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Abstract—The use of InfiniBand networks to interconnect
high performance computing clusters has considerably in-
creased during the last years. So much so that the majority of
the supercomputers included in the TOP500 list either use
Ethernet or InfiniBand interconnects. Regarding the latter,
due to the complexity of the InfiniBand programming API
(i.e., InfiniBand Verbs) and the lack of documentation, there
are not enough recent available studies explaining how to
optimize applications to get the maximum performance from
this fabric. In this paper we expose two different optimizations
to be used when developing applications using InfiniBand
Verbs, each providing an average bandwidth improvement of
3.68% and 217.14%, respectively. In addition, we show that
when combining both optimizations, the average bandwidth
gain is 43.29%. This bandwidth increment is key for remote
GPU virtualization frameworks. Actually, this noticeable gain
translates into a reduction of up to 35% in execution time of
applications using remote GPU virtualization frameworks.

Keywords-HPC; InfiniBand; CUDA; remote GPU virtualiza-
tion; rCUDA; performance; optimizations.

I. INTRODUCTION

InfiniBand (IB) [1] is an interconnect providing high
bandwidth and low latency, being commonly used in high
performance computing (HPC). The high performance at-
tained by InfiniBand makes that its use in supercomputers
has considerably increased during the last years [2], as
shown in Figure 1. This figure presents the amount of
supercomputers in the TOP500 list [3] using the InfiniBand
network as well as different versions of the Ethernet one.
Actually, as it can be seen in the figure, the presence of
the InfiniBand technology in current supercomputers is even
higher than that of Ethernet, having the former a share of
44.8% whereas the latter presents a share of 37.6%. Fur-
thermore, we can observe that the total sum represented by
systems based on any of these two interconnect technologies
accounts for more than 80% of the systems in this list, what
reveals that the InfiniBand technology is the most widely
one used in the HPC domain.

However, a major disadvantage of the InfiniBand network
lies in the fact that its specification [4] does not clearly define
an API that can be easily learned without attending specific
courses. Indeed, it only describes a set of functions, usually
referred to as verbs (i.e., the InfiniBand Verbs–IBV), which
must be available in any commercial product adhering the
specification. As a consequence, the lack of such explicit
API in conjunction with the complexity of the IBV semantics
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Figure 1. Presence of Ethernet and InfiniBand in the TOP500 list.

make it difficult to develop even a simple program. This is
evidenced by the publication of papers with the sole purpose
of clarifying how to interact with the InfiniBand Verbs, such
as [5], [6] or [7], to name only a few.

The net result is that InfiniBand is the most widely used
interconnect in the supercomputers included in the TOP500
list, but the lack of recent documentation makes it difficult to
get all the benefits from this network fabric. In this paper we
explore two general code optimizations that may be helpful
when developing applications using InfiniBand Verbs. These
optimizations achieve an average increase of up to 43%
in the attained bandwidth, what is later translated into a
reduction of up to 35% in execution time of applications
using remote GPU virtualization frameworks.

The rest of the paper is organized as follows. In Section II,
we discuss the work related to our study. Next, in Section III,
we present and analyze the code optimizations proposed in
this paper. Section IV analyzes the benefits that these opti-
mizations bring to remote GPU virtualization frameworks.
Finally, in Section V, the main conclusions of this work are
presented.

II. RELATED WORK

As commented before, the lack of an easy to understand
programming API for InfiniBand is one of the major con-
cerns when developing applications that use this network
fabric. Actually, this was what motivated G. Kerr to dissect
in [5] a simple pingpong program, in an attempt to make
clear how to interact with the InfiniBand Verbs API.

In view of this, exploring optimizations for InfiniBand
applications has typically remained a big challenge. Several



researchers have attempted to present recommendations for
achieving optimal performance. One such example is the
work by Liu et al. in [8], which presents a recent in-
depth analysis of the InfiniBand FDR network, proposing
several interesting optimizations. However, the study is lim-
ited to the memory semantics (i.e., Remote Direct Memory
Access–RDMA), not addressing the channel semantics (i.e.,
send/receive verbs no using RDMA). Additionally, the tests
are done using Sandy Bridge processors, while results over
later generation processors (i.e., Ivy Bridge) could lead to
different conclusions.

