

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.scico.2014.07.003

http://hdl.handle.net/10251/64704

Elsevier

Gutiérrez Gil, R.; Meseguer, J.; Rocha, C. (2015). Order-Sorted Equality Enrichments
Modulo Axioms. Science of Computer Programming. 99:235-261.
doi:10.1016/j.scico.2014.07.003.

Order-Sorted Equality Enrichments Modulo AxiomsI

Raúl Gutiérreza,1, José Meseguera, Camilo Rochab

a Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Ave., Urbana, IL 61801-2302, USA

b Decanatura de Ingenierı́a de Sistemas, Escuela Colombiana de Ingenierı́a,
AK 45 205-49, Bogotá, D.C., Colombia

Abstract

Built-in equality and inequality predicates based on comparison of canonical forms
in algebraic specifications are frequently used because they are handy and efficient.
However, their use places algebraic specifications with initial algebra semantics be-
yond the pale of theorem proving tools based, for example, on explicit or induction-
less induction techniques, and of other formal tools for checking key properties such
as confluence, termination, and sufficient completeness. Such specifications would
instead be amenable to formal analysis if an equationally-defined equality predicate
enriching the algebraic data types were to be added to them. Furthermore, having
an equationally-defined equality predicate is very useful in its own right, particularly
in inductive theorem proving. Is it possible to effectively define a theory transforma-
tion E 7→ E∼ that extends an algebraic specification E to a specification E∼ having
an equationally-defined equality predicate? This paper answers this question in the
affirmative for a broad class of order-sorted conditional specifications E that are sort-
decreasing, ground confluent, and operationally terminating modulo axioms B and have
a subsignature of constructors. The axioms B can consist of associativity, or commuta-
tivity, or associativity-commutativity axioms, so that the constructors are free modulo
B. We prove that the transformation E 7→ E∼ preserves all the just-mentioned prop-
erties of E. The transformation has been automated in Maude using reflection and is
used as a component in many Maude formal tools.

Keywords:
equality predicate, order-sorted equational logic, modulo axioms, algebraic
specifications, initial algebra semantics, inductive theorem proving, Maude

IThis work has been supported in part by NSF Grants CCF 09-05584 and CNS 13-19109, the EU
(FEDER), the Spanish MINECO under Grants TIN2010-21062-C02 and TIN 2013-45732-C4-1-P, and by
the Generalitat Valenciana, ref. PROMETEO/2011/052. Raúl Gutiérrez is also partially supported by a Juan
de la Cierva Fellowship from the Spanish MINECO, ref. JCI-2012-13528.

Email addresses: rgutierrez@dsic.upv.es (Raúl Gutiérrez), meseguer@cs.illinois.edu (José
Meseguer), camilo.rocha@escuelaing.edu.co (Camilo Rocha)

1Current address: Departament de Sistemes Informàtics i Computació, Universitat Politècnica de
València, Camino de Vera s/n, 46022, Valencia, Spain

Preprint submitted to Science of Computer Programming July 15, 2014

1. Introduction

It can be extremely useful, when reasoning about equational specifications with
initial semantics, to have an explicit equational specification of the equality predicate
as a binary Boolean-valued operator ‘∼’. For example, in theorem proving, where the
logic of universal quantifier-free formulas is automatically reduced to unconditional
equational logic, the formula

(u , v ∨ w = r) ∧ q = t

becomes equivalent to the single equation

(not(u ∼ v) or w ∼ r) and q ∼ t = true.

Also in inductionless induction [1] where inductive proofs are reduced to proofs by
consistency because any equation not holding inductively makes true and false equal.

An equationally-defined predicate can also be useful in the elimination of built-in
equalities and inequalities that often are introduced in algebraic specifications through
built-in operators. Such built-in equalities and inequalities are not defined logically
but operationally, for both expressiveness and efficiency reasons, by comparison of
canonical forms. However, their non-logical character renders any formal reasoning
about specifications using them impossible.

In particular, the use of formal tools such as those checking termination, local con-
fluence, or sufficient completeness of an algebraic specification is impossible2 with
built-in equalities and inequalities, but becomes possible when they are replaced by an
equationally axiomatized equality predicate ‘∼’. That is, the equality between t and t′

is now expressed as t ∼ t′ = true, and their inequality as t ∼ t′ = false. Furthermore,
the equality predicate t ∼ t′ will still be evaluated correctly when t and t′ are terms with
variables, whereas an operationally defined built-in equality predicate will often give
the wrong answer when evaluating such terms, even when the equations are confluent
and terminating. For instance, for natural number addition ‘+’, defined by equations
x + 0 = x and x + s(y) = s(x + y), the terms x + y and y + x are already in canon-
ical form and an operationally defined built-in equality predicate ‘==’ will evaluate
x + y == y + x to false. Instead, using an equationally defined equality predicate ‘∼’,
the term x + y ∼ y + x will remain in canonical form, and the equality x+y ∼ y+x = true
can then be inductively proved using the equations defining ‘+’ and ‘∼’.

In principle, the meta-theorem of Bergstra and Tucker [2] ensures that any com-
putable data type can be axiomatized as an initial algebra defined by a finite number
of Church-Rosser and terminating equations. This also means that such a computable
data type plus its equality predicate is also finitely axiomatizable by a finite set of
Church-Rosser and terminating equations. However, the Bergstra-Tucker result is non-

2Since built-in equality and inequality predicates do not have a logical definition, they are outside the
scope of formal tools whose inputs are equational theories. Here “built in” does not mean that there is
a theory (say, that of the natural numbers) that has been built in: built-in equality and inequality predicates
have no theory at all. The whole point of this paper is to provide a logical definition of equality and inequality
predicates for an initial algebra in equational logic under the most general conditions possible.

2

constructive, in the sense that it does not give an algorithm to actually obtain the equa-
tional specification of the data type with its equality predicate. Therefore, what would
be highly desirable in practice is a general constructive theory transformation E 7→ E∼

that adds equationally-axiomatized equality predicates to an algebraic data type speci-
fication E.

Such a transformation should be as general as possible if it is to be useful in prac-
tice. For example, a transformation applicable only to “vanilla-flavored” specifica-
tions without support for types and subtypes, or that excludes conditional equations
and rewriting modulo axioms would be extremely limited. The transformation should
also come with strong preservation properties. For example, if E is ground confluent,
ground operationally terminating, and sufficiently complete, then E∼ should also enjoy
these same properties that are often essential both for executability and for applying a
variety of formal reasoning methods.

These generality and property-preservation requirements on the transformation E 7→
E∼ are a tall order. For instance, if f is a free constructor symbol, then the equations

f (x1, . . . , xn) ∼ f (y1, . . . , yn) = x1 ∼ y1 and . . . and xn ∼ yn

f (x1, . . . , xn) ∼ g(y1, . . . , ym) = false

give a perfectly good and straightforward axiomatization of equality for f , for each
constructor g , f of same type. But how can the equality predicate be defined when
f satisfies, e.g., associativity and commutativity axioms? Also, how should sorts and
subsorts, and subsort overloaded function symbols be dealt with? An even harder issue
is the preservation of properties such as ground confluence, operational termination,
and sufficient completeness. The difficulty is that for any given specification there are
tools that can be used to prove such properties, but we need a proof that will work
for all specifications in a very wide class. What we actually need are metatheorems
ensuring that these properties are preserved under the transformation for any equational
specification in the input class.

This paper presents an effective theory transformation E 7→ E∼ that satisfies the
above-mentioned preservation properties. The class of equational theories E accepted
as inputs to the transformation is quite general. Modulo mild syntactic requirements, it
consists of all order-sorted theories E of the form (Σ, E ∪ B) having a subsignature Ω

of constructors and such that:

(i) B is a (possibly empty) set of axioms which may declare some operators asso-
ciative, and/or commutative, and/or associative-commutative.

(ii) the equations E can be conditional and are sort-decreasing, ground confluent,
and ground operationally terminating, and

(iii) the constructors Ω are free modulo B, i.e., there is an isomorphism of initial
algebras TΣ/E∪B|Ω ' TΩ/B.

Identity axioms are excluded from the transformation. However, by using the transfor-
mation described in [3] and subsort-overloaded operators, the transformation presented
in this paper can often be extended to specifications that also include identity axioms.

The transformation E 7→ E∼ is constructive and has been automated in Maude
using its reflective features: it takes the meta-representation of E in Maude as input

3

and constructs a meta-representation of E∼ as output. This automated transformation
is used as a component in many Maude formal tools. In general, the contributions
presented in this work open up many useful applications to improve the state of the
art in formal verification of algebraic specifications. In particular, these ideas and their
automation have already substantially improved the Maude formal environment.

This paper is also an extended version of the conference paper [4] with many sub-
stantial improvements. First of all a newer, simpler, and more generally applicable
transformation E 7→ E∼ than the one given in [4] is given here. The greater simplicity
has to do with the fact that fewer conditional equations are now used in the definition
of the equality predicate ‘∼’. The greater generality resides in the support for sev-
eral maximal subsort-overloaded versions of a constructor, whereas in [4] a maximal
subsort-overloaded constructor was implicitly assumed. Full proofs of all results are
given for this newer transformation, which is the one currently implemented in Maude.
To make the main ideas of the paper more easily accessible while keeping the paper
self-contained, some technical details and some lengthy proofs have been relegated to
an electronic appendix fully available with this paper.

1.1. Related Work

In [1], Goguen generalizes and simplifies the technique given by Musser in [5]
for proving induction hypothesis without induction (so-called inductionless induction)
using enriched theories with equality. The notion of s-taut related to a sort s can be
seen as a initial approximation of what we called in this paper an equality enrichment,
i.e., conditions of tautness are present in equality enrichments. The result obtained in
Goguen’s paper [1] is stated in Corollary 2.

In [6], Meseguer and Goguen define the notion of equality enrichment (without
axioms) as an explicit representation of an equational equality presentation. Our work
extends this notion of equality enrichment with subsorts and axioms and also presents
an automatic way to generate this equality enrichment modulo axioms.

In [7], Nakamura and Futatsugi propose an equality predicate for algebraic specifi-
cations. Unlike our work, their work does not consider axioms and sufficient complete-
ness in their theories, hence they have to manage terms with defined symbols. In the
positive cases, their equality predicate is equivalent to ours, but in the negative cases,
a false answer in [7] does not mean that both terms are distinct for any possible in-
stantiation (as we state in our work), because the negative rules are based on a check of
convergence between terms. The goal of this behavior is to avoid false positives instead
of capturing negative cases.

Paper outline. This paper is organized as follows. Preliminaries are gathered in Sec-
tion 2. General properties satisfied by an equality enrichment are defined and described
in Section 3. The constructive transformation E 7→ E∼ is given in detail in Section 4.
The meta-theoretical proofs about the transformation E 7→ E∼ preserving all the desir-
able executability properties, including operational termination, confluence, and suffi-
cient completeness, can be found in Section 5. This section also presents the proof that
the equality enrichment transformation indeed outputs an equality enrichment of the
input theory. Section 6 describes how the transformation E 7→ E∼ has been automated

4

in Maude and presents a case study on how it can be used by other formal verification
tools. Some concluding remarks can be found in Section 7.

2. Preliminaries

This paper uses standard notation and terminology about terms, term algebras, and
order-sorted equational theories as employed, for example, by [8] and [9].

2.1. Order-Sorted Equational Theories

An order-sorted signature Σ is a tuple Σ = (S ,≤, F) with a finite poset of sorts
(S ,≤) and set of function symbols F. The equivalence relation ≡≤ is defined for any
s, s′ ∈ S by s ≡≤ s′ iff s(≤ ∪ ≥)+s′ (where R+ denotes the transitive closure of R).
The function symbols in F satisfy the condition that, for (w, s), (w′, s′) ∈ S ∗ × S and
w,w′ ∈ S ∗ having the same length, if f ∈ Fw,s ∩ Fw′,s′ , then w ≡≤ w′ implies s ≡≤ s′.
A top sort in Σ is a sort s ∈ S such that if s′ ∈ S and s ≡≤ s′, then s′ ≤ s. We denote
by bsc = {s′ ∈ S | s′ ≤ s} the ideal of a sort s ∈ S . For any sort s ∈ S , the expression
[s] denotes the connected component of s, that is, [s] = [s]≡≤ , called the kind of the
connected component. We say that f : w → s and f : w′ → s′ are subsort-overloaded
iff w ≡≤ w′ and s ≡≤ s′. A function symbol f : s1 · · · sn → s ∈ F is a maximal typing
of f in Σ if there is no other subsort-overloaded f : s′1 · · · s

′
n → s′ ∈ F such that si ≤ s′i ,

1 ≤ i ≤ n, and s ≤ s′. We say that f : s1 · · · sn → s′ ∈ F is a maximal typing of
f with respect to s if it is a maximal typing of f in the subsignature of Σ obtained by
keeping only the function symbols whose return type s′′ satisfies s′′ ≤ s. A pair of sorts
s1, s2 ∈ S are called disjoint iff there is no s3 ∈ S such that s3 ≤ s1 and s3 ≤ s2. We
say that s1, s2 are maximally disjoint iff s1, s2 are disjoint and there is no s3 ∈ S such
that either s3 > s1 and s3, s2 are disjoint, or s3 > s2 and s3, s1 are disjoint. We always
assume that if a constructor symbol f ∈ F is commutative then its two arguments have
the same sort, and if it is associative or associative-commutative then its two arguments
and its return sort are all the same.

We assume a collection of variables X, where X is an S -indexed family X = {Xs}s∈S

of mutually disjoint variable sets with each Xs countably infinite. The set of terms of
sort s is denoted TΣ(X)s and the set of ground terms of sort s is denoted TΣ,s. The
expressions TΣ(X) and TΣ denote the corresponding order-sorted Σ-term algebras. We
assume that all order-sorted signatures are preregular [9], i.e., that each Σ-term has a
least sort ls(t) ∈ S such that t ∈ TΣ(X)ls(t). The set of variables of a term t is written
var(t) and is extended to sets of terms in the natural way.

A substitution is an S -indexed mapping θ that maps variables x ∈ Xs to terms
θ(x) ∈ TΣ(X)s, for s ∈ S , and is different from the identity for a finite subset of X. The
identity substitution is denoted by id and the expression θ|Y denotes the restriction of a
substitution θ to a set of variables Y ⊆ X. The expression dom(θ) denotes the domain
of θ, i.e., dom(θ) = {x ∈ X | θ(x) , x}, and the expression ran(θ) denotes the set
of variables introduced by θ, i.e., ran(θ) =

⋃
{var(θ(x)) | x ∈ dom(θ)}. Substitutions

extend homomorphically to terms in the natural way. A substitution θ is called ground
iff ran(θ) = ∅. The application of a substitution θ to a term t is denoted by tθ and the
composition of two substitutions θ1 and θ2 is denoted by θ1θ2.

