a
solution of F (x) = 0. Let us suppose that F ′(x) is continuous and nonsingular in ξ and x(0) is close enough
to ξ. Then, the sequence {x(k)}k≥0 obtained from (4) converge to ξ, with order of convergence four, if matrix
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function H satisfies H(c) = I , H ′(c) = H1I and ‖H ′′(c)‖ <∞, where c = a1
b1
I , H1 =

2b21
a2b1−a1b2 and b1 6= 0.

Furthermore, the error equation is

e(k+1) =
1

2b41

[
(10b41 + 4b31b2 −H ′′(c)(a22b21 − 2a1a2b1b2 + a21b

2
2))C

3
2 − 2b41C2C3

]
e(k)

4
+O(e(k)5),

where Cj =
1
j! [F

′(ξ)]−1]F (j)(ξ), j = 2, 3, ... and e(k) = x(k) − ξ.

Proof. Using the Taylor series expansion of F (x(k)) and F ′(x(k)) around ξ, we obtain

F (x(k)) = F ′(ξ)(e(k) + C2e
(k)2 + C3e

(k)3 + C4e
(k)4 + C5e

(k)5) +O(e(k)6),
F ′(x(k)) = F ′(ξ)(I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4) +O(e(k)4),

[F ′(x(k))]−1 = (I +X2e
(k) +X3e

(k)2 +X4e
(k)3)[F ′(ξ)]−1 +O(e(k)4),

where X2 = −2C2, X3 = 4C2
2 − 3C3 and X4 = −8C3

2 + 6C2C3 + 6C3C2 − 4C4 are obtained requiring
[F ′(x(k))]−1F (x(k)) = I . Substituting these Taylor expansions in the first step of (4), we get

y(k) = ξ +A2e
(k)2 +A3e

(k)3 +A4e
(k)4 +O(e(k)

5
),

where A2 = C2, A3 = 2(C3 − C2
2 ) and A4 = 4C3

2 − 4C2C3 − 3C3C2 + 3C4.
Using again Taylor series for developing F (y(k)) around ξ, we have

F (y(k)) = F ′(ξ)
[
A2e

(k)2 +A3e
(k)3 +A5e

(k)4
]
+O(e(k)

5
),

where A5 = 5C3
2 − 4C2C3 − 3C3C2 + 3C4.

Now, by using expressions (5) and (6), we obtain:

[x(k), y(k);F ] = F ′(x) +
1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3)

= F ′(ξ)
(
I + P1e

(k) + P2e
(k)2 + P3e

(k)3
)
+O(e(k)4),

where h = y(k) − x(k) = −[F ′(x(k))]−1F (x(k)), P1 = C2, P2 = C2
2 + C3 and P3 = −2C3

2 + 2C2C3 +
C3C2 + C4. For obtaining the expressions of M and N , we need the Taylor expansion of T

T = [F ′(x(k))]−1[x(k), y(k);F ] = I + T1e
(k) + T2e

(k)2 + T3e
(k)3 +O(e(k)4), (7)

being T1 = P1 +X2 and Tm = Pm +

m∑
j=1

XjPm−j+1 +Xm+1,m = 2, 3, ... Using this result, we obtain the

expressions for M and N :

M = (b1 + b2)I − b2T = b1I +M1e
(k) +M2e

(k)2 +M3e
(k)3 +M4e

(k)4 +O(e(k)5),
N = (a1 + a2)I − a2T = a1I +N1e

(k) +N2e
(k)2 +N3e

(k)3 +N4e
(k)4 +O(e(k)5),

where Mj = −b2Tj , Nj = −a2Tj , j = 1, 2, .... Let us consider the inverse of operator M

M−1 = Y1 + Y2e
(k) + Y3e

(k)2 + Y4e
(k)3 + Y5e

(k)4 +O(e(k)5).
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For determining coefficients Yj we use condition M−1M = I . Then, Y1 =
1

b1
I and Ys = − 1

b1

s∑
j=1

YjMs−j ,

s = 2, 3, ....
Finally, we express variable η(x(k)) of the weight-function H(η(x(k))) in the form:

η(k) =
a1
b1
I + L1e

(k) + L2e
(k)2 + L3e

(k)3 + L4e
(k)4 +O(e(k)5),

being L1 =
1

b1
I + a1Y2 and Lt =

1

b1
Nt +

t∑
j=1

(a1Yj+1 + Yj+1Nt−j), t = 2, 3, .... This result allows us to

expand H(η(x(k))) around c by Taylor series

H(η(k)) ≈ H(c) +H1(η
(k) − c) + 1

2
H2(η

(k) − c)2

= H(c) + S1e
(k) + S2e

(k)2 + S3e
(k)3 + S4e

(k)4 , (8)

where S1 = H1L1, S2 = H1L2+
1
2H2L

2
1, S3 = H1L3+

1
2H2(L1L2+L2L1) and S4 = H1L4+

1
2H2(L1L3+

L2
2 + L3L1).

