
On the Design of a Demo for Exhibiting rCUDA

Carlos Reaño, Ferrán Pérez, and Federico Silla

Universitat Politècnica de València
València, Spain

carregon@gap.upv.es, fsilla@disca.upv.es

Abstract— CUDA is a technology developed by NVIDIA
which provides a parallel computing platform and program-
ming model for NVIDIA GPUs and compatible ones. It takes
benefit from the enormous parallel processing power of GPUs
in order to accelerate a wide range of applications, thus
reducing their execution time.

rCUDA (remote CUDA) is a middleware which grants
applications concurrent access to CUDA-compatible devices
installed in other nodes of the cluster in a transparent way so
that applications are not aware of accessing a remote device.

In this paper we present a demo which shows, in real time,
the overhead introduced by rCUDA in comparison to CUDA
when running image filtering applications. The approach
followed in this work is to develop a graphical demo which
contains both an appealing design and technical contents.

Keywords-GPGPU; CUDA; HPC; virtualization;

I. INTRODUCTION

GPU-accelerated computing consists in using the mas-

sively parallel power of graphics processing units (GPUs) to

boost the performance of a wide range of application in areas

such as computational algebra, chemical physics, finance, or

image analysis, to name only a few. Since 2006, NVIDIA

response to this trend has been CUDA (Compute Unified

Device Architecture) [1], a technology which provides a

parallel computing platform and programming model for

NVIDIA GPUs and compatible ones.

However, the use of GPUs in current high performance

computing (HPC) clusters presents several disadvantages,

such as high acquisition costs and power consumption.

In addition, current computational science and HPC ap-

plications make, in general, a relatively low utilization of

GPUs. Hence, sharing a reduced number of GPUs among

the nodes of a cluster might be beneficial both to reduce

acquisition costs and power consumption, and to increase

GPU utilization rate.

rCUDA (remote CUDA) [2], [3] is a middleware which

enables sharing remote CUDA-compatible devices concur-

rently and transparently. It grants applications concurrent

access to GPUs installed in other nodes of the cluster in

a manner that they are not aware of accessing a remote

device. Furthermore, rCUDA does not require to modify the

source code of applications and, additionally, introduces a

small overhead with respect to CUDA.

In this paper we introduce a demonstrator for rCUDA

consisting of a graphical demo which combines an appealing

design and live applications along with technical contents.

The rest of the paper is organized as follows. In Section II

we present rCUDA in more detail. Section III describes the

applications later used in the demo. Finally, in Section IV

we assemble all the components and describe the live demo

to be presented.

II. RCUDA: REMOTE CUDA

In the same way as CUDA uses local GPUs to accelerate

certain parts of applications, rCUDA (remote CUDA) [2], [3]

takes benefit from remote GPUs to do so. Figure 1 illustrates

a sample scenario for the sake of clarity.

…

GPU

Network

rCUDA
CUDA App

…
CLIENTS SERVER

Network

rCUDDA

CUDA App

Figure 1. rCUDA sample scenario.

As commented previously, rCUDA enables sharing remote

CUDA-compatible devices concurrently and transparently to

applications. In this manner, a GPU installed in one node

of a cluster (the server node) can be used by the rest of

the nodes of the cluster (the client nodes) to accelerate

applications using CUDA. In order to do so, the rCUDA

middleware intercepts the application calls to the CUDA

API and forwards them to the remote GPU. Notice that

the application continues using the very same CUDA API

and it does not require to be modified. Once a CUDA call

arrives at the remote GPU thanks to rCUDA, it is executed

using the real CUDA library and the real GPU. When the

CUDA call completes, its results are returned by rCUDA to

the application which made the initial call. Notice that this

process is transparent to the application, which is not aware

of accessing a remote GPU.

To communicate client and server nodes, rCUDA provides

two different communications modules: one using the gen-

eral TCP/IP protocol stack, and another using the InfiniBand

Verbs API.