5

A Σ-equation is an unordered pair t = u with t ∈ TΣ(X)st , u ∈ TΣ(X)su , and st ≡≤ su.
A conditional Σ-equation is a Horn clause t = u if C with t = u a Σ-equation and
C a finite conjunction

∧
i ui = vi of Σ-equations. An equational theory (presentation)

is a pair E = (Σ, E) with Σ an order-sorted signature and E a finite set of conditional
Σ-equations. Throughout this paper we assume that TΣ,s , ∅ for each s ∈ S , because
this affords a simpler deduction system. For ϕ a conditional Σ-equation, (Σ, E) ` ϕ iff
ϕ can be proved from (Σ, E) by the deduction rules in [10] iff ϕ is valid in all models of
(Σ, E) [10].

An equational theory E = (Σ, E) induces a congruence relation =E on TΣ(X) defined
for any t, u ∈ TΣ(X) by t =E u iff (Σ, E) ` t = u. TΣ/E(X) and TΣ/E denote the quotient
algebras induced by =E on the algebras TΣ(X) and TΣ, respectively. The quotient
algebra TΣ/E , also denoted TE, is called the initial algebra of (Σ, E). A conditional
Σ-equation ϕ is an inductive consequence of (Σ, E) iff TΣ/E |= ϕ, i.e., iff (∀θ : X −→
TΣ)(Σ, E) ` ϕθ. A theory inclusion (Σ, E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called
protecting iff the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ of the Σ-reduct of the
initial algebra TΣ′/E′ is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ.

Reasonable admissibility requirements are needed to make a theory executable
(see [11], Sections 4.6 and 6.3). We assume that the set of Σ-equations of an equa-
tional theory E can be decomposed into a disjoint union E ∪ B, with B a collection of
structural axioms for which there exists a matching algorithm modulo B producing a
finite number of B-matching solutions, or failing otherwise. Throughout this paper the
structural axioms B will always be a combination of commutativity, associativity, and
associativity-commutativity axioms for some (or none) of the function symbols in Σ.
Furthermore, the signature Σ should be not only preregular, so that each term t has a
least sort ls(t), but also B-preregular, in the sense that if t =B t′, then ls(t) = ls(t′). For B
any combination of commutativity, associativity, and associativity-commutativity ax-
ioms, B preregularity is easily checkable; the check is indeed automated in the Maude
language [11, 22.2.5]. We also assume that the equations E can be oriented into a set
of sort-decreasing, operationally terminating, and confluent conditional rewrite rules
E• modulo B, where the rewrite relation modulo B, →E•/B is defined3 as the relation
composition =B;→E• ; =B, with→E• the standard rewrite relation for rules E•. Finally
we assume that the rules E• are coherent modulo B [12], which for B any combination
of associativity and/or commutativity axioms can always be ensured by adding a few
“extension rules” if necessary (see [11, 4.8] for an informal explanation with examples
of extension rules). This ensures that the rewrite relation →E•/B can be (bi)simulated
by the simpler rewrite relation →E•,B that uses a B-matching algorithm, where, by
definition, t →E•,B t′ iff t has a subterm decomposition t[u] such that there is a rule
(l→ r) ∈ E• and a substitution θ such that u =B lθ, and t′ = t[rθ].

By definition, E• is sort decreasing modulo B iff for each t → u if C ∈ E• and
substitution θ, ls(tθ) ≥ ls(uθ) if (Σ, E∪B) ` Cθ. The set E• is operationally terminating
modulo B iff there is no infinite well-formed proof tree modulo B in E• [13]. The set
E• is confluent modulo B iff for all t, t1, t2 ∈ TΣ(X), if t →∗E•/B t1 and t →∗E•/B t2,

3For simplicity we define here→E•/B for the unconditional case. The precise definition of→E•/B when
the rules are conditional is given in Figure 5 in Section 5.2.

6

then there exist u1, u2 ∈ TΣ(X) such that t1 →∗E•/B u1, t2 →∗E•/B u2, and u1 =B u2.
The set of rewrite rules E• modulo B is ground sort-decreasing, ground operationally
terminating, and ground confluent iff it is, respectively, sort-decreasing, operationally
terminating, and confluent for ground terms. The term t ↓E/B∈ TΣ(X) denotes the E-
canonical form of t modulo B (or E/B-canonical form) so that t →∗E•/B t ↓E/B and
t ↓E/B is →E•/B-irreducible, i.e., it cannot be further reduced by →E•/B. Under the
above assumptions t ↓E/B is unique up to B-equality. The expression CanΣ,E/B denotes
the S -indexed set of E/B-canonical forms of TΣ understood as B-equivalence classes.

Given E = (Σ, E∪B) ground sort-decreasing, ground operationally terminating, and
ground confluent modulo B, an order-sorted signature Ω ⊆ Σ is called a subsignature of
constructors iff Ω has the same poset of sorts as Σ, and for each sort s in Σ and ground
term t ∈ TΣ,s there is a u ∈ TΩ,s satisfying t →∗E/B u. Furthermore, Ω ⊆ Σ is called a
subsignature of free constructors modulo4 B iff Ω is a signature of constructors modulo
B and CanΣ,E/B = TΩ/BΩ

, with BΩ as defined in Footnote 4.

3. Equality Enrichments

An equality enrichment of an equational theory is another equational theory that
extends the former with the definition of a Boolean-valued equality function symbol
that characterizes equality of ground terms in the original theory. One advantage of the
newly defined equality predicate is that –in contrast to an operationally defined built-in
equality predicate ‘==’– it is sound for symbolic deductive reasoning about equational
inductive properties.

This section assumes an order-sorted signature Σ = (S ,≤, F) and an order-sorted
equational theory E = (Σ, E) with initial algebra TE. Definition 1 formally introduces
the notion of an equality enrichment E∼ of E, with equality predicate ‘∼’ that coincides
with ‘=’ on TE.

Definition 1 (Equality Enrichment, generalizes [6, Definition 68]). An equational the-
ory E∼ = (Σ∼, E∼) is called an equality enrichment of E, with Σ∼ = (S ∼,≤∼, F∼), iff the
following conditions are satisfied:

• E∼ is a protecting extension of E;

• the poset of sorts of Σ∼ extends (S ,≤) by adding a new sort Bool that belongs
to a new connected component, with constants > and ⊥ such that TE∼,Bool =

{[>], [⊥]} and > ,E∼ ⊥; and

• for each connected component [s] in (S ,≤) if there is not a top sort k ∈ [s], then
a new top sort k ∈ S ∼ is added; in either case, a binary commutative operator

∼ : k k −→ Bool ∈ F∼

4 In general the axioms B may also involve defined function symbols not present in Ω. In such case, the
terminology “free constructors modulo B” involves some abuse of notation. Properly speaking, one should
talk of free constructors modulo BΩ where, by definition, BΩ = {u = v ∈ B | u, v ∈ TΩ(X)}. In what follows
we will ignore these details and will always use the simpler description “free constructors modulo B”.

7

is added to Σ∼ such that the following equivalences hold for any ground terms
t, u ∈ TΣ,k:

E ` t = u ⇐⇒ E∼ ` (t ∼ u) = >, (1)
E 0 t = u ⇐⇒ E∼ ` (t ∼ u) = ⊥. (2)

An equality enrichment E∼ of E is called Boolean iff it contains all the function
symbols and equations making the elements of TE∼,Bool a two-element Boolean
algebra.

The equality predicate ‘∼’ in E∼ is sound for inferring equalities and inequalities in
the initial algebra TE, even for terms with variables. The precise meaning of this claim
is given by Proposition 1.

Proposition 1 (Equality Enrichment Properties). Let E∼ = (Σ∼, E∼) be an equality
enrichment of E. If t, u ∈ TΣ(X), then the following equivalences hold:

TE |= (∀X) t = u ⇐⇒ TE∼ |= (∀X) (t ∼ u) = >, (3)
TE |= (∃X) t = u ⇐⇒ TE∼ |= (∃X) (t ∼ u) = >, (4)

TE |= (∀X) ¬(t = u) ⇐⇒ TE∼ |= (∀X) (t ∼ u) = ⊥, (5)
TE |= (∃X) ¬(t = u) ⇐⇒ TE∼ |= (∃X) (t ∼ u) = ⊥. (6)

Proof. The following is a proof of Statement (3); a proof of statements (4), (5), and (6)
can be obtained in a similar way.

TE |= (∀X) t = u
⇐⇒ { by definition of satisfaction in TE }

(∀σ : X −→ TΣ) E ` tσ = uσ
⇐⇒ { by (1) }

(∀σ : X −→ TΣ) E∼ ` (tσ ∼ uσ) = >

⇐⇒ { by E being protected by E∼ and the sorts of t, u in Σ }

(∀σ : X −→ TΣ∼) E∼ ` (tσ ∼ uσ) = >

⇐⇒ { by definition of satisfaction in TE∼ }
TE∼ |= (∀X) (t ∼ u) = >.

By using an equality enrichment E∼ of E, the problem of reasoning in TE about
a universally quantified inequality ¬(t = u) (abbreviated t , u) can be reduced to
reasoning in TE∼ about the universally quantified equality (t ∼ u) = ⊥. A considerably
more general reduction, not just for inequalities but for arbitrary quantifier-free first-
order formulae, can be obtained with Boolean equality enrichments.

Corollary 1. Let E∼ = (Σ∼, E∼) be a Boolean equality enrichment of E. Let ϕ = ϕ(t1 =

u1, . . . , tn = un) be a quantifier-free Boolean formula whose atoms are the Σ-equations
ti = ui with variables in X, for 1 ≤ i ≤ n, and with Boolean connectives in {¬,∨,∧}.

8

Then, the following equivalence holds:

TE |= (∀X)ϕ ⇐⇒ TE∼ |= (∀X) ϕ̂(t1 ∼ u1, . . . , tn ∼ un) = >, (7)

where ϕ̂(t1 ∼ u1, . . . , tn ∼ un) is the Σ∼-term of sort Bool obtained from ϕ by replacing
each occurrence of the logical connectives ¬, ∨, and ∧ by, respectively, the function
symbols ¬ , t , and u in EBool, and each occurrence of an atom ti = ui by the Bool
term ti ∼ ui, for 1 ≤ i ≤ n.

Proof. By structural induction on ϕ using Proposition 1 for base cases.

A key property of an equality enrichment E∼ of E is that, if E∼ is extended with
any set E′ of Σ-equations that are not satisfiable in TE, then the resulting extension is
inconsistent in the sense that the contradiction >=⊥ can be derived. Conversely, if the
set E′ of Σ-equations extending E∼ is satisfied by TE, then the resulting extension is
consistent and therefore cannot yield a proof of contradiction. Statements (9) and (10)
in Corollary 2 account for these two facts.

Lemma 1. If E′ is a set of Σ-equations, then the following equivalence holds:

TΣ/E |= E′ ⇐⇒ TΣ/E ' TΣ/E∪E′ . (8)

Proof. The (⇐=) direction is clear, since it is always true that TΣ/E∪E′ |= E′, and
thereforeTΣ/E |= E′ because satisfaction is preserved by isomorphisms. To see the (=⇒
) direction, note that, since TΣ/E |= E, TΣ/E |= E′ implies TΣ/E |= E ∪ E′. The initiality
of TΣ/E∪E′ then forces the existence of a unique Σ-homomorphism h : TΣ/E∪E′ −→

TΣ/E , and the initiality of TΣ/E and the fact that TΣ/E∪E′ |= E forces likewise a unique
Σ-homomorphism q : TΣ/E −→ TΣ/E∪E′ . But then the initiality of TΣ/E forces q; h =

1TΣ/E , and the initiality of TΣ/E∪E′ forces h; q = 1TΣ/E∪E′ . Therefore, TΣ/E ' TΣ/E∪E′ , as
desired.

Corollary 2 (Generalizes [6, Theorem 74]). Let E∼ = (Σ∼, E∼) be an equality enrich-
ment of E and let E′ be a collection of Σ-equations. Then the following equivalences
hold:

TE 6|= E′ ⇐⇒ (Σ∼, E∼ ∪ E′) ` > = ⊥, (9)
TE |= E′ ⇐⇒ (Σ∼, E∼ ∪ E′) 0 > = ⊥. (10)

Proof. Note that statements (9) and (10) are logically equivalent. The following is a
proof of (10). Without loss of generality assume that the Σ-equations in E′ are uncon-
ditional. Otherwise, if the equations in E′ are conditional, they can be replaced by the
set E′′ = {t = u | E ∪ E′ ` t = u}. It is then easy to prove that TE |= E′ if and only if
TE |= E′′. The forward direction is first proved:

TΣ/E |= E′

⇐⇒ { by E∼ being a protecting theory extension of E }
TΣ∼/E∼ |= E′

⇐⇒ { by Lemma 1 }
TΣ∼/E∼∪E′ ' TΣ∼/E∼ .

9

Therefore TΣ∼/E∼∪E′,Bool = {[>], [⊥]}, and hence (Σ∼, E∼ ∪ E′) 0 > = ⊥.
The proof in the other direction is obtained by contrapositive. If TE 6|= E′, then

there are ground terms t, u ∈ TΣ such that (i) (Σ, E) 0 t = u and (ii) (Σ, E ∪ E′) ` t = u.
By Definition 1, (i) is equivalent to (Σ∼, E∼) ` (t ∼ u) = ⊥ and thus, by monotonicity
of equational deduction, (Σ∼, E∼ ∪ E′) ` (t ∼ u) = ⊥. By (ii) and the monotonicity of
equational deduction, it follows that (Σ∼, E∼ ∪ E′) ` t = u. Then, from Definition 1, it
follows that (Σ∼, E∼ ∪ E′) ` (t ∼ u) = >. Therefore (Σ∼, E∼ ∪ E′) ` > = ⊥.

4. An Effective Transformation with Free Constructors Modulo

This section presents an effective theory transformation E 7→ E∼ for enriching
with an equality predicate order-sorted equational theories E that are executable in the
sense of satisfying the admissibility conditions in Section 2, and such that they have
a subsignature of free constructors modulo structural axioms. In the development to
follow, E = (Σ, E ∪ B) is an admissible order-sorted equational theory with signature
Σ = (S ,≤, F) and subsignature Ω of free constructors modulo B. The axioms B are any
union of associative (A), commutative (C), and associative-commutative (AC) axioms.
Furthermore, the following convention is adopted: for x a variable and s a sort, the
expression xs indicates that x has sort s, i.e., x ∈ Xs.

The theory transformation E 7→ E∼ consists of two main tasks or subtransforma-
tions. On input E, it first extends E by adding new sorts, the equational theory EBool

of Booleans with constructors > and ⊥ (and with the other usual Boolean connectives
equationally defined), some auxiliary functions, the equality predicate ‘∼’ for each top
sort in the input theory E, and some equations defining ‘∼’ that solely depend on sort
information in Σ. Second, it generates a set of equations defining ‘∼’ that do depend
on the constructor symbols in Ω and their structural axioms.

