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Abstract

A new parametric class of third-order iterative methods for solving nonlinear equations and systems is pre-
sented. These schemes are showed to be more stable than Newton’, Traub’ or Ostrowski’s procedures (in some
specific cases), and it has been proved that the set of starting points that converge to the roots of different non-
linear functions is wider than the one of those respective methods. Moreover, the numerical efficiency has been
checked through different numerical tests.
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1. Introduction

Nonlinear equations or systems are usually involved in different problems in science and engineering. The
analytical solution of these kind of problems is difficult and often iterative methods are used in order to estimate
the solutions.

In the last decade, many multipoint Newton-type iterative schemes for solving nonlinear equations have
appeared in the literature. A good survey about them can be found in [1]. Usually, these variants of Newton’s
method are designed to improve the original scheme in terms of order of convergence. However, they have
some drawbacks: many of them are not applicable to nonlinear systems and high-order methods have quite
reduced areas of convergence. We give emphasis, not as much to the order of convergence but to the region
of good starting points of the methods and in the extension to nonlinear systems. So, our aim is to design
a parametric family of iterative methods with wider areas of convergence than other known schemes and its
generalization to multivariate cases.

In this work, we present a family of uniparametric two-point iterative procedure for solving the nonlinear
equation f(x) = 0. It uses a damped Newton in the first step (acting as a predictor) and the corrector step is
defined as a Newton-type scheme in which three functional evaluations are used. This corrector step is inspired
in some modifications of Newton’s method proposed by V.V. Ermakov and N.N. Kalitkin in [2]. Specifically,
the authors presented a damped Newton scheme

xk+1 = xk − βk
f(xk)

f ′(xk)
, k = 0, 1, . . . . (1)
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where βk = ‖f(xk)‖2

‖f(xk)‖2+‖f(xk−
f(xk)

f ′(xk)
)‖2

.

We propose the following iterative expression:

yk = xk − α
f(xk)

f ′(xk)
, k = 0, 1, . . . (2)

xk+1 = xk −
f(xk)

2

bf(xk)2 + cf(yk)2
f(xk)

f ′(xk)
,

where α, b and c are parameters. In the rest of the paper, we will denote this method by PM.
We prove that, under some conditions, the local order of convergence of the elements of the family is three.

We can also extend this family for solving nonlinear systems F (x) = 0, holding the order of convergence.
We will compare the proposed schemes, in terms of the wideness of the regions of converging initial points,

with the well-known Newton’s method, whose iterative expression is

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, . . . . (3)

It is known that this scheme converges quadratically in some neighborhood of the solution, under standard
conditions. In comparisons, we will also use Traub’s method (see [3]), which has order of convergence three
(as our proposed schemes), whose iterative expression is

yk = xk − f(xk)
f ′(xk)

,

xk+1 = xk − f(xk)+f(yk)
f ′(xk)

, k = 0, 1, . . . .
(4)

In spite of the lower order of convergence of our proposed schemes, we will also compare them with Ostrowski’s
procedure [4], which iterative expression is

yk = xk − f(xk)
f ′(xk)

,

xk+1 = yk − f(xk)
f(xk)−2f(yk)

f(yk)
f ′(xk)

, k = 0, 1, . . .
(5)

and whose order of convergence is four.
Let us note that expressions (1), (3) and (4) can be directly extended to nonlinear systems. On the other

hand, recently, iterative expression (5) has been adapted for solving nonlinear systems.
In Section 2 we will analyze the local order of convergence of the designed schemes to find a simple root ξ

of a nonlinear equation f(x) = 0, where f : D ⊆ R→ R is a scalar function on an open intervalD. Moreover,
the procedures will be extended in Section 2.2 for solving systems of nonlinear equations F (x) = 0, where
F : D ⊆ Rn → Rn, n > 1. The dynamical behavior on different interesting equations will be studied in
Section 3, by using distinct values of the parameter. This will allow us to select the most appropriate elements
of the class in order to make the numerical test in Section 4, not only with nonlinear equations, but also with
some nonlinear systems. Finally, we will state some conclusions and the references used.

2. Analysis of convergence

Firstly, we analyze the local order of convergence of the class of methods (2). Afterwards, we extend the
mentioned family to nonlinear systems and we also study its convergence.
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2.1. Study of the scalar case
In the next result, we show that there are values of parameters b and c, depending on α, such that the order

of convergence of the resulting methods is three.