Other researchers have also presented improvements in
recent studies. For instance, Subramoni et al. in [9] study
the benefits of using the new Dynamically Connected (DC)
InfiniBand transport protocol, showing great improvements
for both synthetic benchmarks and production applications.
Another such example can be found in the work by Wang et
al. in [10], where it is proposed an optimized GPU to GPU
communication design for InfiniBand clusters. Nevertheless,
although these proposals improve performance, both of them
are focused on optimizing MPI libraries, whose requirements
differ from general applications.

From our point of view, all these previous efforts to
optimize InfiniBand environments will benefit from the work
presented in this paper, as the improvements here exposed
can be applied to all those fields.

III. BANDWIDTH OPTIMIZATIONS

In this section we introduce and analyze the optimizations
proposed in this work. The setup used for the experiments
reported in this paper consists of two 1027GR-TRF Super-
micro servers connected by an SX6025 InfiniBand Switch
(FDR), each of the servers with the following characteristics:

• Two Intel Xeon hexa-core processors E5-2620 v2 (Ivy
Bridge) operating at 2.1 GHz.

• 32 GB of DDR3 SDRAM memory at 1,600 MHz.
• 1 Mellanox ConnectX-3 single-port InfiniBand adapter.
• 1 NVIDIA Tesla K20m GPU.
• CentOS 6.4 operating system with Mellanox OFED

2.3-2.0.0 (InfiniBand drivers and administrative tools)
and CUDA 6.5 with NVIDIA driver 340.29.

The testbed servers are NUMA machines and therefore
NUMA effects matter for the experiments shown in this pa-
per. For this reason, the InfiniBand adapter and the NVIDIA
GPU are attached to the same NUMA node (i.e., processor
0), and processes and memory buffers are bound to this
processor in the experiments.

A. Number of Queue Pairs per Port

As depicted in Figure 2, in order for an application in
one computer to communicate over an InfiniBand network
with another application in a different cluster node, it must
first create a connection that consists of a queue pair (QP)
at each end: one queue for sending data and another queue
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Figure 2. InfiniBand Queue Pair (QP) scheme.

for receiving them. Interestingly, a QP does not store data
but work requests submitted by the application. A work
request can be seen as a descriptor of the transfer operation
to be performed. A given QP is assigned to one port and
a process may create one or more QPs associated to the
same network adapter port for communicating purposes with
an application in another computer. Obviously, the use of
several QPs increases the complexity of maintaining all of
them coordinated and synchronized. In this subsection we
analyze the impact on performance of using several QPs
per port, trying to determine the optimal number of QPs per
port that a programmer should use. To do so, we base our
analysis in the maximum bandwidth achieved when varying
the number of QPs associated to a network adapter port.
We make use of the bandwidth benchmarks included in the
Mellanox OFED software distribution. These tests measure
the bandwidth when copying different data sizes using the
channel semantics (i.e., send/receive verbs no using RDMA,
ib_send_bw benchmark in Figure 3(a)), and the memory
semantics (i.e., RDMA read and write, ib_read_bw and
ib_write_bw benchmarks, in Figure 3(b) and Figure 3(c),
respectively).

Figure 3 shows the results of the mentioned benchmarks,
which were run varying the number of QPs per port. Notice
that when using more than one QP, the transferred data
are split among the available QPs. For instance, when
transferring 2KB using 2 QPs, 1KB is sent using QP1 and
1KB is sent using QP2. Notice also that this division of labor
between the several QPs is not automatically performed but
the programmer must take care of distributing the work at
the same time that all the QPs remain synchronized and
balanced. The figure shows the average bandwidth of 100
repetitions for each test. The maximum Relative Standard
Deviation (RSD) observed was 0.391 for 16B of transfer
size when using 3 QPs in the ib_write_bw benchmark.

From the results in Figure 3 two main conclusions can be
derived. First, there exists a performance difference between
using one or several QPs. However, when more than one QP
are used, performance remains the same independently of the
amount of QPs. Second, results in Figure 3 can be divided,
from the point of view of performance, into three groups,
depending on the size of the transferred data:

• Less than 2KB: using more than 1 QP translates into
an average bandwidth gain of approximately 2%.

• 2KB: the maximum peak bandwidth is achieved be-
cause the maximum transfer unit (MTU) is 2KB, and
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(c) InfiniBand RDMA write bandwidth.