Now,
[F ′(x(k))]−1F (y(k)) = R2e

(k)2 +R3e
(k)3 +R4e

(k)4 +O(e(k)5),
where R2 = −A2, R3 = −(A3 +X2A2) and R4 = A5 −X2A3 −X3A2. Then,

H(η(k))[F ′(x(k))]−1F (y(k)) = Q2e
(k)2 +Q3e

(k)3 +Q4e
(k)4 +O(e(k)5),

where Q2 = H(c)R2, Q3 = H(c)R3 +S1R2 and Q4 = H(c)R4 +S1R3 +S2R2. Finally, we obtain the error
equation in the form

e(k+1) = (I −H(c))C2e
(k)2 +K3e

(k)3 +K4e
(k)4 +O(e(k)5).

If H(c) = I we get order of convergence at least three and the error equation takes the form

e(k+1) = (2b21I − (a2b1 − a1b2)H ′(c))C2
2e

(k)3 +K ′4e
(k)4 +O(e(k)5).

If H ′(c) =
2b21

a2b1 − a1b2
I we obtain

e(k+1) =
1

2b41

[
(10b41 + 4b31b2 −H ′′(c)(a22b21 − 2a1a2b1b2 + a21b

2
2))C

3
2 − 2b41C2C3

]
e(k)

4
+O(e(k)5),

and the proof is finished.
Next, by choosing different weight functions and values of the parameters, we present some particular

iterative schemes. We assume that

H(η(k)) = I +
2b21

a2b1 − a1b2

(
η(k) − a1

b1
I

)
,

where

η(k) =M−1N =
[
(b1 + b2)I − b2[F ′(x(k))]−1[x(k), y(k);F ]

]−1 [
(a1 + a2)I − a2[F ′(x(k))]−1[x(k), y(k);F ]

]
.

In this case, we note that if b2 = 0 the method of Sharma et al. [6] is obtained with independence of the
values of parameters a1, a2 and b1. The next particular iterative schemes will be used in the numerical section.
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• If a1 = 1, a2 = 0, b1 = 1 and b2 = 2, we obtain the following iterative method of order four, denoted by
MS1,

x(k+1) = y(k) −
(
2I −

[
3I − 2[F ′(x(k))]−1[x(k), y(k);F ]

]−1)
[F ′(x(k))]−1F (y(k)).

• If a1 = 1/2, a2 = 0, b1 = −1/2 and b2 = 1, then the fourth-order method denoted by MS2 has the
expression

x(k+1) = y(k) −

(
2I − 1

2

[
1

2
I − [F ′(x(k))]−1[x(k), y(k);F ]

]−1)
[F ′(x(k))]−1F (y(k)).

In both cases, y(k) denotes Newton’s iteration.

4. Numerical tests

In the first part of this section we present the numerical results obtained by applying the proposed methods
on some scalar equations. We are going to compare ME1 and ME2 with some fourth-order known methods as
Kung-Traub scheme [1],

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
f(xk)

2

(f(xk)− f(yk))2
f(yk)

f ′(xk)
,

denoted by MKT; the scheme of Zhao et al. [17]

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = yk −
1 + 2uk + u2k

1− 4u2k

f(yk)

f ′(xk)
,

denoted by MZ, where uk =
f(yk)

f(xk)
; and the Jarratt-type method designed by Jaiswal [18],

yk = xk −
2

3

f(xk)

f ′(xk)
,

xk+1 = xk −

[
2− 7f ′(yk)

4f ′(xk)
+

3

4

(
f ′(yk)

f ′(xk) + f ′(yk)

)2
]

2f(xk)

f ′(xk) + f ′(yk)
,

denoted by MJ.
In these numerical tests, variable precision arithmetic has been used, with 2000 digits of mantissa, in Matlab

R2014b on the following test functions:

• f1(x) = sin (x)− x2 + 1, ξ ≈ 1.409240..,

• f2(x) = arctan (x), ξ = 0,

• f3(x) = cos (x)− x, ξ ≈ 0.739085..,
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• f4(x) =
√
x2 + 2x+ 5− 2 sin (x)− x2 + 3, ξ ≈ 2.331968..,

• f5(x) = ex − 4x2, ξ ≈ 0.714806..,

• f6(x) =
√
x2 + 8 sin

(
π

x2 + 1

)
+

x3

x4 + 1
−
√
6 +

8

17
, ξ = −2.