Theorem 1. Let ξ ∈ I be a simple zero of a sufficiently differentiable function f : I ⊂ R → R in an open
interval I and x0 an initial guess close enough to ξ. The method defined by (2) has third-order convergence if
b = 1−α+2α2

2α2 and c = 1
2α2(α−1) , where α 6∈ {0, 1}. The error equation of the method is

ek+1 =

(
−2 + 2α+ α2

)
c22 + 2(−1 + α)2c3

2(−1 + α)
e3k +O(e4k),

where ck = (1/k!)f
(k)(ξ)
f ′(ξ) , k = 1, 2, . . . and ek = xk − ξ.

Proof: The proof is based on the Taylor’s expansion of the elements appearing in the iterative expression (2).
By using Taylor’s expansion around ξ, we have

f(xk) = f ′(ξ)
[
ek + c2e

2
k + c3e

3
k

]
+O(e4k),

and
f ′(xk) = f ′(ξ)

[
1 + 2c2ek + 3c3e

2
k + 4c4e

3
k

]
+O(e4k)

By substituting these expressions in the first step of (2), we obtain

yk − ξ = (1− α)ek + αc2e
2
k + 2α

(
−c22 + c3

)
e3k +O(e4k).

Expanding in Taylor’s series f(yk) around ξ,

f(yk) = f ′(ξ)
[
(1− α)ek +

(
1− α+ α2

)
c2e

2
k −

(
2α2c22 +

(
−1 + α− 3α2 + α3

)
c3
)
e3k
]

+O(e4k)

and then, combining these expressions,

u =
f(xk)

2

bf(xk)2 + cf(yk)2

=
1

b+ (−1 + α)2c
+

2(−1 + α)α2cc2

(b+ (−1 + α)2c)2
ek

+
α2c

((
−
(
−6 + 6α+ α2

)
b+ 3(−1 + α)2

(
2− 2α+ α2

)
c
)
c22
)

(b+ (−1 + α)2c)3

−
α2c

(
2
(
3− 4α+ α2

) (
b+ (−1 + α)2c

)
c3
)

(b+ (−1 + α)2c)3
e2k +O(e3k).

Therefore, the error at the last step is

xk+1 − ξ = xk − ξ −
f(xk)

2

bf(xk)2 + cf(yk)2
f(xk)

f ′(xk)

=

(
1− 1

b+ (−1 + α)2c

)
ek +

(
b+

(
1− 2α+ 3α2 − 2α3

)
c
)
c2

(b+ (−1 + α)2c)2
e2k

+
1

(b+ (−1 + α)2c)3

(
2(−1 + α)α2c

(
b+ (−1 + α)2c

)
c22 − 2

(
b+ (−1 + α)2c

)2 (
c22 − c3

))
e3k

+
1

(b+ (−1 + α)2c)3
(
−α2c

((
−
(
−6 + 6α+ α2

)
b+ 3(−1 + α)2

(
2− 2α+ α2

)
c
)
c22
))
e3k

+
1

(b+ (−1 + α)2c)3
(
−2
(
3− 4α+ α2

) (
b+ (−1 + α)2c

)
c3
)
e3k +O(e4k)

3



Now, it is easy to check that the only values of the parameters b and c satisfying that the coefficients of ek and
e2k are null correspond to b = 1−α+2α2

2α2 and c = 1
2α2(α−1) . Then, the error equation is

ek+1 =

(
−2 + 2α+ α2

)
c22 + 2(−1 + α)2c3

2(−1 + α)
e3k +O(e4k),

and the third-order of convergence of family (2) is proved. 2

2.2. The family for nonlinear systems
The extension to multivariate case of method (2) requires to rewrite the iterative expression in such a

way that no functional evaluation of the nonlinear function remain at the denominator, as they will become
vectors in the multivariate case. To get this aim, let us consider that, being the first step of the iterative process
yk = xk − α f(xk)

f ′(xk)
, f(xk) can be expressed as f(xk) = 1

α(xk − yk)f ′(xk). By using this, the factor of the
second step of (2) involving parameters b and c can be rewritten as

f(xk)
2

bf(xk)2 + cf(yk)2
=

1

b+ c
(
f(yk)
f(xk)

)2
=

1

b+ c
(

αf(yk)
(xk−yk)f ′(xk)