Figure 3. InfiniBand bandwidth tests varying the number of queue pairs
(QP) per port. Primary Y-axis shows attained bandwidth, while secondary
Y-axis presents the bandwidth gain of using 2 QPs over using only 1 QP.

the benefits of using more than 1 QP are more evident.
• 4KB or more: the gain of using more than 1 QP stabi-

lizes, resulting in an average bandwidth improvement
of approximately 5%.

Therefore, based on these results, we can conclude that
using more than one queue pair per port turns into an average
gain of 3.68%. Given that using 2 or more QPs per port
provides the same performance, we consider that 2 QPs per
port is the optimal value, because the more QPs per port we
use, the more the programming complexity increases.

B. Capacity of Send/Receive Queues

As commented previously, applications communicating
over IB must create queue pairs for sending and receiving
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(c) InfiniBand RDMA write bandwidth.

Figure 4. InfiniBand bandwidth tests varying the capacity of the
send/receive queues (i.e., number of work requests that can be allocated)
from 2 requests to 256. Primary Y-axis shows attained bandwidth, while
secondary Y-axis presents the bandwidth gain of using 128 queues over
using only 2 queues. Notice the logarithmic scale of the secondary Y-axis.

data. Choosing the length of these queues (i.e., number of
work requests they can store) is not a trivial task: the queue
should have enough space to allocate all incoming requests
from the application in order to not lose performance, but
larger queue sizes imply also higher resource consumption.
This is especially noticeable in the case of work requests
involving RDMA operations, which have associated page-
aligned memory regions that must be allocated before
submitting the work request to the QP. In this subsection
we study the influence of the length of these queues in
performance using the attained bandwidth as the metric.



Figure 4 shows the results of the bandwidth benchmarks
from the Mellanox OFED mentioned before. As in the
previous section, we use the ib_send_bw benchmark
(no RDMA, Figure 4(a)), the ib_read_bw benchmark
(RDMA read, Figure 4(b)), and the ib_write_bw bench-
mark (RDMA write, Figure 4(a)). The benchmarks were run
varying the length of the send/receive queues. The results
shown are the average bandwidth of 100 repetitions, the
maximum RSD being 0.587 for 8B of transfer size when
using a queue capacity of 128 requests in the ib_read_bw
benchmark. As can be observed in Figure 4, the queue
length is particularly important for small transfer sizes (up
to 2KB), where the use of a buffer with space for 128
requests increases the bandwidth an average of 418.69%
in comparison to a buffer with capacity for 2 requests.
For transfer sizes over 2KB, the bandwidth improvement
decreases in the range of 4KB to 512KB, with an average
gain of 48.46%. With regard to sizes over 512KB, the gain
of increasing the number of queues is almost null (0.22%,
on average). Additionally, from these experiments we also
extract than using a queue length of more than 128 requests
results in no gain.

In summary, averaging the results in Figure 4 for all trans-
fer sizes, using a send/receive queue capacity of 128 requests
provides a bandwidth gain of 217.14% when compared to a
2-request queue capacity.

C. Combining both Optimizations

The optimizations presented in the previous subsections
complement each other: the first optimization increases
performance for large data transfers starting from 2KB,
whereas the second optimization boosts performance for
small message transfers up to 2KB, point where the in-
crement in performance starts diminishing. Therefore, the
obvious question arises: which would be the performance
when both optimizations are combined and applied at the
same time?

Figure 5 presents results for the combination of both
optimizations. The results shown are the average bandwidth
of 100 repetitions, the maximum RSD being 0.423 for 2B of
transfer size when running the ib_send_bw benchmark. It
can be seen in this figure that bandwidth for transfer sizes up
to 2KB is increased, in average, more than 450%. From this
point, more modest improvements are achieved, although
they are still significant. In this regard, from 4KB up to
512KB, bandwidth is increased, in average, 37.68%, whereas
for larger transfer sizes starting from 512KB bandwidth only
increases an average of 4.73%. In average, considering all
the transfer sizes analyzed, bandwidth is increased 43.29%.

IV. EXPERIMENTS

In this section we analyze how the optimizations presented
in Section III influence the performance of upper software
layers. For doing so we use a two level approach: first we
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Figure 5. InfiniBand bandwidth tests varying the capacity of the
send/receive queues from 2 requests to 128, and number of queue pairs
per port from 1 QP to 2. Primary Y-axis shows the benchmark bandwidth,
while secondary Y-axis presents the bandwidth gain of using 2 QPs and 128
queues over using only 1 QP and 2 queues. Notice that secondary Y-axis
is in logarithmic scale.

analyze these optimizations in the context of a remote GPU
virtualization framework and later we study the benefits
provided to applications that use this framework.