Transformation 1. Extends the input theory E by adding:

(i) a fresh top sort for each connected component in Σ that does not have it,
(ii) the theory EBool with sort Bool,

(iii) for each top sort k in each connected component of E, the Boolean-valued
(binary) commutative operator ‘∼’,

(iv) some equations partially defining ‘∼’ for top sorts, and
(v) for each f ∈ FΩ with AC structural axioms the Boolean-valued binary

operator ‘ink
f ’.

Transformation 2. For each f ∈ FΩ, and depending on the structural axioms of f ,
generates a suitable set of equations defining ‘∼’ and ‘ink

f ’, where the auxiliary
Boolean-valued operator ‘ink

f ’ is used for checking if a term rooted by an AC
constructor symbol f contains or not a term not rooted by f but by another
constructor g under the constructor symbol f .

We assume a theory EBool specifying the Booleans as its initial algebra that is
confluent, and terminating modulo axioms BBool (which may include any combina-
tion of associativity and/or commutativity axioms), and that has a signature of free

10

constructors ΩBool = {>,⊥} modulo BBool, set of defined symbols ΣBool \ ΩBool =

{ ¬ , u , t , � , ⊃ }, (alternatively, ΣBool \ ΩBool = { ¬ , u , t ,≡, ⊃ }), and satisfies
TEBool |= > , ⊥. The choice of EBool is quite general: we can for example choose any
equational theory implementing a rewriting-based Boolean decision procedure, such
as Hsiang’s Boolean ring theory EBool (see, e.g., [11, Section 9.1]), or the Dijkstra-
Shoelten specification EBool in [14] (for two other alternative rewriting-based Boolean
decision procedures see [14]). Even a more basic theory, such as the theory EBBool

presented below, which specifies the initial algebra of the Booleans but falls short of
being a decision procedure, will suffice for our purposes and will make some conflu-
ence proofs easier. In Section 5.3 we show how this theory can be easily extended to
obtain an actual decision procedure.

Example 1. In the following theory EBBool, equations (11)–(16), denoted EBBool, can be
oriented as rewrite rules from left to right modulo the associativity and commutativity
axioms for t and u , denoted BBBool.

x t > = > (11)
x t ⊥ = x (12)
x u ⊥ = ⊥ (13)
x u > = x (14)
¬ > = ⊥ (15)
¬ ⊥ = > (16)

Note that, since they decrease term size, while associativity and commutativity axioms
preserve it, equations (11)–(16) are terminating. Furthermore, equations (11)–(16)
are locally confluent modulo the associativity and commutativity axioms and therefore
confluent. Also, rules (11)–(16) are closed under AC extensions and are therefore co-
herent modulo BBBool; therefore, the rewrite relation→EBBool/BBBool can be (bi)simulated
by the rewrite relation→EBBool,BBBool . Sufficient completeness of {>,⊥} as a subsignature
of free constructors is easily checkable by showing that all unary and binary opera-
tors, when suppied with any combination of > or ⊥ arguments, reduce to either > or
⊥, plus the fact that > and ⊥ are irreducible. Note that the other Boolean operators
can be specified in terms of t , u and ¬ by definitional extensions that do not alter
the confluence, termination and sufficient completeness of EBBool. For example, ⊃ can
be defined by the equation, x ⊃ y = (¬ x) t y.

Defining the equality predicate ‘∼’, for the positive case is simple. Indeed, this case
is defined in Transformation 1 and is captured by the equation:

xk ∼ xk = >,

for each top sort k in each connected component of E. Subsort overloading of construc-
tor symbols in conjunction with maximal typings and structural axioms introduce some
subtleties for correctly defining the negative cases of ‘∼’. Of course, since constructors
are free modulo B by assumption, two terms t = f (· · ·) and u = g(· · ·) with the same
sort but with syntactically different constructors f and g in their roots, always yield ⊥
when compared with ‘∼’.

11

To better explain how subsort overloading of constructor symbols and disjoint sorts
are dealt with by the equations added in Transformation 1, we can consider scenarios
(a), (b), and (c) depicted in Figure 1. In these three scenarios, there are two connected
components in the sort order, namely, [s1] and [s]. In Scenario (a) there is exactly
one unary constructor symbol f . In scenarios (b) and (c) there are two, resp. three,
overloaded versions of the constructor f .

(S ,≤) FΩ

(a) s1 s

s2

f : s2 −→ s

(b) s1 s

s2 s3

f : s2 −→ s
f : s3 −→ s

(c) s1 s

s2 s3

s4

f : s2 −→ s
f : s3 −→ s
f : s4 −→ s

Figure 1: Some cases of constructor overloading.

In Scenario (a), the simplest of the three scenarios, there are three sorts s1, s2, s
and two connected components. Function symbol f : s2 −→ s is the only constructor
symbol. Note that, as defined in this scenario, it is perfectly fine if f is not a constructor
at the level of s1. In this case, there is exactly one maximal typing for the constructor
f and the definition of ‘∼’ is straightforward by recursion on the argument of f :

f (xs2) ∼ f (ys2) = xs2 ∼ ys2

In Scenario (b), there are four sorts s1, s2, s3, s and two connected components.
The situation is more interesting than in Scenario (a) because there are two maximal
typings for the constructor f , namely, f : s2 −→ s and f : s3 −→ s. First note
that TΩ(X)s2 ∩ TΩ(X)s3 = ∅ because the sorts s2 and s3 have no sort below them and,
by preregularity, sort-decreasingness and confluence (admissibility requirements from
Section 2), every term has a lowest sort; therefore, the comparison using ‘∼’ of any
two terms, with corresponding sorts s2 and s3, should always yield ⊥. Note also that
if a term g(· · ·) ∈ TΩ(X)s1 , then either g(· · ·) ∈ TΩ(X)s2 or g(· · ·) ∈ TΩ(X)s3 because
of the preregularity assumption on Σ. Therefore, in addition to the equation capturing
the above-mentioned positive case, the following equations define ‘∼’ for f in Scenario

12

(b):

xs2 ∼ ys3 = ⊥

f (xs2) ∼ f (ys2) = xs2 ∼ ys2

f (xs3) ∼ f (ys3) = xs3 ∼ ys3

f (xs2) ∼ f (ys3) = xs2 ∼ ys3

Note that in practice, the last equation can be replaced by f (xs2) ∼ f (ys3) = ⊥ if
we are in Scenario (b). Scenario (c) is similar to Scenario (b), but there is a new sort s4
below s2 and s3. In this case, the emptiness TΩ(X)s2 ∩ TΩ(X)s3 = ∅ does not hold if all
sorts are inhabited. Indeed, by our general assumption that TΣ,s , ∅ for any sort s in Σ,
we have TΩ(X)s2 ∩ TΩ(X)s3 , ∅, so that the first equation given for Scenario (b) does
not hold in Scenario (c). Note, finally, that, by f being an overloaded constructor with
argument sort s2 or s3, f can also be applied to arguments of sort s4, since s4 ≤ s2 and
s4 ≤ s3. Indeed, the equations defining ‘∼’ in Scenario (c) are all but the first equation
in Scenario (b).

Definition 2 spells out in detail Transformation 1 and prepares the ground for Trans-
formation 2.

Definition 2 (Enrich). The transformation E 7→ E∼ generates the smallest equational
theory E∼ = (Σ∼, E∼ ∪ B∼) satisfying:

• E ∪ EBool ⊆ E∼;

• the poset of sorts of E∼ extends that of E by adding a new connected component
{Bool}, and by adding a fresh top sort to any connected component of the poset
of sorts of E lacking a top sort;

• for each top sort k in Σ∼ of a connected component of Σ, Σ∼ contains a commu-
tative operator:

(∼) : k k → Bool,

B∼ contains the commutative structural axiom:

xk ∼ yk = yk ∼ xk,

and E∼ contains the equation:

xk ∼ xk = >; (17)

• for each top sort k and each maximal disjoint pair of sorts s1, s2 such that s1, s2 ≤

k, then E∼ contains the equation:

xs1 ∼ ys2 = ⊥; (18)

• for each top sort k in Σ∼ of a connected component of Σ, if there is a function
symbol f : s s → s ∈ Ω, with s ≤ k and f satisfies the AC axiom, then Σ∼

13

contains the symbol:

ink
f : k k → Bool;

• for each function symbol f ∈ FΩ, E∼ contains the equations enrichE(f) (see the
upcoming definitions in this section).

As explained earlier, in order-sorted specifications it is possible for a function sym-
bol to have more than one maximal typing. The notion of subsort-overloading is nec-
essary to deal with maximal typings of overloaded function symbols. We assume that
if two typings are subsort-overloaded they always satisfy the same axioms. The defini-
tion of enrichE is first given for the case of constructor symbols that do not satisfy any
structural axioms; such a function symbol is called absolutely free.

Definition 3 (Absolutely Free Enrich). Assume f ∈ Ω is an absolutely free symbol.
Then, for each maximal typing f : s1 · · · sn → s of f ∈ Ω, enrichE(f) adds the following
equations:

• for each g : s′1 · · · s
′
m → s′ ∈ Ω a maximal typing of g such that s ≡≤ s′,

s, s′ are not disjoint5 and f : s1 · · · sn → s is not subsort-overloaded 6 with
g : s′1 . . . s′m → s′:

f (x1
s1
, . . . , xn

sn
) ∼ g(y1

s′1
, . . . , ym

s′m
) = ⊥; (19)

• for each f : s′1 · · · s
′
n → s′ ∈ Ω a maximal typing of f subsort-overloaded with

f : s1 · · · sn → s and such that s, s′ are not disjoint:

f (x1
s1
, . . . , xn

sn
) ∼ f (y1

s′1
, . . . , yn

s′n
) =

nl

i=1

xi
si
∼ yi

s′i
; (20)

• for each 1 ≤ i ≤ n such that si ≡≤ s:

f (x1
s1
, . . . , xn

sn
) ∼ xi

si
= ⊥. (21)

Note that in the second item of Definition 3 any typing is subsort-overloaded with
itself. In Definition 3, some equations use the Boolean operator u in EBool to obtain a
recursive definition of ‘∼’. Example 2 shows the transformed theory E∼ after applying
Definitions 2 and 3 to a concrete specification E.

Example 2. Consider the following equational theory ENATURAL specified in Maude [11],
that represents the natural numbers in Peano notation, where 0 and s have been de-
clared as constructors using the ctor declaration.

5The case when s, s′ are disjoint is taken care of by Equation (18).
6It could be subsort-overloaded if f = g.

14

fmod NATURAL is
sort Nat .

op 0 : -> Nat [ctor] .

op s : Nat -> Nat [ctor] .

endfm

An equality enrichment consists of ENATURAL extended with the equational theory EBool

and an equational definition of ‘∼’. The following equational theory EEQ-NATURAL is
an equational enrichment of ENATURAL. The last equation is not essential for getting
the proof of Theorem 14, but it is useful in practice for detecting a greater number of
inequalities between terms with variables.

fmod EQ-NATURAL is
protecting NATURAL .

protecting BOOL .

op _~_ : Nat Nat -> Bool [comm] .

vars N M : Nat .

eq N ~ N = true .

eq 0 ~ s(N) = false .

eq s(N) ~ s(M) = N ~ M .

eq s(N) ~ N = false .

endfm

Definition 4 presents the definition or enrichE for the case in which the input sym-
bol is commutative.

Definition 4 (C-Enrich). Assume f ∈ Ω is commutative and non-associative. Then, for
each maximal typing f : s s→ s′ of f ∈ Ω, enrichE(f) adds the following equations:

• for each g : s′1 · · · s
′
m → s′′ ∈ Ω a maximal typing of g such that s′ ≡≤ s′′, s′, s′′

are not disjoint and f : s s → s′ is not subsort-overloaded with g : s′1 · · · s
′
m →

s′′:

f (x1
s , x

2
s) ∼ g(y1

s′1
, . . . , ym

s′m
) = ⊥; (22)

• for each f : s′′ s′′ → s′′′ ∈ Ω a maximal typing of f subsort-overloaded with
f : s s→ s′ and such that s′, s′′′ are not disjoint:

f (x1
s , x

2
s) ∼ f (y1

s′′ , y
2
s′′) = (x1

s ∼ y1
s′′ u x2

s ∼ y2
s′′)

t (x1
s ∼ y2

s′′ u x2
s ∼ y1

s′′); (23)

• if s ≡≤ s′ we add the equation:

f (x1
s , x

2
s) ∼ x1

s = ⊥. (24)

Example 3. We can easily define unordered pairs of natural numbers in the following
module:

15

fmod NATURAL-PAIR is
protecting NATURAL .

sort Pair .

op {_,_} : Nat Nat -> Pair [ctor comm] .

endfm

we can then define its equality enrichment EQ-NATURAL-PAIR as the following module
(we import the already defined equality for naturals in EQ-NATURAL):

fmod EQ-NATURAL-PAIR is
protecting NATURAL-PAIR .

protecting EQ-NATURAL .

op _~_ : Pair Pair -> Bool [comm] .

vars N M N’ M’ : Nat .

var P : Pair .

eq P ~ P = true .

eq {N, M} ~ {N’,M’} = (N ~ N’ and M ~ M’) or

(N ~ M’ and M ~ N’) .

endfm

Note that the module EQ-NATURAL-PAIR can be quite useful not only for deciding
equality between two unordered pairs of natural numbers, but also to define other
useful functions. For example, we could extend EQ-NATURAL-PAIR with a predicate:

singleton : Pair → Bool

defined by the equation:

singleton({n,m}) = n ∼ m.

For the definition of enrichE in the case of an associative function symbol f with
maximal typing of sort s, a top typing in Σ for such an f is also assumed, i.e., a typing
f : s′ s′ → s′ satisfying that if f : s s → s is another typing with s ≡< s′, then s′ ≥ s
(note that a top typing of f need not belong to Ω, as in Example 4 below).

The notion of maximal typing with respect to a sort allows us to avoid the use of
conditional equations in the associative case.