Table 1 shows the results obtained on the test functions using as stopping criterion |xk+1 − xk| < 10−500

or |f(xk+1)| < 10−500. For each function and method, we show the initial guess x0, the error estimations in
the last iteration |xk+1 − xk| and |f(xk+1)|, the number of iterations required to satisfy the stopping criterion,
the CPU-time in seconds, e − time, calculated as the average of 100 consecutive runs through the cputime
command, and the computational approximate order of convergence, ρ, which is an approximation of the
theoretical order of convergence, introduced in [19] as

p ≈ ρ =
ln(|xk+1 − xk|/|xk − xk−1|)
ln(|xk − xk−1|/|xk−1 − xk−2|)

, (9)

valid both for equations as well as for systems of equations. The numerical tests provided in Table 1 confirm
the theoretical results, with small differences between the different methods.

In the context of nonlinear systems, we are going to compare our methods MS1 and MS2 with the following
known schemes:

• The derivative-free method designed by Sharma et al. [20], denoted by MSS,

y(k) = x(k) − [x(k), u(k);F ]−1F (x(k)),

x(k+1) = y(k) −G(k)(3I − 2G(k))[x(k), u(k);F ]−1F (y(k)), (10)

where G(k) = [x(k), u(k);F ]−1[y(k), z(k);F ], z(k) = y(k) + F (y(k)) and u(k) = x(k) + F (x(k)).

• The Jarratt-type method obtained by Hueso et al. in [21] and denoted by MSH

y(k) = x(k) − 2

3
[F ′(x(k))]−1F (x(k)),

x(k+1) = x(k) −
(
−3

8
I + [F ′(y(k))]−1F ′(x(k)) +

1

3
[F ′(x(k))]−1F ′(y(k))+

1

24
([F ′(y(k))]−1F ′(x(k)))2

)
[F ′(x(k))]−1F (x(k)). (11)

We check the performance of these methods on the following functions:

• F1(x1, x2) = (exp (x1) exp (x2) + x1 cos (x2), x1 + x2 − 1)T ,
ξ ≈ (3.470631...,−2.470631...)T .

• F2(x1, x2, x3) =
(
10x1 + sin (x1 + x2)− 1, 8x2 − cos2 (x3 − x2)− 1, 12x3 + sinx3 − 1

)T ,
ξ ≈ (0.068978..., 0.246442..., 0.076929...)T .

• F3(x1, x2) = (x1 + exp (x2)− cosx2, 3x1 − x2 − sinx2)
T ,

ξ = (0, 0)T .
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• F4(x1, x2, x3) =

(
cosx2 − sinx1, x

x1
3 −

1

x2
, exp (x1)− x23

)T

,

ξ ≈ (0.909569..., 0.661227..., 1.575834...)T .

• F5(x1, x2, x3, x4) = (f1(x1, x2, x3, x4), f2(x1, x2, x3, x4), f3(x1, x2, x3, x4), f4(x1, x2, x3, x4))
T , where

f1(x1, x2, x3, x4) = x2x3 + x4(x1 + x3),
f2(x1, x2, x3, x4) = x1x3 + x4(x1 + x3),
f3(x1, x2, x3, x4) = x1x2 + x4(x1 + x2),
f4(x1, x2, x3, x4) = x1x2 + x1x3 + x2x3 − 1,

ξ ≈ (0.577350..., 0.577350..., 0.577350...,−0.288675...)T ,

by using a symmetric divided difference operator.
The numerical results shown in Table 2, have been obtained with MatlabR2014b working in variable pre-

cision arithmetics with 50 digits of mantissa and by using the stopping criterion ‖x(k+1) − x(k)‖ < 10−25 or
‖F (x(k+1))‖ < 10−25. For each test function and method we show the error estimations in the last iteration
‖x(k+1) − x(k)‖ and ‖F (x(k+1))‖, the number of iterations required to satisfy the stopping criterion and the
computational approximate order of convergence, ρ, calculated by (9). Symbol ’-’ denotes that the correspond-
ing method does not converge with the initial guess used.

The worse behavior of method MSS reflected in Table 2 (examples F1, F2 and F4) is due to the unstable
performance of methods that only use divided differences. However, methods that uses a combination of
Jacobian matrices and divided differences, or only Jacobian matrices, are more stable and their numerical tests
confirm the theoretical results.