)2
=

1

b+ cα2
[
1
α −

f [yk,xk]
f ′(xk)

]2 .
By using this transformation, method (2) is fully extensible to several variables, being its iterative expression

y(k) = x(k) − α
[
F ′(x(k))

]−1
F (x(k)), k = 0, 1, . . .

x(k+1) = x(k) −

[
bI + cα2

(
1

α
I −

[
F ′(x(k))

]−1
[y(k), x(k);F ]

)2
]−1 [

F ′(x(k))
]−1

F (x(k)), (6)

where [y(k), x(k);F ] denotes the divided difference of operator F on y(k) and x(k). Identity matrix is denoted
by I .

For proving the order of the method in Rn, it is necessary to recall the definition given by J.M. Ortega and
W.G. Rheinboldt [5] of first divided difference of F on Rn as a mapping [·, ·;F ] : D×D ⊂ Rn×Rn → L(Rn)
which satisfies [x, y;F ](x− y) = F (x)− F (y), ∀x, y ∈ D.

From the Genocchi-Hermite formula [6]

[x, x+ h;F ] =

∫ 1

0
F ′(x+ th)dt,

and by expanding F ′(x+ th) in Taylor’s series around the point x, we obtain∫ 1

0
F ′(x+ th)dt = F ′(x) +

1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3). (7)

If e = x− ξ and assuming that F ′(ξ) is nonsingular, we have

F (x) = F ′(ξ)[e+ C2e
2 + C3e

3 + C4e
4] +O(e5),

F ′(x) = F ′(ξ)[I + 2C2e+ 3C3e
2 + 4C4e

3] +O(e4),

F ′′(x) = F ′(ξ)[2C2 + 6C3e+ 12C4e
2] +O(e3),

F ′′′(x) = F ′(ξ)[6C3 + 24C4e] +O(e2),
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where Ck = (1/k!)[F ′(ξ)]−1F (k)(ξ), k = 2, 3, . . ..
Replacing these expressions in (7) and setting y = x+ h and ey = y − ξ, we get

[x, y;F ] = F ′(ξ)[I + C2(ey + e) + C3e
2] +O(e3). (8)

Now, we can establish and prove the following result for nonlinear systems.

Theorem 2. Let F : D ⊆ Rn → Rn be a sufficiently differentiable function in an open neighborhood D of ξ,
that is a solution of the nonlinear system F (x) = 0. Let us suppose that F ′(x) is nonsingular in ξ and x(0) is an
initial estimation close enough to ξ. Then, the sequence {x(k)}k≥0 obtained by using the iterative expression
(6) converges to ξ with order of convergence 3 if b = 1−α+2α2

2α2 and c = 1
2α2(α−1) , being α 6∈ {0, 1}. Then, the

error equation of the method is

e(k+1) =

((
6 + 6α− α2

2(−1 + α)

)
C2
2 + (α− 1)2C3

)
e(k)

3
+O(e(k)

4
),

where Ck = (1/k!)[F ′(ξ)]−1F (k)(ξ), k = 2, 3, . . . , and e(k) = x(k) − ξ.

Proof: Taylor expansion of F (x(k)) and F ′(x(k)) around ξ gives us

F (x(k)) = F ′(x̄)[e(k) + C2e
(k)2 + C3e

(k)3 ] +O(e(k)
4
), (9)

and
F ′(x(k)) = F ′(x̄)[I + 2C2e

(k) + 3C3e
(k)2 ] +O(e(k)

3
). (10)

Moreover, forcing that [F ′(x(k))]−1F ′(x(k)) = F ′(x(k))[F ′(x(k))]−1 = I , we obtain

[F ′(x(k))]−1 = [I +X2e
(k) +X3e

(k)2 ][F ′(ξ)]−1 +O(e(k)
3
), (11)

where
X2 = −2C2 and X3 = 4C2

2 − 3C3.