Definition 5 (A-Enrich). Assume f ∈ Ω is associative and non-commutative. Then for
each maximal typing f : s s→ s of f ∈ Ω, enrichE(f) adds the following equations:

• for each g : s′1 · · · s
′
m → s′ a maximal typing of g ∈ Ω such that s ≡≤ s′, s, s′ are

not disjoint and f : s s→ s is not subsort-overloaded with g : s′1 · · · s
′
m → s′′:

f (x1
s , x

2
s) ∼ g(ys′1 , . . . , y

m
s′m

) = ⊥; (25)

• for each f : s′′′ s′′′ → s′′′ ∈ Ω a maximal typing of f subsort-overloaded with
f : s s→ s and such that s, s′′′ are not disjoint:

– for each g : s′1 · · · s
′
m → s′ a maximal typing with respect to s of g ∈ Ω and

g : s′′1 · · · s
′′
m → s′′ a maximal typing with respect to s′′′ of g ∈ Ω with

16

∗ f : s s→ s not subsort-overloaded with g : s′1 · · · s
′
m → s′, and

∗ g : s′1 · · · s
′
m → s′ subsort-overloaded with g : s′′1 · · · s

′′
m → s′′:

f (g(y1
s′1
, . . . ,ym

s′m
), x1

s) ∼ f (g(z1
s′′1
, . . . , zm

s′′m
), x2

s′′′) =

g(y1
s′1
, . . . , ym

s′m
) ∼ g(z1

s′′1
, . . . , zm

s′′m
) u x1

s ∼ x2
s′′′ ; (26)

f (x1
s , g(y1

s′1
, . . . ,ym

s′m
)) ∼ f (x2

s′′′ , g(z1
s′′1
, . . . , zm

s′′m
)) =

g(y1
s′1
, . . . , ym

s′m
) ∼ g(z1

s′′1
, . . . , zm

s′′m
) u x1

s ∼ x2
s′′′ ; (27)

– for each g : s′1 · · · s
′
m → s′ a maximal typing with respect to s of g ∈ Ω and

h : s′′1 · · · s
′′
l → s′′ a maximal typing with respect to s′′′ of h ∈ Ω with

∗ f : s s→ s not subsort-overloaded with g : s′1 · · · s
′
m → s′,

∗ f : s s→ s not subsort-overloaded with h : s′′1 · · · s
′′
l → s′′, and

∗ g : s′1 · · · s
′
m → s′ not subsort-overloaded with h : s′′1 · · · s

′′
l → s′′:

f (g(y1
s′1
, . . . , ym

s′m
), x1

s) ∼ f (h(z1
s′′1
, . . . , zl

s′′l
), x2

s′′′) = ⊥; (28)

f (x1
s , g(y1

s′1
, . . . , ym

s′m
)) ∼ f (x2

s′′′ , h(z1
s′′1
, . . . , zl

s′′l
)) = ⊥; (29)

– for any maximal sort s′ in (bsc ∩ bs′′′c,≤):

f (x1
s′ , x

2
s) ∼ f (x1

s′ , y
2
s′′′) = x2

s ∼ y2
s′′′ ; (30)

f (x1
s , x

2
s′) ∼ f (y1

s′′′ , x
2
s′) = x1

s ∼ y1
s′′′ ; (31)

• for each 1 ≤ i ≤ 2:

f (x1
s , x

2
s) ∼ xi

s = ⊥. (32)

Note that subsort-overloading is a transitive property. The above equations mean
that equality of two associative terms is performed by recursively comparing their
“head elements” (or their “tail elements”) using pattern matching.

Example 4. Consider the following Maude specification of the equational theory ELIST

that specifies lists of natural numbers in Peano notation:

fmod LIST is
protecting NATURAL .

sorts NeNatList NatList .

subsorts Nat < NeNatList < NatList .

op nil : -> NatList [ctor] .

op _;_ : NeNatList NeNatList -> NeNatList [ctor assoc] .

op _;_ : NatList NatList -> NatList [assoc] .

var L : NatList .

eq L ; nil = L .

eq nil ; L = L .

endfm

17

Note that ‘;’ is a constructor symbol only when its arguments are non-empty lists.
Therefore, the signature of free constructors modulo B of the theory ELIST contains the
constructors 0 and s for NATURAL plus the operators:

{nil : -> NatList, ; : NeNatList NeNatList -> NeNatList}.

The equality enrichment of LIST is the following equational theory EEQ-LIST:

fmod EQ-LIST is
protecting LIST .

protecting EQ-NATURAL .

op _~_ : NatList NatList -> Bool [comm] .

vars P Q R S : NeNatList .

var N M : Nat .

eq P ~ P = true .

eq 0 ~ nil = false .

eq s(N) ~ nil = false .

eq (P ; Q) ~ 0 = false .

eq (P ; Q) ~ s(N) = false .

eq (P ; Q) ~ nil = false .

eq (P ; Q) ~ P = false .

eq (P ; Q) ~ Q = false .

eq (P ; Q) ~ (P ; R) = Q ~ R .

eq (P ; Q) ~ (R ; Q) = P ~ R .

eq (0 ; P) ~ (0 ; Q) = P ~ Q .

eq (P ; 0) ~ (Q ; 0) = P ~ Q .

eq (s(N) ; P) ~ (s(M) ; Q) = s(N) ~ s(M) and P ~ Q .

eq (P ; s(N)) ~ (Q ; s(M)) = s(N) ~ s(M) and P ~ Q .

eq (0 ; P) ~ (s(N) ; Q) = false .

eq (P ; 0) ~ (Q ; s(N)) = false .

endfm

In order to illustrate the intuition behind the definition of EEQ-LIST, consider the follow-
ing two examples:

((0; 0); 0) ∼ (0; (0; 0))

(17)

,,

(26),(27),(30),(31)
��

(30),(31)

##
0; 0 ∼ 0; 0

(17)

��

(26),(27),(30),(31) // 0 ∼ 0

(17)

nn>

Figure 2: Associative reduction example.

• for ((0; 0); 0) ∼ (0; (0; 0)), Figure 2 illustrates the possible reductions; and

• for ((0; s(0)); 0) ∼ (s(0); 0) the only applicable equation modulo associativity

18

is (0; P) ∼ (s(N); Q) = ⊥ under substitution σ(P) = s(0); 0, σ(Q) = 0 and
σ(N) = 0, thus obtaining ((0; s(0)); 0) ∼ (s(0); 0) = ⊥.

In the associative-commutative case we assume that there is a top typing for f in Σ,
as in the associative case.

Definition 6 (AC-Enrich). Assume f ∈ Ω is associative-commutative. Then for each
maximal typing f : s s→ s of f ∈ Ω, enrichE(f) adds the following equations:

• for each g : s′1 · · · s
′
m → s′ a maximal typing of g ∈ Ω such that s ≡≤ s′, s, s′ are

not disjoint and f : s s→ s is not subsort-overloaded with g : s′1 · · · s
′
m → s′′:

f (x1
s , x

2
s) ∼ g(y1

s′1
, . . . , ym

s′m
) = ⊥; (33)

• for each f : s′′′ s′′′ → s′′′ ∈ Ω a maximal typing of f subsort-overloaded with
f : s s→ s and such that s, s′′′ are not disjoint:

– for each g : s′1 · · · s
′
m → s′ a maximal typing with respect to s of g ∈ Ω and

f : s s→ s is not subsort-overloaded with g : s′1 · · · s
′
m → s′′:

f (g(x1
s′1
, . . . , xm

s′m
), z2

s) ∼ f (y1
s′′′ , y

2
s′′′) = ⊥

if ink
f (g(x1

s′1
, . . . , xm

s′m
), y1

s′′′)

t ink
f (g(x1

s′1
, . . . , xm

s′m
), y2

s′′′) = ⊥ (34)

– for any maximal sort s′ ∈ (bsc ∩ bs′′′c):

f (x1
s′ , x

2
s) ∼ f (x1

s′ , y
2
s′′′) = x2

s ∼ y2
s′′′ ; (35)

• for each g : s′1 · · · s
′
m → s′ a maximal typing of g ∈ Ω such that s ≡≤ s′ and

f : s s→ s is not subsort-overloaded with g : s′1 · · · s
′
m → s′′:

ink
f (g(x1

s′1
, . . . , xm

s′m
), f (z1

s , z
2
s)) = ink

f (g(x1
s′1
, . . . , xm

s′m
), z1

s)

t ink
f (g(x1

s′1
, . . . , xm

s′m
), z2

s); (36)

• for each g : s′1 · · · s
′
m → s′ a maximal typing of g ∈ Ω and g : s′′1 · · · s

′′
m → s′′ a

maximal typing of g ∈ Ω such that s ≡≤ s′, s ≡≤ s′′ where

– f : s s→ s is not subsort-overloaded with g : s′1 · · · s
′
m → s′, and

– g : s′1 · · · s
′
m → s′ is subsort-overloaded with g : s′′1 · · · s

′′
m → s′′:

ink
f (g(x1

s′1
, . . . , xm

s′m
),g(y1

s′′1
, . . . , ym

s′′m
)) =

g(x1
s′1
, . . . , xm

s′m
) ∼ g(y1

s′′1
, . . . , ym

s′′m
); (37)

• for each g : s′1 · · · s
′
m → s′ a maximal typing of g ∈ Ω and h : s′′1 · · · s

′′
l → s′′ a

maximal typing of h ∈ Ω such that s ≡≤ s′, s ≡≤ s′′ where

19

– f : s s→ s is not subsort-overloaded with g : s′1 · · · s
′
m → s′,

– f : s s→ s is not subsort-overloaded with h : s′′1 · · · s
′′
l → s′′, and

– g : s′1 · · · s
′
m → s′ is not subsort-overloaded with h : s′′1 · · · s

′′
l → s′′:

ink
f (g(x1

s′1
, . . . , xm

s′m
), h(y1

s′′1
, . . . , yl

s′′l
)) = ⊥; (38)

• for f itself:

ink
f (f (x1

s , x
2
s), yk) = ⊥; (39)

f (x1
s , x

2
s) ∼ x1

s = ⊥. (40)

Intuitively, a constructor term rooted by an associative-commutative symbol f can
be viewed as a multiset with union operator f . The function ‘ink

f ’ in Definition 6
identifies when an element (a term not rooted by f) belongs to such a multiset.

Example 5. Consider the following Maude specification of the equational theory EMSET,
which represents multisets of natural numbers in Peano notation:

fmod MSET is
protecting NATURAL .

sorts NeNatMSet NatMSet .

subsort Nat < NeNatMSet < NatMSet .

op empty : -> NatMSet [ctor] .

op __ : NeNatMSet NeNatMSet -> NeNatMSet [ctor assoc comm] .

op __ : NatMSet NatMSet -> NatMSet [assoc comm] .

var T : NatMSet .

eq empty T = T .

endfm

The membership function ‘ink
f ’ is used as an auxiliary function to give a recursive

definition of equality for constructor terms rooted by AC-symbols. The following equa-
tional theory EEQ-MSET is the equality enrichment for EMSET:

fmod EQ-MSET is
protecting MSET .

protecting EQ-NATURAL .

op in-- : NatMSet NatMSet -> Bool .

op _~_ : NatMSet NatMSet -> Bool [comm] .

vars P Q R S : NeNatMSet .

var N M : Nat .

vars T U : NatMSet .

eq in--(P Q, R) = false .

eq in--(0, 0) = true .

eq in--(s(N), s(M)) = s(N) ~ s(M) .

eq in--(empty, empty) = true .

eq in--(0, s(N)) = false .

20

eq in--(s(N), 0) = false .

eq in--(0, empty) = false .

eq in--(empty, 0) = false .

eq in--(s(N), empty) = false .

eq in--(empty, s(N)) = false .

eq in--(0, (P Q)) = in--(0,P) or in--(0, Q) .

eq in--(s(N), (P Q)) = in--(s(N), P) or in--(s(N), Q) .

eq in--(empty, (P Q)) = in--(empty, P) or in--(empty, Q) .

eq P ~ P = true .

eq 0 ~ empty = false .

eq s(N) ~ empty = false .

eq (P Q) ~ 0 = false .

eq (P Q) ~ empty = false .

eq (P Q) ~ s(N) = false .

eq (P Q) ~ P = false .

eq (P Q) ~ (P R) = Q ~ R .

ceq (0 P) ~ (Q R) = false if in--(0, Q) or in--(0, R) = false .

ceq (s(N) P) ~ (Q R) = false if in--(s(N), Q)

or in--(s(N), R) = false .

endfm

In order to illustrate the intuition behind the definition of EEQ-MSET, consider the
following two examples:

• for ((0 0) 1) ∼ ((0 1) 0), Figure 3 illustrates the possible reductions; and

((0 0) s(0)) ∼ ((0 s(0)) 0)

(17)

--

(35)

vv
(35)
��

(35)

))
0 ∼ 0

(17)
))

0 s(0) ∼ 0 s(0)

(17)

��

(35) //(35)oo s(0) ∼ s(0)

(17)
uu

(20)

ll

>

Figure 3: Associative-Commutative reduction example.

• for ((0 s(0)) 0) ∼ (s(0) 0), Figure 4 illustrates the possible reductions.

((0 s(0)) 0) ∼ (s(0) 0)

(40)

��

(35)vv (35)))
0 0 ∼ 0

(40),(33)

((

0 s(0) ∼ s(0)
(40),(33)

uu
⊥

Figure 4: Associative-Commutative reduction example.

21

5. Executability Properties of E∼

It would be very useful, both from a theoretical and a practical point of view, that
if a theory E satisfies some executability properties, then the equality enrichment E∼

of E obtained from the transformation in Section 4 would inherit these properties. In
particular, if the original theory E is sort-decreasing (resp., ground sort-decreasing),
confluent (resp., ground confluent), and operationally terminating (resp., ground oper-
ationally terminating), then E∼ should also be so. Similarly, the subsignature of free
constructors of E∼ should be an extension of the subsignature of free constructors of E
(modulo the structural axioms). In this way, full agreement between mathematical and
operational semantics would be preserved in the equality enrichment E∼.

The domain of the transformation E 7→ E∼ includes exactly those equational theo-
ries whose structural axioms are any combination of A and/or C axioms for some of its
symbols. However, if the input theory E has symbols with identity axioms, one could
use the results in [3] to avoid these axioms and instead use identity equations, provided
that the constructors remain free after the transformation. This is often possible in
practice, as illustrated by the LIST and MSET examples, where identities for lists and
multisets are specified as oriented equations and not as structural axioms.

In this section, E = (Σ, E ∪ B) is an order-sorted equational theory with Σ = (S ,≤
, F) and Ω a signature of free constructors modulo B, with E∼ = (Σ∼, E∼ ∪ B∼) the
Boolean equality enrichment obtained by the transformation E 7→ E∼, with order-
sorted signature Σ∼ = (S ∼,≤∼, F∼). We assume that the axioms B are any combination
of A and/or C axioms for some of the function symbols in Σ. Definitions and results
on the termination of Boolean Theories relevant to the main results in Section 5.2 and
on the modular decomposition of B-equality relevant to the main results in Section 5.3
can be found in the companion appendix, electronically available with this paper.

5.1. Preservation of (Ground) Sort-Decreasingness

Recall from Section 2 that the equational theory E is sort-decreasing (resp., ground
sort-decreasing) iff E ` Cθ implies ls(tθ) ≥ ls(uθ) for each t = u if C ∈ E and
substitution (resp., ground substitution) θ. The key observation for the proof is that
since Bool is a fresh sort in a new connected component of E∼ and all the new equations
added in the transformation E 7→ E∼ are of sort Bool, it is impossible for the equations
added by Definition 2 to apply to terms in TΣ(X).