5. Conclusions

We have designed an optimal (in the sense of Kung-Traub conjecture) family of scalar methods constructed
from Traub’s scheme and by using the weight functions technique. We have applied a technique for generalizing
this family to nonlinear systems, preserving the order of convergence. Although this technique has been applied
to two-step iterative methods, it could be applied to many multipoint iterative schemes that there exist in the
literature. Numerical results show that some of the designed iterative methods for nonlinear systems are very
competitive in relation to other well known ones.
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Method |xk+1 − xk| |f(xk+1)| iter ρ e− time
f1(x) = 0 ME1 2.9e-251 1.3e-1002 6 4.0000 0.0978
x0 = 1 ME2 2.0e-315 2.1e-1259 6 4.0000 0.0864

MKT 6.5e-421 1.6e-1681 6 4.0000 0.0917
MZ 1.3e-249 4.7e-998 6 4.0000 0.1100
MJ 2.9e-271 1.3e-1082 6 4.0000 0.0964

f2(x) = 0 ME1 1.3e-225 7.8e-1126 6 5.0000 0.0852
x0 = 1 ME2 2.6e-371 2.8e-1854 6 5.0000 0.0741

MKT 1.0e-110 2.1e-546 5 5.0000 0.0657
MZ 1.4e-160 1.4e-800 6 5.0000 0.0803
MJ 1.1e-235 2.1e-1176 6 5.0000 0.0917

f3(x) = 0 ME1 1.1e-190 1.6e-761 5 4.0000 0.0685
x0 = 1.5 ME2 8.7e-194 4.6e-774 5 4.0000 0.0583

MKT 1.8e-197 5.8e-789 5 4.0000 0.0627
MZ 1.5e-208 1.2e-833 5 4.0000 0.0772
MJ 3.6e-195 1.5e-779 5 4.0000 0.0817

f4(x) = 0 ME1 2.6e-231 6.0e-925 5 4.0000 0.2677
x0 = 3 MED2 8.7e-295 9.4e-1179 5 4.0000 0.2576

MKT 1.4e-232 7.4e-930 5 4.0000 0.2624
MZ 9.9e-197 2.2e-786 5 4.0000 0.2781
MJ 2.6e-240 3.6e-961 5 4.0000 0.2819

f5(x) = 0 ME1 1.1e-254 1.2e-1015 6 4.0000 0.0970
x0 = 2 ME2 1.4e-268 2.2e-1071 6 4.0000 0.0855

MKT 1.1e-286 6.1e-1144 6 4.0000 0.0909
MZ 2.5e-369 1.0e-1475 6 4.0000 0.1090
MJ 5.4e-264 6.2e-1053 6 4.0000 0.1145

f6(x) = 0 ME1 7.1e-135 3.6e-536 5 4.0000 0.3824
x0 = −1 ME2 1.7e-142 8.7e-567 5 4.0000 0.3831

MKT 5.9e-153 8.1e-609 5 4.0000 0.3763
MZ 9.2e-201 4.1e-801 5 4.0000 0.3927
MJ 7.2e-138 3.3e-548 5 4.0000 0.3962

Table 1: Numerical results for nonlinear equations
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Method ‖x(k+1) − x(k)‖ ‖F (x(k+1))‖ iter ρ

F1 MS1 2.1e-16 3.4e-49 3 3.483
x(0) = (3,−2)T MS2 7.9e-17 7.6e-50 3 3.601

MSS - - - -
MSH 5.7e-16 1.3e-57 3 3.608

F2 MS1 5.1e-12 6.2e-40 3 4.455
x(0) = (1, 1, 1)T MS2 3.2e-14 1.2e-44 3 4.093

MSS 2.9e-8 2.9e-29 3 2.383
MSH 9.0e-18 1.6e-58 3 4.115

F3 MS1 2.7e-15 1.4e-44 4 3.889
x(0) = (1, 1)T MS2 2.8e-7 1.7e-27 3 3.380

MSS 8.0e-25 5.3e-50 5 4.011
MSH 4.2e-22 2.0e-79 4 3.963

F4 MS1 3.4e-17 7.8e-49 5 3.762
x(0) = (1, 1, 2)T MS2 1.7e-9 4.13e-33 3 3.766

MSS - - - -
MSH 2.4e-25 6.4e-58 4 3.918

F5 MS1 2.9e-22 3.5e-58 4 4.448
x(0) = (1, 1, 1, 1)T MS2 3.4e-8 1.4e-32 3 4.557

MSS 1.1e-24 4.2e-58 6 4.025
MSH 4.7e-7 1.0e-29 3 4.471

Table 2: Numerical results for nonlinear systems
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