Then,
[F ′(x(k))]−1F (x(k)) = e(k) − C2e

(k)2 + 2(−C3 + C2
2 )e(k)

3
+O(e(k)

4
), (12)

and the error at the first step is

e(k)y = y(k) − ξ = (1− α)e(k) + αC2e
(k)2 − 2α(−C3 + C2

2 )e(k)
3

+O(e(k)
4
). (13)

Now, by using (8),

[y(k), x(k);F ] = F ′(ξ)
[
I + (2− α)C2e

(k) + αC2
2e

(k)2 + (3− 3α+ α2)C3e
(k)2
]

+O(e(k)
3
) (14)

and then, by applying (11) and (14),

1

α
I −

[
F ′(x(k))

]−1
[y(k), x(k);F ] =

(
1

α
− 1

)
I + αC2e

(k) − (3αC2
2 + α(α− 3)C3)e

(k)2 +O(e(k)
3
). (15)

So, the Taylor expansion (around ξ) of the block to be inverted in the second step of the process is

A = bI + cα2

(
1

α
I −

[
F ′(x(k))

]−1
[y(k), x(k);F ]

)2

=

(
b+

(
1

α
− 1

)2

cα2

)
I + 2cα3

(
1

α
− 1

)
C2e

(k)

+
[
cα2(α2 − 6 + 6α)C2

2 +
(
2cα3(α− 3)− 2cα2(α− 3)

)
C3

]
e(k)

2
+O(e(k)

3
).
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Then, we define A−1 = I + Y1e
(k) + Y2e

(k)2 + O(e(k)
3
) in such a way that AA−1 = A−1A = I . So, the

following expression is forced to become the identity matrix:

AA−1 =

(
b+

(
1

α
− 1

)2

cα2

)
I +

[(
b+

(
1

α
− 1

)2

cα2

)
Y1 + 2cα3

(
1

α
− 1

)
C2

]
e(k)

+

[(
b+

(
1

α
− 1

)2

cα2

)
Y2 + 2cα3

(
1

α
− 1

)
C2Y1 + cα2(α2 − 6 + 6α)C2

2

+
(
2cα3(α− 3)− 2cα2(α− 3)

)
C3

]
e(k)

2
+O(e(k)

3
).

In order to get this aim, it is necessary that the following equalities are verified:

b = 1−
(

1

α
− 1

)2

cα2,

Y1 = −2cα3

(
1

α
− 1

)
C2,

Y2 = −Y 2
1 − cα2(α2 − 6 + 6α)C2

2 −
(
2cα3(α− 3)− 2cα2(α− 3)

)
C3.

Then, the error at the last step is

x(k+1) − ξ = x(k) − ξ −A−1[F ′(x(k))]−1F (x(k))

=

(
−2cα3

(
1

α
− 1

)
C2 − C2

)
e(k)

2

+
(
− 2C3 + 2C2

2 + 2cα3

(
1

α
− 1

)
C2
2 − 4c2α6

(
1

α
− 1

)2

C2
2

−cα2(α2 − 6− 6α)C2
2 −

(
2cα3(α− 3)− 2cα2(α− 3)

)
C3

)
e(k)

3
+O(e(k)

4
)

and the only way to reach third-order of convergence is to force parameter c to be c = 1
2α2(α−1) and, therefore,

b = 1−α+2α2

2α2 . Then, the error equation of the method is

e(k+1) =

((
6 + 6α− α2

2(−1 + α)

)
C2
2 + (α− 1)2C3

)
e(k)

3
+O(e(k)

4
).

2

3. Dynamical behavior

In the following some dynamical planes corresponding to family (2) and some classical methods on func-
tions

• f1(x) = arctan(x), ξ = 0,

• f2(x) = arctan(x)− 2x
1+x2

, ξ1 = 0, ξ2 ≈ −1.3917 and ξ3 ≈ 1.3917,

• f3(x) = x2−1
x2+1

+ 1, ξ = 0,

are shown.
In order to study the dynamical behavior of these iterative methods, it is necessary to recall some basic

dynamical concepts. For a more extensive review of these concepts, see [7, 8].
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(a) Newton (b) Kalitkin

(c) Traub (d) Ostrowski

Figure 1: Dynamical planes of f1(x) = arctan(x)

(a) α = −0.9 (b) α = −0.45 (c) α = −0.15

(d) α = 0.15 (e) α = 0.45 (f) α = 0.9

Figure 2: Dynamical planes of the proposed methods on f1(x) = arctan(x)
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LetR : Ĉ→ Ĉ be an operator that results from applying an iterative method on a particular function, where
Ĉ is the Riemann sphere. The orbit of a point z0 ∈ Ĉ is defined as the set of successive images of z0 by the
operator, {z0, R(z0), . . . , R

n(z0), . . .}.
The dynamical behavior of the orbit of a point on the complex plane can be classified depending on its

asymptotic behavior. In this way, a point z0 ∈ C is a fixed point of R if R(z0) = z0. A fixed point is attracting,
repelling or neutral if |R′(z0)| is lower than, greater than or equal to 1, respectively. Moreover, if |R′(z0)| = 0,
the fixed point is superattracting.