Proposition 2. If E is sort-decreasing (resp., ground sort-decreasing), then E∼ is also
sort-decreasing (resp., ground sort-decreasing). Furthermore, since we have assumed
throughout that E is preregular modulo B, E∼ is also preregular modulo B∼.

Proof. Consider the following cases on the equations in E∼:

1. any equation in E is sort-decreasing (resp., ground sort-decreasing) by assump-
tion,

2. if an equation is in E∼ but not in E, then the left-hand and right-hand sides of
such an equation have least sort Bool because Bool has no proper subsorts or
supersorts.

22

Therefore, E∼ is sort-decreasing (resp., ground sort-decreasing). Finally, note that all
axioms in B∼ − B are of sort Bool, which has no subsorts or supersorts, and therefore
are trivially sort-preserving.

5.2. Preservation of (Ground) Operational Termination

The operational (resp., ground operational) termination of E∼ is obtained from the
operational (resp. ground operational) termination of some of its subtheories, includ-
ing that of the input theory E. In general, the union of two operationally terminating
theories may not be operationally terminating. Furthermore, the fact of dealing with
arbitrary theories whose rules are unknown makes proving operational termination of
the union more involved. However, using a modular argument that exploits sort infor-
mation to take advantage of the shape of terms in E∼, it is possible to prove that there is
no possible infinite well-formed proof tree in the theory E∼. The proof of operational
termination is based on the conditional order-sorted rewriting logic modulo axioms de-
fined in Figure 5, under the very general assumption that any rewrite system associated
to a finite set of conditional equations is a deterministic 3-CTRS [15]. The main result
of this section is stated in Theorem 7.

(Refl)
t →∗ u

(Cong)
ti → ui

f (t1, . . . , ti, . . . , tn)→ f (t1, . . . , ui, . . . , tn)

if t =B u where f ∈ Σ and 1 ≤ i ≤ ar(f)

(Tran)
t → u u→∗ v

t →∗ v
(Repl)

u1σ→
∗ v1σ · · · umσ→

∗ vmσ

t → vσ

where u→ v if u1 → v1 · · · um → vm ∈ R
and t =B uσ

Figure 5: Conditional Order-Sorted Rewriting Logic Modulo.

Our strategy for proving the operational termination of E∼ relies on the (assumed)
operational termination of E and on proofs for the operational termination of the fol-
lowing equational subtheories of E∼:

E0 = (Σ∼, E0 ∪ B∼) and (41)
E1 = (Σ∼, E1 ∪ B∼), (42)

where E1 = (E∼ \ E) and E0 = {l = r | l = r if C ∈ E1}. The equational theory E1
forgets the equations in E, while the equational theory E0 is the same as E1 but it also
drops the conditions of the conditional equations in E1.

Lemma 2 states that E0 is operationally terminating. In this case, since E0 is uncon-
ditional, operational termination of E0 is a logical consequence of the well-foundedness
of→E0/B∼ , which is the main concern in the proof of the lemma.

23

Lemma 2. The rewrite relation→E0/B∼ is well-founded. Moreover, E0 is operationally
terminating.

Proof. It is enough to prove that E0 is terminating regardless of the sort informa-
tion. The symmetric, stable, and monotonic relation ∼ is witnessed by =B∼ . The
B∼-compatible simplification ordering is witnessed by � [16], that can be obtained
using an AC-RPO [17] which, depending on the choice of either the basic Boolean
theory presented in Example 1, Hsiang’s Boolean ring theory or Dijkstra-Schoelten’s
theory, uses one of the precedence orders >BB, >BR, or >DS between symbols that can
be found in the companion appendix (Appendix A), electronically available with this
paper. Simplification orderings imply � ⊆ �, where � is the subterm ordering. It is
routine to check by inspection on the equations E0 (including the Boolean equations
for the Boolean theories we have considered) that E0 is terminating modulo B∼. Fur-
thermore, since E0 is unconditional, well-foundedness of →E0/B∼ is equivalent to the
operational termination of E0 [18, p. 79].

Corollary 3. The rewrite relation→E1/B∼ is well-founded.

Proof. It follows by Lemma 2 and observing that→E1/B∼ ⊆→E0/B∼ .

The next subgoal is to extend the well-foundedness of E1’s rewrite relation obtained
in Corollary 3 to a proof of the operational termination of E1. For this purpose, it is
convenient to reason about the more general binary relations ⇒E0/B∼ and ⇒E1/B∼ on
TΣ∼/B∼ (X)Bool, which are compatible with the subterm relation, and are defined by

⇒E0/B∼ =→E0/B∼ ∪�B∼ (43)
⇒E1/B∼ =→E1/B∼ ∪�B∼ . (44)

where �B∼ is defined by:

u �B∼ v ⇐⇒ ∃w. w ∈ [u]B∼ ∧ w � v ∧ v ∈ TΣ(X)Bool

where, by definition, w � v holds iff v is a proper subterm of w. Note that ⇒E1/B∼ ⊆

⇒E0/B∼ . Also, these relations are well-founded.

Lemma 3. The binary relations⇒E0/B∼ and⇒E1/B∼ are well-founded.

Proof. Note that �B∼ ,→E0/B∼ ⊆ �, where � is the B∼-compatible simplification or-
dering in the proof of Lemma 2. Therefore, ⇒E0/B∼ ⊆ � and ⇒E0/B∼ is well-founded
because � is well-founded. Also, since⇒E1/B∼ ⊆⇒E0/B∼ ,⇒E1/B∼ is also well-founded.

Definition 7 introduces a notion of measure µ on Σ∼-terms that takes into account
the size of maximal Σ-terms modulo the axioms B∼.

Definition 7 (Measure). Let µ̂ : TΣ∼/B∼ (X) −→ ℘fin(N) be the mapping defined for any
[t]B∼ ∈ TΣ∼/B∼ (X) by:

µ̂ ([t]B∼) =

{
{ |t| } , if t < TΣ∼ (X)Bool⋃n

i=1 µ̂ ([ti]B∼) , if t = f (t1, . . . , tn) ∈ TΣ∼ (X)Bool
(45)

24

where | | : TΣ∼ (X) −→ N is the usual size function on terms. Note that, since the
axioms in B∼ are any combination of A and/or C axioms, they preserve the size of terms
in TΣ∼/B∼ (X) so that µ̂ is well-defined. Furthermore, let µ : TΣ∼/B∼ (X) −→ N be the
mapping defined by

µ = µ̂ ; max, (46)

where max : ℘fin(N) −→ N is the function denoting the maximum element of a nonempty
finite set of natural numbers or 0 otherwise.

Lemma 4 ((⇒E0/B∼ , µ)-compatibility). Let t, u ∈ TΣ∼ (X). If [t]B∼ ⇒E0/B∼ [u]B∼ , then
µ ([t]B∼) ≥ µ ([u]B∼).

Proof. Since⇒E0/B∼ is B∼-compatible, because both→E0/B∼ and �B∼ are, it induces a
binary relation on B∼ equivalence classes, denoted⇒E0/B∼⊆ T 2

Σ∼/B∼ (X), by [t]B∼ ⇒E0/B∼

[u]B∼ ⇐⇒ t ⇒E0/B∼ u. If [t]B∼ ⇒E0/B∼ [u]B∼ , then either [t]B∼ →E0/B∼ [u]B∼ or
[t]B∼ �B∼ [u]B∼ . If [t]B∼ →E0/B∼ [u]B∼ , then it is routine to check by inspection on the
equations E0 that µ ([t]B∼) ≥ µ ([u]B∼). If [t]B∼ �B∼ [u]B∼ , then since v′ ∈ [v]B∼ implies
|v′| = |v|, clearly µ ([t]B∼) ≥ µ ([u]B∼).

Let VE1/B∼ be the binary relation on TΣ∼/B∼ (X) defined by

VE1/B∼=⇒E1/B∼ ∪;E1/B∼ , (47)

where

;E1/B∼=

{
([lσ]B∼ , [l1σ]B∼) ∈ TΣ∼/B∼ (X)2 | σ ∈ [X → TΣ∼ (X)] ∧

(l→ r if l1 → r1 ∈ E1)
}
.

Lemma 5. The binary relation VE1/B∼ is well-founded.

Proof. Suppose not. Then we must have an infinite chain of steps of the form:

[u1]B∼


→E1/B∼

�B∼

;E1/B∼

 [u2]B∼


→E1/B∼

�B∼

;E1/B∼

 [u3]B∼


→E1/B∼

�B∼

;E1/B∼

 [u4]B∼


→E1/B∼

�B∼

;E1/B∼

 · · ·
Let T∞ be the collection of equivalence classes that generate an infinite sequence on
VE1/B∼ . By definition, the relation VE1/B∼ is well-founded iff T∞ = ∅. We assume
T∞ , ∅ and reason by contradiction. Also, let T⇒∞ and T⇒,µ∞ be the subsets of T∞
defined by:

T⇒∞ =
{
[t]B∼ ∈ T∞ | [t]B∼ is

(
⇒+

E1/B∼
)

-minimal in T∞
}

and

T
⇒,µ
∞ =

{
[t]B∼ ∈ T

⇒
∞ |

(
∀[u]B∼ ∈ T

⇒
∞

)
µ ([t]B∼) ≤ µ ([u]B∼)

}
.

First note that, by definition, we have T⇒,µ∞ ⊆ T⇒∞ ⊆ T∞. Also note that since
⇒E1/B∼ is well-founded, T∞ , ∅ implies T⇒∞ , ∅. Similarly, since the poset 〈N,≤〉

25

is well-founded, T⇒∞ , ∅ implies T⇒,µ∞ , ∅. Hence, we can choose [t]B∼ ∈ TΣ∼/B∼ (X)
such that [t]B∼ ∈ T

⇒,µ
∞ . Reasoning by cases:

1. If [t]B∼ →E1/B∼ [t′]B∼ and [t′]B∼ ∈ T∞, then [t]B∼ is not
(
⇒+

E1/B∼

)
-minimal in T∞

because→E1/B∼ ⊆ ⇒
+
E1/B∼ , a contradiction.

2. If [t]B∼ �B∼ [t′]B∼ and [t′]B∼ ∈ T∞, then [t]B∼ is not
(
⇒+

E1/B∼

)
-minimal in T∞

because �B∼ ⊆ ⇒
+
E1/B∼ , a contradiction.

3. If [t]B∼ ;E1/B∼ [t′]B∼ and [t′]B∼ ∈ T∞, then a pair of the form:(
f (g(x1

s′1
, . . . , xm

s′m
), z2

s)σ ∼ f (y1
s′′′ , y

2
s′′′)σ , ink

f (g(x1
s′1
, . . . , xm

s′m
), y1

s′′′)σ t

ink
f (g(x1

s′1
, . . . , xm

s′m
), y2

s′′′)σ = ⊥

)
is applied. Therefore,

t =B∼ f (g(x1
s′1
, . . . , xm

s′m
), z2

s)σ ∼ f (y1
s′′′ , y

2
s′′′)σ

with f in Σ, and t′ =B∼ u1σ with

u1 = ink
f (g(x1

s′1
, . . . , xm

s′m
), y1

s′′′) t ink
f (g(x1

s′1
, . . . , xm

s′m
), y2

s′′′) = ⊥

Note that µ([t]B∼) > µ([u1σ]B∼) because f is in Σ and we must have that [u1σ]B∼ ∈

T∞. Therefore, there is [w]B∼ ∈ T⇒∞ satisfying [u1σ] ⇒∗E1/B∼ [w] because
⇒E1/B∼ is well-founded. By Lemma 4 and since⇒E1/B∼ ⊆ ⇒E0/B∼ , µ([u1σ]B∼) ≥
µ([w]B∼) and hence µ([t]B∼) > µ([w]B∼), i.e., [t]B∼ < T

⇒,µ
∞ , a contradiction.

This exhausts all the possible cases showing that T∞ = ∅.

We assume that the operational termination (resp., ground operational termination)
of (Σ, E∪B) is Σ-extensible, i.e., if (Σ, E∪B) is operationally terminating (resp., ground
operationally terminating) then (Σ ∪ ∆, E ∪ (B ∪ B∆)) is so too for any order-sorted
signature ∆ disjoint from Σ and A, C, and/or AC structural axioms B∆ for some function
symbols in ∆. This is not a strong restriction in practice, since all the actual existing
tools for proving termination properties on rewriting theories generate Σ-extensible
orderings.

Corollary 4. If E is sort-decreasing (resp., ground sort-decreasing), confluent (resp.,
ground confluent), and operationally terminating (resp., ground operationally termi-
nating) in a Σ-extensible way modulo B, then (Σ∼, E ∪ B∼) is operationally terminating
(resp., ground operationally terminating) and confluent (resp., ground confluent).

Proof. Since (Σ, E∪B) is Σ-extensible, (Σ∼, E∪B∼) is (ground) operationally terminat-
ing. Therefore, its (ground) confluence is equivalent to its (ground) local confluence.
But, local confluence is straightforward, because no new critical pairs appear and sym-
bols from Σ∼ \ Σ cannot appear in the existing critical pairs (which are joinable or
unfeasible by hypothesis).

26

Let �E∼/B∼ be the binary relation on TΣ∼/B∼ (X) defined by

�E∼/B∼ = →E/B∼ ∪VE1/B∼ . (48)

Lemma 6. Let t, u ∈ TΣ∼ (X)Bool. If [t]B∼ VE1/B∼ [u]B∼ then [t ↓E/B∼]B∼ VE1/B∼ [u ↓E/B∼

]B∼ .

Proof. Note that, by definition, VE1/B∼ = →E1/B∼ ∪ �B∼ ∪ ;E1/B∼ and t, u has the
form C[t1, . . . , tn], where C ∈ T(Σ∼\Σ)∪Ω∪{2}(X)Bool is a non-empty context and either
root(ti) ∈ Σ \ Ω or, only in the non-ground case, ti ∈ Xs, for some s ∈ S . We reason by
cases:

1. If [t]B∼ →E1/B∼ [u]B∼ then
(a) [t]B∼ = [C[t1, . . . , tn]]B∼ →E1/B∼ [C′[t′1, . . . , t

′
m]]B∼ = [u]B∼ where the con-

text C′ ∈ T(Σ∼\Σ)∪Ω∪{2}(X)Bool is non-empty, and
(b) {[t′1]B∼ , . . . , [t′m]B∼ } ⊆ {[t1]B∼ , . . . , [tn]B∼ }.