A. rCUDA: Remote CUDA

CUDA [11] is a technology created by NVIDIA which
provides a parallel computing platform and programming
model to be used along with NVIDIA GPUs or compatible
ones. CUDA takes benefit from the great computational
power of GPUs to accelerate certain parts of applications,
thus reducing their execution time. rCUDA [12] (remote
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CUDA) is a middleware which enables CUDA applica-
tions being executed in a node of a cluster to make use
of GPUs located in remote nodes of the cluster (unlike
original CUDA, which is intended for local GPUs). In this
manner, by using rCUDA, all the GPUs of the cluster are
concurrently and transparently shared among all the nodes
of the cluster.

rCUDA is organized following a client-server architecture;
see Figure 6. The client middleware is used by the applica-
tion demanding GPU services and presents to the application
the same interface as CUDA. Upon receiving a GPU request
from the application, the client middleware processes it
and forwards the corresponding requests to the rCUDA
server middleware, running on a remote node. The server
interprets the requests and performs the required processing
by instructing the real GPU to execute the corresponding
request. Once the GPU has completed the execution of the
requested command, the results are gathered by the rCUDA
server, which sends them back to the client middleware.
There, the output is forwarded to the demanding application.

The communication between rCUDA clients and remote
GPU servers is carried out via a customized application-level
protocol tailored for the underlying network [12]. rCUDA
has an specific communication protocol implemented using
InfiniBand Verbs, which has been optimized with the results
of the analysis shown in the previous section.

B. Impact of the Optimizations on rCUDA

Figure 7 presents the results for a CUDA bandwidth
test, available in the NVIDIA CUDA Samples [13]. This
test measures the bandwidth when copying data from page-
locked system memory to GPU memory. Figure 7 presents
results when using CUDA and different versions of rCUDA:

• rCUDA original: this is the current version of rCUDA,
which already implements an efficient communication

layer based on the use of pipelined transfers [12]. We
have included these results for reference.

• rCUDA length queue: this is an enhanced version
of rCUDA where, in addition to the already existing
pipelined communications, the capacity of send/receive
queues has been increased to 128 requests.

• rCUDA QPs: this version of rCUDA uses two QPs
in addition to the initial pipelined communication data
transfer.

• rCUDA QPs + length queue: this version of rCUDA
combines all the optimizations.

Results shown in Figure 7 are the average bandwidth of
100 repetitions, and the maximum RSD observed was 1.319
for 14KB of transfer size when using the initial rCUDA
version. However, this high RSD tends to decrease for larger
sizes, reaching a maximum of 0.461 for the biggest ones. It
can be seen in the figure that when increasing the capacity
of send/receive queues to 128 requests there is a noticeable
increase in bandwidth (over 4 times more than the bandwidth
obtained by the original rCUDA software) for small/medium
transfer sizes (up to 4MB). Furthermore, when using two
QPs, bandwidth is only increased by 1% with respect to
the original rCUDA version. However, in Section 3 we have
determined an average gain of 3.68% when using multiple
QPs. Thus, rCUDA internal paths are limiting the gain. We
will investigate further during future work on this matter.

C. Impact of the Optimizations on Applications using
rCUDA

Next we evaluate the benefits that the optimized version of
rCUDA (using 2 QPs and a queue capacity of 128 requests)
provides to applications (the software layer immediately on
top of it). For that purpose, we use the HOOMD-Blue,
MAGMA, and GROMACS production codes:

• HOOMD-Blue [14], [15]: it is a general-purpose par-
ticle simulation toolkit. In particular, we have used
its version 1.0.1 for our study, running a classic MD
simulation, the Lennard-Jones liquid, with 10 random
particles and 10 time steps.

• MAGMA [16], [17]: it is a dense linear algebra library
similar to LAPACK but for heterogeneous architectures.
We utilize release 1.6.0 along with the dpotrf_gpu
benchmark, which computes the Cholesky factorization
for different matrix sizes (from 1K to 10K elements per
dimension, in 1K increments).

• GROMACS [18], [19]: it is a versatile package to
perform molecular dynamics, i.e., simulate the New-
tonian equations of motion for systems with hundreds
to millions of particles. We use version 4.6.5 and the
ion channel system benchmark with 1K steps.