If z∗f is an attracting fixed point of the operator R, its basin of attraction A(z∗f ) is defined as the set of
pre-images of any order such that

A(z∗f ) =
{
z0 ∈ Ĉ : Rn(z0)→ z∗f , n→∞

}
.

The set of points whose orbits tends to an attracting fixed point z∗f is defined as the Fatou set, F(R). The
complementary set, the Julia set J (R), is the closure of the set of pre-images of its repelling fixed points, and
establishes the boundaries between the basins of attraction.

For the representation of the convergence basins of our procedures and classical methods, we have used
the software described in [9]. We draw a mesh with four hundred points per axis; each point of the mesh is
a different initial estimation which we introduce in each procedure. In case of f1(x) and f3(x), which have
only one root, when the method reaches the solution in less than eighty iterations, this point is drawn in orange
(in case of f2(x), that has three different solutions, the second and third basins are painted in green and blue).
The color will be more intense when the number of iterations is lower. Otherwise, if the method arrives at the
maximum of iterations, the point will be drawn in black.

Under these conditions, some elements of the family of proposed methods are analyzed, and compared with
Newton’, Kalitkin’, Traub’ and Ostrowski’s schemes. In Figure 1, the basins of attraction of these methods on
f1(x) are observed, and it can be noticed that the widest basin of attraction correspond to the last one, in the
complex plane. If we pay attention to reals, the interval of convergence of Kalitkin’s algorithm is [−3.5, 3.5],
approximately, meanwhile the ones of Newton’ and Traub’s methods are both [−1.8, 1.8], approximately and
for Ostrowski’s scheme it would be [−2.5, 2.5].

We can see at Figure 2 that, by using PM method, the widest basins of attraction correspond to values of the
parameter α close to zero (Figures 2c and 2d) with real regions of convergence bigger than [−6, 6]. Moreover,
in terms of real initial estimations with convergence to the roots, the intervals of convergence are bigger than
the one of Newton’s in all cases.

In case of f2(x), let us notice that, when method (2) is used with different values of α (see Figure 4),
the basins of attraction of the three solutions of the equation appear in blue, orange and green. In case of
Newton’s scheme (see Figure 3a), it can be observed that these areas of convergence are bounded in the plotted
region, [−6, 6] × [−6, 6] . Nevertheless, the small black regions do not correspond to strange fixed points, but
to pre-images of the infinity. When Traub’s method is used (see Figure 3c), the black basin (convergence to
the infinity) is ”crossed” by orange regions of convergence to zero. Moreover, the pre-images of the infinity
inside the bounded region of convergence are bigger than in case of Newton’s. In Kalitkin’s case, the real initial
estimations with convergence to the roots can be very far from them, but its dynamics is very complicated.
However, the dynamical plane associated to Ostrowski’s procedure is clean and the basins are wider than in
previous cases. Indeed, there are no convergence to the infinity.

When the dynamical behavior of the elements of the new family is observed on f2(x), again the stability of
the methods seems to be directly related with the absolute value of the parameter. In fact, the best results are
obtained for α = −0.15 (Figure 4c) and α = 0.15 (Figure 4d), being the first of these cases much more stable
than classical methods as Newton, Traub or Ostrowski.

Finally, let us consider the function f3(x) = x2−1
x2+1

+1. In Figures 5 and 6 we can see the basins of attraction
of the unique root ξ = 0, for different classical methods (Figure 5) and for the proposed schemes, and different
values of the parameter α (Figure 6). We can observe that, again in this case, widest basins are found for

8



(a) Newton (b) Kalitkin

(c) Traub (d) Ostrowski

Figure 3: Dynamical planes of f2(x) = arctan(x)− 2x
1+x2

(a) α = −0.9 (b) α = −0.45 (c) α = −0.15

(d) α = 0.15 (e) α = 0.45 (f) α = 0.9

Figure 4: Dynamical planes of the proposed methods on f2(x) = arctan(x)− 2x
1+x2
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(a) Newton (b) Kalitkin

(c) Traub (d) Ostrowski

Figure 5: Dynamical planes of f3(x) = x2−1
x2+1

+ 1

(a) α = −0.8 (b) α = −0.2 (c) α = −0.05

(d) α = 0.1 (e) α = 0.85 (f) α = 1.15

Figure 6: Dynamical planes of the proposed methods on f3(x) = x2−1
x2+1

+ 1
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small values of the parameter (in absolute value). In this case, Figures 6c and 6d correspond to the more stable
methods. Nevertheless, it can be observed in Figure 6f that bigger values of α can have also a big interval of
convergence (in real cases), as it happens for α = 1.15, for example.