Therefore,

[t ↓E/B∼]B∼ →E1/B∼ [u ↓E/B∼]B∼

= =

[C[t1 ↓E/B∼ , . . . , tn ↓E/B∼]]B∼ →E1/B∼ [C′[t′1 ↓E/B∼ , . . . , t′m ↓E/B∼]]B∼

and the following schema is obtained:

[t]B∼ E1/B∼
//

!

E/B∼

��

[u]B∼

!

E/B∼

��
[t ↓E/B∼]B∼ E1/B∼

// [u ↓E/B∼]B∼

2. If [t]B∼ �B∼ [u]B∼ then
(a) [t]B∼ = [C[t1, . . . , tn]]B∼ �B∼ [C′[t′1, . . . , t

′
m]]B∼ = [u]B∼ where the context

C′ ∈ T(Σ∼\Σ)∪Ω∪{2}(X)Bool is non-empty (because u has sort Bool), and
(b) {[t′1]B∼ , . . . , [t′m]B∼ } ⊆ {[t1]B∼ , . . . , [tn]B∼ }.

Therefore,

[t ↓E/B∼]B∼ �B∼ [u ↓E/B∼]B∼

= =

[C[t1 ↓E/B∼ , . . . , tn ↓E/B∼]]B∼ �B∼ [C′[t′1 ↓E/B∼ , . . . , t′m ↓E/B∼]]B∼

and the following schema is obtained:

[t]B∼

!

E/B∼

��

�B∼ [u]B∼

!

E/B∼

��
[t ↓E/B∼]B∼ �B∼ [u ↓E/B∼]B∼

3. If [t]B∼ ;E1/B∼ [u]B∼ then
(a) [t]B∼ = [C[t1, . . . , tn]]B∼ ;E1/B∼ [C′[t′1, . . . , t

′
m]]B∼ = [u]B∼ where C′ ∈

T(Σ∼\Σ)∪Ω∪{2}(X)Bool is a non-empty context, and

27

(b) {[t′1]B∼ , . . . , [t′m]B∼ } ⊆ {[t1]B∼ , . . . , [tn]B∼ }.
Therefore,

[t ↓E/B∼]B∼ ;E1/B∼ [u ↓E/B∼]B∼

= =

[C[t1 ↓E/B∼ , . . . , tn ↓E/B∼]]B∼ ;E1/B∼ [C′[t′1 ↓E/B∼ , . . . , t′m ↓E/B∼]]B∼

and the following schema is obtained:

[t]B∼ E1/B∼
//

!

E/B∼

��

[u]B∼

!

E/B∼

��
[t ↓E/B∼]B∼ E1/B∼

// [u ↓E/B∼]B∼

This exhausts all the possible cases.

Proposition 3. The binary relation �E∼/B∼ is well-founded.

Proof. Suppose otherwise. Then, since →E/B∼ and VE1/B∼ are well-founded, there
must exist an infinite chain of steps of the form:

[u1]B∼ →
∗
E/B∼ [u′1]B∼ VE1/B∼ [u2]B∼ →

∗
E/B∼ [u′2]B∼ VE1/B∼ · · ·

Note that, by Lemma 6, if [u′i]B∼ VE1/B∼ [ui+1]B∼ , then [u′i ↓E/B∼]B∼ VE1/B∼ [u′i+1 ↓E/B∼

]B∼ . By→E/B∼ being confluent and operationally terminating, there is then an infinite
chain

[u1 ↓E/B∼]B∼ VE1/B∼ [u2 ↓E/B∼]B∼ VE1/B∼ · · ·

contradicting the well-foundedness of VE1/B∼ .

Theorem 7. If E is sort-decreasing (resp., ground sort-decreasing), confluent (resp.,
ground confluent), and operationally terminating (resp., ground operationally termi-
nating) in a Σ-extensible way, then E∼ is operationally terminating (resp., ground op-
erationally terminating).

Proof. Let WfPTE∼ be the collection of well-formed proof trees in E∼ and let the map-
ping lhead : WfPTE∼ −→ TΣ∼/B∼ (X) denote the equivalence class [t]B∼ of the term t
occurring in the left-hand side of the goal of the given well-formed proof tree in E∼.
Let T∞ ⊆ WfPTE∼ be the collection of infinite well-formed proof trees in E∼. By def-
inition, the equational theory E∼ is operationally terminating iff T∞ = ∅. We assume
T∞ , ∅ and reason by contradiction. First of all, note that since E is operationally
terminating modulo B∼, if T ∈ T∞ we must have lhead(T) ∈ TΣ∼/B∼ (X)Bool.

Let L∞ = lhead [T∞]. Obviously L∞ , ∅. Also, let L�∞ be the subset of L∞ defined
by:

L�∞ =
{
[t]B∼ ∈ L∞ | [t]B∼ is

(
�+

E∼/B∼
)

-minimal in L∞
}
.

28

First note that, by definition, we have L�∞ ⊆ L∞. Also note that since �E∼/B∼ is well-
founded, then L∞ , ∅ implies L�∞ , ∅. Hence, we can choose T ∈ T∞ such that
lhead(T) ∈ L�∞.

The goal of T must be either of the form t → u or t →∗ u, with t, u ∈ TΣ∼ (X). Let
us first show that the goal of T cannot be of the form t → u:

1. If t = f (t1, . . . , ti, . . . , tn), u = f (t1, . . . , ui, . . . , tn), n ≥ 1, and T has the form

(Cong)
T1

f (t1, . . . , ti, . . . , tn)→ f (t1, . . . , ui, . . . , tn)

where the goal of T1 is ti → ui, then it must be the case that T1 ∈ T∞. There-
fore, we must have ti of sort Bool. But then [t]B∼ is not

(
�+

E∼/B∼

)
-minimal in

L∞, because f (t1, . . . , ti, . . . , tn) � ti, and �B∼ ⊆ �
+
E∼/B∼ , i.e., lhead(T) < L�∞, a

contradiction.
2. Otherwise, T must have the form

(Repl)
T1

t → vσ

for some σ : X −→ TΣ∼ (X), where the equation applied is of type (34), for some
AC symbol f ∈ Ω, namely

f
(
g
(
x1

s′1
, . . . , xm

s′m

)
, z2

s

)
∼ f

(
y1

s′′′ , y
2
s′′′

)
= ⊥

if ink
f

(
g
(
x1

s′1
, . . . , xm

s′m

)
, y1

s′′′
)

t ink
f

(
g
(
x1

s′1
, . . . , xm

s′m

)
, y2

s′′′
)

= ⊥

which is the only type of conditional equations in E1 = E∼ \ E. Therefore,

t =B∼
(

f
(
t1
1, t

2
1

)
∼ f

(
t1
2, t

2
2

))
σ

with f in Σ, and lhead(T1) = [u1σ]B∼ with

u1 = ink
f

(
g
(
x1

s′1
, . . . , xm

s′m

)
, y1

s′′′
)
t ink

f

(
g
(
x1

s′1
, . . . , xm

s′m

)
, y2

s′′′
)
.

Note that then [t]B∼ ;E1/B∼ [u1σ]B∼ . But since ;E1/B∼ ⊆ �E∼/B∼ , then [t]B∼ <
L∞, a contradiction.

We now show that the goal of T cannot be of the form t →∗ u. The well-formed
proof tree T cannot be an application of rule (Refl), since then T would be finite. There-
fore, it must be of the form

(Tran)
T1 T2

t →∗ u

where the goal of T1 has the form t → v and the goal of T2 has the form v →∗ u. But

29

then, we have already shown that T1 must be finite (we have shown that the minimal
infinite proof tree, if it exists, does not have a →-goal and, furthermore, the goal of
T and T1 have the same left-hand term) and (by the definition of well-founded proof
trees) closed. Therefore, we must have T2 ∈ T∞ and [t]B∼ →E∼/B∼ [v]B∼ . But then [t]B∼

is not
(
�+

E∼/B∼

)
-minimal in L∞ because→E∼/B∼ ⊆ �E∼/B∼ , a contradiction.

This exhausts all the possible cases showing thatT∞ = ∅. Thus, E∼ is operationally
terminating.

5.3. Preservation of (Ground) Confluence
Since E∼ is sort-decreasing (resp.,ground sort-decreasing) by Theorem 2 and oper-

ationally terminating (resp.,ground operationally terminating) by Theorem 7, the con-
fluence (resp.,ground confluence) of E∼ follows from its local confluence (resp.,ground
local confluence) [19].

Local confluence (resp.,ground local confluence) can be established via joinability
(resp.,ground joinability) of the so-called conditional critical pairs. Throughout this
section the case where E itself is not only ground confluent but also confluent is also
considered, which is indicated by enclosing the term “ground” in parentheses to cover
both confluence and the weaker ground confluence case.

Definition 8 (Conditional Critical Pair). Given (Σ, E ∪ B) with Σ preregular, B sort-
preserving and with R (rules corresponding to E as oriented equations) B-coherent,
and given oriented conditional equations l → r if C, l′ → r′ if C′ ∈ R such that
(Var(l) ∪ Var(r) ∪ Var(C)) ∩ (Var(l′) ∪ Var(r′) ∪ Var(C′)) = ∅ and l|pσ =B l′σ,
for some nonvariable position p ∈ Pos(l) and B-unifier σ of l|p and l′, then the triple

Cσ ∧C′σ⇒ lσ[r′σ]p = rσ

is called a (conditional) critical pair.

The proof of Theorem 8 below is obtained by case analysis. It considers the condi-
tional critical pairs of E that are joinable by assumption, the critical pairs of the rules
EBBool in the theory EBBool in Example 1, which are also joinable modulo the axioms
BBBool, and the conditional critical pairs of E∼ \ (E ∪ EBool). Note that, if B∼ contains
associative axioms, B∼-unification is infinitary in general. Hence, we need to reason
about the possible form of any B∼-unifier that can involve a critical pair between two
oriented equations involving A-symbols to conclude the local confluence of E∼. Note
that the statement and proof of the theorem assumes that the theory EBBool in Example
1 is used as the specification of the Booleans. We show below how this assumption
can be relaxed to allow many other specifications of the Booleans, including decision
procedures.

Due to the large number of cases that need to be considered, we state the theo-
rem below and give a detailed proof of it in the companion appendix (Appendix C),
electronically available with this paper.

Theorem 8. Let E be sort-decreasing (resp., ground sort-decreasing), B-coherent, op-
erationally terminating (resp., ground operationally terminating) in a Σ-extensible way,
and confluent (resp., ground confluent), and with sub-signature Ω of free constructors

30

modulo B, and let E∼ be obtained from E by importing the theory EBBool as the Boolean
theory. Then E∼ is confluent (resp., ground confluent).

We now show how the dependence of Theorem 8 on the choice of the Boolean
theory EBBool can be greatly relaxed, so that many other specifications of the Booleans,
including decision procedures, can be used instead. The key results allowing this ex-
tension are the following, much more general lemma and corollary:

Lemma 9. Let (Σ, E ∪ B) be a B-preregular ordered-sorted theory, with the (possibly
conditional) equations E ground sort-decreasing and ground confluent modulo B when
oriented from left to right as rewrite rules; and let E′∪B′ be unconditional Σ-equations
such thatTΣ/E∪B |= E′∪B′. Then the theory (Σ, E∪E′∪B∪B′) with the equations E∪E′

oriented as rewrite rules is ground confluent modulo B∪B′, andTΣ/E∪B � TΣ/E∪E′∪B∪B′ .

Proof. The isomorphismTΣ/E∪B � TΣ/E∪E′∪B∪B′ follows directly from Lemma 1. There-
fore, for any ground Σ-terms t, t′ we have t =E∪E′∪B∪B′ t′ iff t =E∪B t′. To prove
that E ∪ E′ is ground confluent modulo B ∪ B′, let t, u, v be ground terms such that
t →∗E∪E′/B∪B′ u and t →∗E∪E′/B∪B′ v. Then we have u =E∪E′∪B∪B′ v and therefore
u =E∪B v, so that, by the assumptions on (Σ, E ∪ B), there is a ground term w such
that u →∗E/B w and v →∗E/B w, which, since →E/B⊆→E∪E′/B∪B′ , proves the ground
confluence of E ∪ E′ modulo B ∪ B′, as desired.

Corollary 5. Let (Σ, E ∪ B) and E′ ∪ B′ be as in Lemma 9 above, with Σ (B ∪ B′)-
preregular, and E ∪ E′ sort-decreasing, and operationally terminating modulo B ∪ B′.
Then, for any ground Σ-term t, we have t↓E/B =B t↓E∪E′/B∪B′ .

Proof. Since →E/B⊆→E∪E′/B∪B′ , we must have (t↓E∪E′/B∪B′) ↓E/B= t↓E∪E′/B∪B′ . And
by TΣ/E∪B � TΣ/E∪E′∪B∪B′ , t↓E∪E′/B∪B′=E∪B t, which by the assumptions on (Σ, E ∪ B)
gives us t↓E/B =B t↓E∪E′/B∪B′ , as desired.

We can now apply the above lemma to show how the dependence of Theorem 8 on
the choice of the Boolean theory EBBool can be greatly relaxed.

Theorem 10. Let E be ground sort-decreasing, B-coherent, ground operationally ter-
minating in a Σ-extensible way, and ground confluent, and with sub-signature Ω of
free constructors modulo B; and let (ΣBool, EBool ∪ BBool) be a specification of the
Booleans with BBool a collection of associativity and commutativity axioms, and such
that the Boolean theory (ΣBool, EBool ∪ EBBool ∪ BBool ∪ BBBool) obtained by combining
(ΣBool, EBool, BBool) and EBBool is terminating with one of the AC-RPO orders described
in Lemma 2. Let E∼ be obtained from E by importing the theory (ΣBool, EBool ∪EBBool ∪

BBool∪BBBool) as the Boolean theory. Then E∼ is ground operationally terminating and
ground confluent.

Proof. First of all, by Theorem 7, E∼ is ground operationally terminating. Furthermore,
E∼ extends the simpler theory E∼′ obtained as an equality enrichment of E by import-
ing EBBool as the Boolean theory by just adding the inductive theorems EBool ∪ BBool.
Therefore, by Theorems 7 and 8, E∼′, is ground operationally terminating and ground
confluent, and then by Lemma 9 E∼ is ground confluent.

31

Example 6. As a concrete example showing how the above theorem can be applied in
particular to a rewriting-based Boolean decision procedure, we can use as our theory
(ΣBool, EBool ∪ EBBool ∪ BBool ∪ BBBool) the extension of the theory EBBool obtained by
combining it with the Dijkstra-Schoelten rewriting-based decision procedure described
in [14]. This combination can be achieved by explicitly adding a binary Boolean equiv-
alence operator ≡, together with associativity and commutativity axioms for ≡, plus the
following equations oriented from left to right as rewrite rules:

x t x = x, x t (y ≡ z) = (x t y) ≡ (x t z),
x ≡ x = >, x u y = (x ≡ y) ≡ (x t y),
x ≡ > = x, ¬ x = x ≡ ⊥.