Figure 8 presents the results of this evaluation. Fig-
ure 8(a), shows the normalized execution time when running
these applications with regular CUDA, original rCUDA, and
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optimized rCUDA (the latter is referred to as rCUDA (op-
timized), whereas the use of the original version of rCUDA
is denoted by the rCUDA label). In order to better analyze
these results, Figure 8(b) shows some profiling results: time
spent in transfers (i.e., copies to/from GPU memory, also
referred to as CUDA memcopy), time employed by com-
putations (i.e., time employed by CUDA kernels), and total
number of calls to the CUDA API. The results shown are the
average of 10 repetitions, and the maximum RSD observed
was 0.671 when running the HOOMD-Blue simulation with
the original version of rCUDA.

As we can observe in Figure 8(b), each application
presents a different behavior. Firstly, the HOOMD-Blue test
has been selected because it represents a scenario where
there are much more transfers than computations: over
90% of the test execution time is devoted to transfer data
to/from the GPU memory. As expected, this is the worst
possible scenario for rCUDA, because the overhead due
to the transfers across the network is more evident. Thus,
rCUDA needs over 2 times more than CUDA to complete the
test. However, it is also a good scenario to show the benefits
of the analyzed optimizations in terms of bandwidth gain.
In this manner, the optimized version of rCUDA presents
an improvement of over the 15% with regard to the initial
version of rCUDA.

Next, GROMACS shows the opposite scenario: over 90%
of the execution time is devoted to computations in the GPU.
Performing much more computations than transfers benefits
rCUDA in the sense that the time spent in computations in
the GPU is the same for CUDA and rCUDA, thus compen-
sating the overhead of rCUDA due to transfers across the
network. Notice that this application presents a huge number
of calls to the CUDA API. Each CUDA call is forwarded
by rCUDA over the network to the remote node owning
the real GPU. From the InfiniBand perspective, CUDA calls
can be seen as transfers of small size (a header of 12 bytes
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(a) Normalized execution time of the applications when using
regular CUDA, rCUDA and rCUDA optimized.
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(b) NVIDIA profiling results: time spent in transfers (i.e.,
copies to/from GPU memory), time employed by computa-
tions (i.e., CUDA kernels), and total number of calls to the
CUDA API.

Figure 8. Performance evaluation of HOOMD-Blue, MAGMA, and
GROMACS.

+ a variable size of data depending on the arguments of
each CUDA call). As previously shown in Figure 7, the
optimization consisting in increasing the send/receive queue
capacity improved performance for small/medium transfer
sizes (up to 4MB). This explains why the rCUDA optimized
version needs 35% less time to complete this test, as shown
in Figure 8(a),



Finally, we have used the MAGMA application experi-
ment to show an scenario where the time spent in transfers
and computations is equilibrated (44% of time spent in
transfers, 56% in computations). The number of CUDA
calls is also an intermediate amount with respect to the
previous experiments. In this case, we can attribute the gain
when using rCUDA optimized (an 11% when compared
to the initial version of rCUDA) to both the increment of
the maximum bandwidth because of using two QPs, and
the reduction of the time spent in sending small/medium
messages due to the increased send/receive queue capacity.

V. CONCLUSIONS

The use of InfiniBand networks to interconnect high
performance computing clusters has considerably increased
during the last years. However, due to the programming
complexity of the InfiniBand API and the lack of doc-
umentation, there are not enough recent available studies
explaining how to optimize applications to get the maximum
performance of this fabric.

In this paper we have exposed two general optimizations
to be used when developing applications using InfiniBand
Verbs. Based on our experiments we can conclude that (1)
using more than one queue pair per port clearly improves
bandwidth (an average gain of 3.68% in our experiments),
(2) increasing the capacity of the send/receive queues turns
into an average bandwidth improvement of over 200%, being
especially noteworthy for small/medium message sizes (over
400% more bandwidth in our experiments), and (3) both
optimizations complement each other. In this regard, when
combining both optimizations, the average bandwidth gain
is 43.29%. This bandwidth increment is key for remote GPU
virtualization frameworks. Actually, this noticeable gain
translates into a reduction of up to 35% in execution time of
applications using remote GPU virtualization frameworks.

Future work includes the analysis of further optimizations
at the InfiniBand Verbs API layer as well as improving the
integration of these optimizations within the upper software
layers.
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