4. Numerical results

Numerical computations have been carried out by using variable precision arithmetic in Mathematica 9
with 10.000 significant digits. The tolerance is set up to 10−2000 in all numerical tests.

Below we provide the results of the numerical experiment that we carried out in order to compare Newton’,
Traub’, Kalitkin’, Ostrowski’s and proposed method (PM) (2). We use the same functions f1(x), f2(x), f3(x)
as in Section 3. We present the obtained results in Table 1, where one can see the relations between the zero
estimate and the number of iterations for different equations.

In Table 1 one can see some data that help to compare the methods, as the number of iterations iter and the
Approximated Computational Order of Convergence ACOC given by (see [10]):

p ≈ ACOC =
ln(‖xk+1 − xk‖/‖xk − xk−1‖)

ln(‖xk − xk−1‖/‖xk−1 − xk−2‖)
.

In all examples one can observe wider convergence domain of PM method (2), while other iterative schemes
appear to be inefficient. Values of parameter α are chosen 0.15,−0.15,−0.05 for equations f1(x), f2(x), f3(x)
correspondingly, as they show better dynamical behavior (see Section 3).

In order to read into the ACOC results in Table 1, let us remark that the error equation of Newton’, Kalitkin’,
Traub’ and Ostrowski’s methods depend only on c2 = 1

2
f ′′(ξ)
f ′(ξ) . So, the increased ACOC that appears in case of

function f1(x) is due to the fact that the second derivative of this function is null at the solution. When function
f2(x) is considered, the numerical results for ACOC correspond to the theoretical order of convergence, if they
converge. Finally, for function f3(x) the solution is a multiple root and all the methods have linear convergence,
when they converge.

On the other hand, we can observe that PM scheme needs lower number of iterations than Traub’s method,
and has wider convergence domain than all the classical methods used in this work.

Now we present the results of numerical tests for the system of equations, known as Brown quasi-linear
system [2], described by

fi(x) = xi +
N∑
j=1

xj −N − 1, 1 ≤ i ≤ N − 1,

fN (x) =
N∏
j=1

xj − 1. (16)

This system has different solutions including a trivial one (1, 1 . . . 1), but we use only zero estimates that reduce
all methods to the same solution, in order to carry out “fair” comparison.

We excluded Ostrowski’s method from the comparison because it has nontrivial generalization to systems
of equations. The dimension of system (16) is set up to 4 and 6. Corresponding numerical results for certain
zero estimates are shown in Table 2. Note that Newton’s and Kalitkin’s methods have quadratic convergence
rate while PM and Traub’s methods have cubic convergence.

5. Conclusions

In this paper we have introduced a new parametric family of third-order iterative methods both for equations
and systems of equations. The main aim was to extend the convergence domain. We have carried out dynamical
study and numerical tests in order to compare the proposed method with methods of Newton, Kalitkin, Traub
and Ostrowski. Theoretical results coincide with the results that were obtained during numerical experiment
and show advantages of proposed class of methods as compared with well-known iterative schemes.
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Number of iterations
Newton Kalitkin PM Traub

x(0) = (−44, 91, 69, 9)T 27 - 9 -
N = 4 x(0) = (−99.8, 13.3,−85.2,−52.6)T 26 28 10 19

x(0) = (−58.8,−31.3, 60.9,−52.9)T 30 32 9 44
x(0) = (9.9, 7.3,−5.2,−8.8, 6.5,−0.2)T 17 18 9 12

N = 6 x(0) = (−3.96,−6, 0.88, 3.46,−7,−4.13)T 23 24 10 17
x(0) = (3.45, 5.34,−6.67, 4.39,−7, 1.3)T 52 - 10 -

Table 2: Numerical tests for system (16).
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