Furthermore, the theory thus obtained is confluent and terminating modulo the asso-
ciativity and commutativity axioms for t , u and ≡, and provides a rewriting-based
decision procedure for Boolean logic which is just a definitional extension (plus extra
rules that are logical consequences) of the Dijkstra-Schoelten decision procedure in
[14].

5.4. Preservation of Free Constructors Modulo

Theorem 12 below, together with the fact that for any Σ-terms t, t′, t →E/B t′ iff
t →E∼/B∼ t′, proves that Ω ∪ {>,⊥} is a signature of constructors for (Σ∼, E∼), in the
sense that each ground Σ-term reduces to an Ω-term, and each ground Boolean term
to either > or ⊥. Then, using the ground confluence of (Σ∼, E∼) modulo B∼, we prove
that these constructors are free modulo B∼ in Theorem 13.

Lemma 11. Let Ω be a signature of free constructors modulo B for E and let terms
f (t1, . . . , tn)7, t ∈ TΩ where f : s s → s ∈ Ω is AC and root(ti) and root(t) are not
subsort-overloaded with f : s s→ s. If E is ground sort-decreasing, ground confluent,
ground operationally terminating modulo B, and if all t, f (t1, . . . , tn), t1, . . . , tn are in
the same connected component, then:

1. if ∃ti, 1 ≤ i ≤ n, ink
f (t, ti)→

+
E∼/B∼ >, then ink

f (t, f (t1, · · · , tn))→+
E∼/B∼ >,

2. if ∀ti, 1 ≤ i ≤ n, ink
f (t, ti)→

+
E∼/B∼ ⊥ then ink

f (t, f (t1, · · · , tn))→+
E∼/B∼ ⊥.

Proof. To prove (1), let ink
f (t, ti) →

+
E∼/B∼ >. Since there is an Ω-term u such that

f (t1, . . . , tn) =B f (ti, u), there is a one-step rewrite ink
f (t, f (t1, . . . , tn))→E∼/B∼ ink

f (t, ti) t
ink

f (t, u) and therefore a rewrite sequence of the form ink
f (t, f (t1, . . . , tn)) →+

E∼/B∼ > t

ink
f (t, u)→+

E∼/B∼ >, as desired.
To prove (2), we induct on n to get a rewrite sequence ink

f (t, f (t1, . . . , tn)) →+
E∼/B∼

ink
f (t, t1) t · · · t ink

f (t, tn); therefore, a rewrite sequence ink
f (t, f (t1, . . . , tn))→+

E∼/B∼ ⊥ t

· · · t ⊥ →+
E∼/B∼ ⊥ using the hypothesis, as desired.

7any term t such that t =B f (t1, f (t2, . . . , f (tn−1, tn) · · ·)) is abbreviated by f (t1, . . . , tn).

32

Theorem 12. If E is ground sort-decreasing, ground confluent, and ground opera-
tionally terminating modulo B with a signature of free constructors Ω modulo B, then
for all t, t′ ∈ TΩ in the same connected component:

1. if t =B t′ then t ∼ t′ →+
E∼/B∼ >,

2. if t ,B t′ then t ∼ t′ →+
E∼/B∼ ⊥.

Proof. Suppose the theorem fails for some pair t, t′ ∈ TΩ of terms in the same con-
nected component. It cannot fail for t =B t′, because applying the equation (17) ori-
ented as a rule, t ∼ t′ →+

E∼/B∼ > is obtained. Therefore, it must fail for some pair
t, t′ such that t ,B t′, but t ∼ t′ 6→+

E∼/B∼ ⊥. Let us choose a pair with |t| + |t′| small-
est possible, where |t| is the size of t as a tree. Note that root(t), root(t′) must be
subsort-overloaded, since otherwise t = f (t1, . . . , tn), t′ = g(t′1, . . . , t

′
m) and a rewrite

f (t1, . . . , tn) ∼ g(t′1, . . . , t
′
m) →E∼/B∼ ⊥ is possible. Likewise, t and t′ cannot have dis-

joint sorts, since then t ∼ t′ could again be rewritten to ⊥. Reasoning by cases on
f = root(t) = root(t′):

1. if f is an absolutely free function symbol, then t = f (t1, . . . , tn), t′ = f (t′1, . . . , t
′
n).

This means that there is a i ∈ {1, . . . , n} such that ti ,B t′i . And since |ti| + |t′i | <
|t| + |t′| we must have ti ∼ t′i →

+
E∼/B∼ ⊥. But then this gives us:

t ∼ t′ →E∼/B∼

nl

j=1

t j ∼ t′j →
+
E∼/B∼ (⊥ u

nl

i , j
j = 1

ti ∼ t′i)→E∼/B∼ ⊥

contradicting t ∼ t′ 6→+
E∼/B∼ ⊥;

2. if f is a C symbol we have t = f (t1, t2), t′ = f (t′1, t
′
2), and the reduction t ∼

t′ →E∼/B∼ (t1 ∼ t′1 u t2 ∼ t′2) t (t1 ∼ t′2 u t2 ∼ t′1). We will reach a contradiction if
we show that both conjunctions reduce to ⊥. Consider the left conjunction. We
must have t1 ,B t′1 or t2 ,B t′2, since otherwise t =B t′. Say t1 ,B t′1 (the other
side is similar). Since |t1| + |t′1| < |t| + |t

′|, we must have t1 ∼ t′1 →
+
E∼/B∼ ⊥. So

that the left conjunction reduces to ⊥. Reasoning in the same way on the right
conjunction, we have that t1 ∼ t′2 →

+
E∼/B∼ ⊥ (t1 ,B t′2) or t2 ∼ t′1 →

+
E∼/B∼ ⊥

(t2 ,B t′1). This gives us:

t ∼ t′ →+
E∼/B∼ ⊥ t ⊥ →

+
E∼/B∼ ⊥

contradicting t ∼ t′ 6→+
E∼/B∼ ⊥;

3. if f is an A symbol (for the sake of readability, we represent such as f by an infix
operator ‘·’), we must have t =B t1 · . . . · tn ,B t′1 · . . . · t

′
m =B t′, where we ignore

parentheses and root(ti), root(t′j) are not subsort-overloaded with · , n,m ≥ 2,
and without loss of generality we may assume n ≤ m. We can distinguish two
cases:

(a) t′ = t1 · . . . · tn · t′n+1 · . . . · t
′
m and n < m, in which case we reach a contra-

diction since we can apply the equation (32) oriented as a rule to get the
contradiction t ∼ t′ →+

E∼/B∼ ⊥, or
(b) n ≤ m and there is an i, 1 ≤ i ≤ n such that t j =B t′j for 1 ≤ j < i, but

ti ,B t′i . Therefore, by applying the equation (30) oriented as a rule we get

33

either t ∼ t′ →∗E∼/B∼ ti · . . . · tn ∼ t′i · . . . t
′
m for i < n where by |ti|+ |t′i | < |t|+ |t

′|

we must have ti ∼ t′i →
+
E∼/B∼ ⊥ and therefore we can apply either:

• the equation (26) oriented as a rule if root(ti), root(t j) are subsort-
overloaded and the minimality hypothesis, contradicting t ∼ t′ 6→+

E∼/B∼

⊥;
• or the equation (28) oriented as a rule if root(ti), root(t j) are not subsort-

overloaded;
or i = n, and we get t ∼ t′ →+

E∼/B∼ tn ∼ t′n if m = n, immediately yielding
the contradiction t ∼ t′ →+

E∼/B∼ ⊥; or finally t ∼ t′ →+
E∼/B∼ tn ∼ t′n · . . . · t

′
m if

m > n yielding again the contradiction t ∼ t′ →+
E∼/B∼ ⊥, because root(tn),

· are not subsort-overloaded.
4. if f is an AC symbol (for the sake of readability, we represent such as f by an

infix operator ‘+’) we have again (ignoring parentheses) decompositions t =B

t1 + · · · + tn ,B t′1 + · · · + t′m =B t′ where root(ti) and root(t′j) are not subsort-
overloaded with +, n,m ≥ 2, and without loss of generality we may assume
n ≤ m. We again have two main cases:

(a) if t′ = t1 + · · · + tn + t′j1 + · · · + t′jk , k ≥ 1 and n < m, we can apply the
equation (40) oriented as a rule to get the contradiction t ∼ t′ →+

E∼/B∼ ⊥, or
(b) if n ≤ m and there is a subset I ⊂ {1, . . . , n}, and an injective function

α : I → {1, . . . ,m} such that ti =B t′α(i), but for all j ∈ {1, . . . , n} \ I,
l ∈ {1, . . . ,m} \ α(I) we have t j ,B t′l . By |t j| + |t′l | < |t| + |t

′| we must have
t j ∼ t′l →

+
E∼/B∼ ⊥. We then have two cases:

i. if {1, . . . , n} \ I = { j}, then, either (1) m > n, so that by applying the
equation (35) oriented as a rule we get t ∼ t′ →+

E∼/B∼ t j ∼ tl1 + · · · + tlk
where {l1, . . . , lk} = {1, . . . ,m} \α(I), for k ≥ 2, yielding immediately a
contradiction t ∼ t′ →+

E∼/B∼ ⊥ since root(t j) is not subsort-overloaded
with the AC symbol +; or (2) n = m, so that applying the same equa-
tion oriented as a rule we get t ∼ t′ →+

E∼/B∼ t j ∼ tl1 →
+
E∼/B∼ ⊥, again a

contradiction,
ii. |{1, . . . , n} \ I| ≥ 2, so we get for j ∈ { j1, . . . , jk1 } = {1, . . . , n} \ I,

l ∈ {l1, . . . , lk2 } = {1, . . . ,m} \ α(I) that t j , t′l , and a reduction t ∼ t′ →
t j1 + · · · + t jk1

∼ t′l1 + · · · + t′lk2
. But then, by applying the equations for

ink
+ oriented as rules we have ink

f (t j1 , t
′
l1

+ · · · t′lk2
)→+

E∼/B∼ ⊥, so that we
can apply to t j1 + · · ·+ t jk1

∼ t′l1 + · · ·+ t′lk2
the equation (34) oriented as a

rule and by Lemma 11 and the minimality hypothesis, a contradiction
is again reached.

We have already shown that Ω∼ = Ω∪{>,⊥} ⊆ Σ∼ is a signature of constructors for
E∼. We now show that, thanks to the preservation of confluence, these constructors are
free modulo B∼. To begin with, from Theorem 12 we obtain the following corollary.

Corollary 6. If E is ground sort-decreasing, B-coherent, ground confluent, and opera-
tionally terminating modulo B, with Ω a signature of free constructors modulo B, then
for all t, t′ ∈ TΩ in the same connected component:

34

1. t =B t′ iff t ∼ t′ →+
E∼/B∼ >.

2. t ,B t′ iff t ∼ t′ →+
E∼/B∼ ⊥.

Proof. Both (⇒) implications follow from Theorem 12. Suppose that t ∼ t′ →+
E∼/B∼ >

and t ,B t′. Then, by Theorem 12, we also have t ∼ t′ →+
E∼/B∼ ⊥, which is impossible,

since > and ⊥ are in canonical form and the equations E∼ are ground confluent modulo
B. Likewise, if t ∼ t′ →+

E∼/B∼ ⊥ and t =B t′ we also get t ∼ t′ →+
E∼/B∼ ⊥, contradicting

confluence.

We have identified Ω∼ = Ω∪ {>,⊥} ⊆ Σ∼ as a signature of constructors for E∼. We
now prove that the constructors in Ω∼ are free modulo B∼.

Theorem 13. If E is ground sort-decreasing, B-coherent, ground confluent, and oper-
ationally terminating modulo B in a Σ-extensible way, and Ω is the signature of free
constructors modulo B of E, then E∼ has Ω∼ = Ω ∪ {>,⊥} as a signature of free con-
structors modulo B∼.

Proof. For each t ∈ TΣ∼ , either t ∈ TΣ, in which case, since t →E/B t′ iff t →E∼/B∼ t′,
the result follows trivially, or t ∈ TΣ∼,Bool. Therefore, since E∼ is ground confluent
and terminating, and both ⊥, and > are in canonical form, all we need to prove is that
t ↓E∼/B∼ is either ⊥ or >.

Indeed, by Lemma 11, and Theorem 12, t ↓E∼/B∼ cannot contain any subterm of
the form u ∼ v or ink

f (u, v). Therefore t ↓E∼/B∼ must be a Boolean ground term, which,
being in canonical form, must be either >, or ⊥, as desired.

5.5. E∼ is an Equality Enrichment
From the good properties of E∼ we can now prove that this theory is indeed an

equality enrichment of E.

Theorem 14. Let E = (Σ, E ∪ B) be an order-sorted equational theory with signature
Ω ⊆ Σ of free constructors modulo B and let E∼ = (Σ∼, E∼ ∪ B∼) be the equational
theory obtained by the transformation E 7→ E∼. If E is ground sort-decreasing, B-
coherent, ground operationally terminating in a Σ-extensible way, and ground conflu-
ent modulo B, then E∼ is a Boolean equality enrichment of E.

Proof. Since for each t, t′ ∈ TΣ we have t →E/B t′ iff t →E∼/B∼ t′, the ground confluence
and sort-decreasingness of E modulo B and E∼ modulo B∼ ensure that E ∪ B ` t = t′

iff E∼ ∪ B∼ ` t = t′, and therefore that TE∼ |Σ � TE, so that the extension is protecting.
Also, since Ω∼ is a signature of free constructors we know that TE∼,Bool = {[>], [⊥]},
with [>] , [⊥]. We only need to show that the equivalences:

E ` t = u ⇐⇒ E∼ ` (t ∼ u) = >,
E 0 t = u ⇐⇒ E∼ ` (t ∼ u) = ⊥,

hold. But by our assumptions on E, the result in Corollary 6, and ground confluence,
sort-decreasingness, and ground operational termination of E∼ we have:

E ` t = u⇐⇒ t ↓E/B=B u ↓E/B⇐⇒ (t ∼ u) ↓E∼/B∼= > ⇐⇒ E
∼ ` (t ∼ u) = >,

E 0 t = u⇐⇒ t ↓E/B,B u ↓E/B⇐⇒ (t ∼ u) ↓E∼/B∼= ⊥ ⇐⇒ E
∼ ` (t ∼ u) = ⊥.

35

6. Automation and Applications of E 7→ E∼

The transformation E 7→ E∼ is obviously constructive and has been automated in
Maude using its reflective features: it takes the meta-representation of E in Maude as
input and constructs a meta-representation of E∼ as output. The transformation itself
has already been incorporated into Maude formal tools, including the latest version
of the Maude Formal Environment [20], the Maude Church-Rosser and Coherence
Checker [19] (CRC-ChC), and the Maude Invariant Analyzer tool [21].

6.1. A Case Study

We present a case study in which the transformation E 7→ E∼ is used in the Maude
Invariant Analyzer (InvA) tool [21]. The InvA tool mechanizes an inference system for
deductively proving safety properties of rewrite theories: it transforms all formal tem-
poral reasoning about safety properties of concurrent transitions to purely equational
inductive reasoning. The InvA tool provides a substantial degree of mechanization and
can automatically discharge many proof obligations without user intervention. In this
section, we illustrate how equality enrichments can be used to support the deductive
verification task in the InvA tool for a mutual exclusion property of processes in the
QLOCK protocol.

The mutual exclusion protocol QLOCK uses a global queue as follows:

• each process that participates in the protocol does the following:

– if the process wants to use the critical resource and its name is not in the
global queue, it places its name in the queue;

– if the process wants to use the critical resource and its name is in the global
queue, if its name is at the top of the queue then the process gains access to
the critical resource; otherwise it waits; and

– if the process finishes the critical resource, it removes its name from the top
of the global queue;

• the protocol should start from a state where the queue is empty; and

• it is assumed that each process can use the critical resource any number of times.

Consider the following equational theory EQLOCK-STATE, which represents the states
of QLOCK with terms of sort State. It protects the equational theory EMSET presented
in Section 4. Processes and names of processes are modeled with natural numbers of
sort Nat in Peano notation. A term Pi | Pw | Pc | Q of sort State describes the state
in which Pi is the collection of processes whose name is not in the global queue (or
idle processes), Pw is the collection of processes that are waiting to gain access to the
critical resource (or waiting processes), Pc is the collection of processes that are using
the critical resource (or critical processes), and Q is the global queue of the system.
Sorts MSet and Queue are used to represent collections of processes and queues of
processes’ names, respectively.

36

fmod QLOCK-STATE is
protecting MSET .

sort Queue .

op nil : -> Queue [ctor] .

op _@_ : Nat Queue -> Queue [ctor] .

op _;_ : Queue Queue -> Queue .

eq nil ; Q:Queue = Q:Queue .

eq (N:Nat @ Q1:Queue) ; Q2:Queue = N:Nat @ (Q1:Queue ; Q2:Queue) .

sort State .

op _|_|_|_ : MSet MSet MSet Queue -> State [ctor] .

endfm

The behavior of a concurrent system in rewriting logic is specified by rewrite rules that
define how the individual transitions change the state of the system. The specification
of all transitions of QLOCK is described by six rewrite rules in the rewrite theory RQLOCK

as follows.

mod QLOCK is
protecting QLOCK-STATE .

vars Pi Pw Pc : MSet . var Q : Queue . vars N N’ N’’ : Nat .

rl [to-wait-1] : N | Pw | Pc | Q => empty | Pw N | Pc

| Q ; (N @ nil) .

rl [to-wait-2] : N Pi | Pw | Pc | Q => Pi | Pw N | Pc

| Q ; (N @ nil) .

rl [to-crit-1] : Pi | N | Pc | N @ Q => Pi | empty | Pc N | N @ Q .

rl [to-crit-2] : Pi | Pw N | Pc | N @ Q => Pi | Pw | Pc N | N @ Q .

rl [to-idle-1] : Pi | Pw | N | N’ @ Q => Pi N | Pw | empty | Q .

rl [to-idle-2] : Pi | Pw | Pc N | N’ @ Q => Pi N | Pw | Pc | Q .

endm

Rewrite rules to-idle-1 and to-idle-2 specify the behavior of a process that fin-
ishes using the critical resource: it goes to state idle and the name on top of the
global queue is removed. Similarly, rewrite rules to-wait-1 and to-wait-2, and
to-crit-1 and to-crit-2, specify the behavior of a process that wants to use the
critical resource and of a process that is granted access to the critical resource, respec-
tively.

We want to verify that the QLOCK system satisfies the following safety properties.
It is key that: (i) it satisfies the mutual exclusion property, namely, that at any point
of execution there is at most one process using the critical resource. We also want
to verify that: (ii) the name on top of the global queue coincides with the name of
the process using the critical resource, if any. Finally, we want to verify that: (iii)
the global queue only contains the names of all waiting and critical processes. State
predicates mutex, priority, and cqueue, respectively, specify properties (i), (ii), and (iii)
in the following equational theory EQLOCK-PREDS. State predicate init specifies the set of
initial states of QLOCK, with auxiliary function set? that characterizes multisets having
no repeated elements. State predicate unique is a strengthening of mutex and priority.
Auxiliary function to-soup on input Q of sort Queue computes the multiset of natural
numbers appearing in Q.

37

fmod QLOCK-PREDS is
protecting QLOCK-STATE .

protecting EQ-MSET .

vars N N’ : Nat . var Q : Queue .

vars Pi Pw Pc : MSet . var NeS : NeMSet .

ops init mutex unique priority cqueue : State -> [Bool] .

eq init(Pi | empty | empty | nil) = set?(Pi) .

eq mutex(Pi | Pw | empty | Q) = true .

eq mutex(Pi | Pw | N | Q) = true .

eq mutex(Pi | Pw | N NeS | Q) = false .

eq unique(Pi | Pw | empty | Q) = set?(Pi Pw) .

eq unique(Pi | Pw | N | N @ Q) = set?(Pi Pw N) .

eq unique(Pi | Pw | N NeS | Q) = false .

eq priority(Pi | Pw | empty | Q) = true .

eq priority(Pi | Pw | N | N’ @ Q) = N ~ N’ .

eq priority(Pi | Pw | N Pc | N’ @ Q)

= (N ~ N’) and (Pc ~ empty) .

eq cqueue(Pi | Pw | Pc | Q) = Pw Pc ~ to-soup(Q) .

....

endfm

Observe that EQLOCK-PREDS protects the equality enrichment EEQ-MSET, in Section 4, for
the connected component of sort MSet that defines the equality enrichment for sorts
Nat, MSet, and NeMSet. The equality enrichments for these sorts are key in the specifi-
cation of the state predicates. For instance, predicates priority and cqueue are directly
defined in terms of the equality predicate for sorts Nat and MSet, and also use the
Boolean connective for conjunction and that comes with the Boolean equality enrich-
ment. Auxiliary function set? also makes use of the equality enrichment for sort Nat.
Note that, in general, defining from scratch the equality enrichment for an AC-symbol
such as the multiset union in EMSET, can be a daunting task. Instead, in EQLOCK-PREDS,
the definition of the state predicate cqueue was straightforward with the help of the
equality enrichment for multisets of natural numbers.

By using the InvA tool we are able to automatically prove that predicates mutex
and priority are invariants of RQLOCK for any initial state that satisfies predicate init.
For predicate cqueue some proof obligations cannot be automatically discharged. In
general terms, 22 out of 26 proof obligations were automatically discharged. However,
this is an encouraging result, given that the current version of the InvA tool does not
yet have dedicated inference support for Boolean equality enrichments, which could
further improve the degree of automation.

7. Conclusion

This paper solves an important open problem: how to make the addition of equa-
tionally defined equality predicates effective and automatic for a very wide class of
equational specifications with initial algebra semantics. That such a transformation
should exists is suggested by the Bergstra-Tucker meta-theorem [2], but such a meta-
result is not constructive and gives no insight as to how the transformation could be
defined. The equality enrichment transformation has been defined for a very wide class

38

of algebraic specifications with highly expressive features such as order-sorted types,
conditional equations, and rewriting modulo commonly occurring axioms. By means
of (non-trivial) meta-theorems, it has been shown that all the expected good properties
of the input theory E are inherited by E∼ in the equality enrichment transformation
E 7→ E∼.

Using reflection, the transformation has been implemented in Maude and has al-
ready been integrated into the Maude Church-Rosser and Coherence Checker [19]
(CRC-ChC), and the Maude Invariant Analyzer tool [21]. The case study in Sec-
tion 6.1 shows how the addition of equationally-defined equality predicates also makes
the specification and verification of safety properties in the InvA tool considerably eas-
ier.

In general, the contributions presented in this work open up many useful applica-
tions to improve the state of the art in formal verification of algebraic specifications.
In particular, they have already provided a host of such applications within the Maude
formal environment.

In the near future it should be added to other tools such as the Maude Termination
Tool [18] (MTT) and the Maude Sufficient Completeness Checker [22] (SCC). One
obvious advantage of these additions is the possibility of systematically transforming
specifications making use of built-in equalities and inequalities, which cannot be han-
dled by formal tools, into specifications where such built-in equalities and inequalities
are systematically replaced by equationally-defined equalities, so that formal tools can
be applied.

Adding an equationally-defined equality to Maude’s Inductive Theorem Prover [23]
(ITP) would make this tool more effective in many ways, and would also greatly reduce
the complexities of dealing with arbitrary universal formulas as goals, since all such
formulas could be reduced to unconditional equality goals. It would also be very useful
to explore the use of the E 7→ E∼ transformation in inductionless induction theorem
proving. Yet another very useful field of application would be early failure detection
in narrowing-based unification. The idea is that E/B-unification goals can be viewed
as equality goals, which can be detected to have already failed if they can be rewritten
to false with E∼ modulo B∼.

References

[1] J. A. Goguen, How to Prove Algebraic Inductive Hypotheses Without Induction,
in: W. Bibel, R. Kowalski (Eds.), Proc. of the 5th Conference on Automated
Deduction, CADE’80, Vol. 87 of LNCS, Springer-Verlag, 1980, pp. 356–373.

[2] J. Bergstra, J. Tucker, Characterization of Computable Data Types by Means of
a Finite Equational Specification Method, in: J. W. de Bakker, J. van Leeuwen
(Eds.), Proc. of the 7th International Colloquium on Automata, Languages and
Programming, ICALP’80, Vol. 81 of LNCS, Springer-Verlag, 1980, pp. 76–90.

[3] F. Durán, S. Lucas, J. Meseguer, Termination Modulo Combinations of Equa-
tional Theories, in: S. Ghilardi, R. Sebastiani (Eds.), Proc. of the 7th International
Conference on Frontiers of Combining Systems, FroCoS’09, Vol. 5749 of LNCS,
Springer-Verlag, 2009, pp. 246–262.

39

[4] R. Gutiérrez, J. Meseguer, C. Rocha, Order-Sorted Equality Enrichments Modulo
Axioms, in: F. Durán (Ed.), Proc. of the 9th International Workshop on Rewrit-
ing Logic and its Applications, WRLA’12, Vol. 7571 of LNCS, Springer-Verlag,
2012, pp. 162–181.

[5] D. R. Musser, On Proving Inductive Properties of Abstract Data Types, in: Proc.
of the 7th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL’80, ACM Press, 1980, pp. 154–162.

[6] J. Meseguer, J. A. Goguen, Initiality, Induction and Computability, in: M. Nivat,
J. C. Reynolds (Eds.), Algebraic Methods in Semantics, Cambridge University
Press, 1986, pp. 459–541.

[7] M. Nakamura, K. Futatsugi, On Equality Predicates in Algebraic Specification
Languages, in: C. B. Jones, Z. Liu, J. Woodcock (Eds.), Proc. of the 4th Interna-
tional Conference on Theoretical Aspects of Computing, ICTAC’07, Vol. 4711 of
LNCS, Springer-Verlag, 2007, pp. 381–395.

[8] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press,
1998.

[9] J. Goguen, J. Meseguer, Order-Sorted Algebra I: Equational Deduction for Mul-
tiple Inheritance, Overloading, Exceptions and Partial Operations, Theoretical
Computer Science 105 (1992) 217–273.

[10] J. Meseguer, Membership Algebra as a Logical Framework for Equational Spec-
ification, in: F. Parisi-Presicce (Ed.), Recent Trends in Algebraic Development
Techniques, Proc. of the 12th International Workshop on Workshop on Algebraic
Development Techniques, WADT’97, Vol. 1376 of LNCS, Springer-Verlag, 1997,
pp. 18–61.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, C. Tal-
cott, All About Maude – A High-Performance Logical Framework, Vol. 4350 of
LNCS, Springer-Verlag, 2007.

[12] F. Durán, J. Meseguer, On the Church-Rosser and coherence properties of condi-
tional order-sorted rewrite theories, Journal of Logic and Algebraic Programming
81 (7-8) (2012) 816–850.

[13] S. Lucas, C. Marché, J. Meseguer, Operational Termination of Conditional
Term Rewriting Systems, Information Processing Letters 95 (4) (2005) 446–453.
doi:http://dx.doi.org/10.1016/j.ipl.2005.05.002.

[14] C. Rocha, J. Meseguer, Theorem proving modulo based on Boolean equational
procedures, in: R. Berghammer, B. Möller, G. Struth (Eds.), RelMiCS, Vol. 4988
of LNCS, Springer, 2008, pp. 337–351.

[15] E. Ohlebusch, Advanced Topics in Term Rewriting, Springer-Verlag, 2002.

40

[16] L. Bachmair, D. A. Plaisted, Termination Orderings for Associative-Commutative
Rewriting Systems, Journal of Symbolic Computation 1 (4) (1985) 329–349.

[17] A. Rubio, A Fully Syntactic AC-RPO, Information and Computation 178 (2)
(2002) 515–533.

[18] F. Durán, S. Lucas, C. Marché, J. Meseguer, X. Urbain, Proving Operational
Termination of Membership Equational Programs, Higher Order Symbolic Com-
putation 21 (1-2) (2008) 59–88.

[19] F. Durán, J. Meseguer, On the Church-Rosser and Coherence Properties of Con-
ditional Order-Sorted Rewrite Theories, Journal of Logic and Algebraic Program-
ming 81 (7–8) (2012) 816–850.

[20] M. Clavel, F. Durán, J. Hendrix, S. Lucas, J. Meseguer, P. Ölveczky, The Maude
Formal Tool Environment, in: T. Mossakowski, U. Montanari, M. Haveraaen
(Eds.), Proc. of the 2nd Conference on Algebra and Coalgebra in Computer Sci-
ence, CALCO’07, Vol. 4624 of LNCS, Springer-Verlag, 2007, pp. 173–178.

[21] C. Rocha, J. Meseguer, Proving safety properties of rewrite theories, in: A. Corra-
dini, B. Klin, C. Cı̂rstea (Eds.), Proc. of 4th International Conference on Algebra
and Coalgebra in Computer Science, CALCO’11, Vol. 6859 of LNCS, Springer-
Verlag, 2011, pp. 314–328.

[22] J. Hendrix, M. Clavel, J. Meseguer, A Sufficient Completeness Reasoning Tool
for Partial Specifications, in: J. Giesl (Ed.), Proc. of the 16th International Con-
ference on Rewriting Techniques and Applications, RTA’05, Vol. 3467 of LNCS,
Springer-Verlag, 2005, pp. 165–174.

[23] J. Hendrix, Decision Procedures for Equationally Based Reasoning, Ph.D. thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, USA (2008).

41