The last available rCUDA version, release 5.0, supports

CUDA Runtime and Driver API 6.5. It also supports the

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.53

1169

most important routines of the following CUDA specific

libraries: cuBLAS (Basic Linear Algebra Subprograms),

cuFFT (Fast Fourier Transform), cuRAND (generation of

random numbers), and cuSPARSE (BLAS subroutines for

handling sparse matrices).

Finally, rCUDA is free and can be obtained from the

website www.rcuda.net.

III. APPLICATIONS USED IN THE DEMO

In this section we describe the applications used in the

live demo. It is important to remark that one of the demo

requirements was that it should attract the attention of the

exhibition attendees. Therefore, the demo should be devised

with a very appealing design in order to attract the interest of

attendees. For this reason, the applications used in the demo

are two image filters: color image to grayscale conversion

(Subsection III-A), and image blurring (Subsection III-B).

Additionally, those filters will be applied to a set of over

200 pictures especially selected to attract the attention of

attendees.

A. Color Image to Grayscale Conversion

In computer graphics, each pixel of a color image is

commonly represented by four parameters: RGBA [4]. ‘R’

indicates how much red is in the pixel, ‘G’ how much green

and ‘B’ how much blue. ‘A’ stands for Alpha and specifies

the opacity of the pixel. Each one of these parameters is

represented by one byte, so there are 256 different possible

values for each parameter.

On the other hand, each pixel of a grayscale image is

represented by a single parameter which specifies the level

of gray using one byte. Hence, each pixel has 256 possible

values.

To convert an image from color to grayscale, given

that the eye responds most strongly to green, followed by

red and then blue, the NTSC (National Television System

Committee) recommends using Equation 1. Notice that the

parameter ‘A’ is ignored in this formula.

I = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (1)

Based on an initial program extracted from [4], we

have developed a CUDA application which performs the

image conversion in the GPU using the formula shown in

Equation 1.

B. Image Blurring

Blurring an image [4] consists in applying to each pixel

and its neighbors a filter which varies depending on the

desired level of distortion. For instance, imagine that we

have an image represented by the matrix shown in Figure 2,

where ‘B’ represents the pixel to blur, ‘N1..N8’ refer to

what we have called the neighbor pixels and ‘X’ are pixels

which will not be modified when blurring pixel ‘B’. To blur

pixel ‘B’ of the image represented by the matrix in Figure 2,

X X X X X X

X |N1 N2 N3| X
| |

X |N4 B N5| X
| |

X |N6 N7 N8| X

X X X X X X

Figure 2. Matrix representing the image to blur: ‘B’ represents the pixel
to blur, ‘N1..N8’ refer to the neighbor pixels and ‘X’ are pixels which will
not be modified when blurring pixel ‘B’.

we apply Equation 2, where ‘d’ is an array which specifies

the distortion level for each neighbor pixel and ‘db’ is the

distortion level for pixel ‘B’.

blur(B) = B ∗ db+
8∑

i=1

N [i] ∗ d[i] (2)

Based on an initial program extracted from [4], we have

developed a CUDA application which performs the image

blurring in the GPU using the formula shown in Equation 2.

IV. RCUDA DEMO DESCRIPTION

In this section we describe the demo. We first present

the equipment used for the demo (Subsection IV-A) and

then the demo itself (Subsection IV-B). Finally, we show

performance results in Subsection IV-C.

A. Equipment used

The equipment necessary for this demo consists of two

1027GR-TRF Supermicro servers, each with the following

characteristics:

• Two Intel Xeon hexa-core processors E5-2680 v2 (Ivy

Bridge) operating at 2.8 GHz.

• 32 GB of DDR3 SDRAM memory at 1,600 MHz.

• 1 Mellanox Connect-IB (FDR) dual-port InfiniBand

adapter.

• Red Hat Enterprise Linux Server release 6.4 with

Mellanox OFED 2.1-1.0.0 (InfiniBand drivers and ad-

ministrative tools) and CUDA 6.5 with NVIDIA driver

340.29.

• 1 NVIDIA Tesla K80

In addition, one monitor is necessary to display the graph-

ical part of the demo. Figure 4 shows how the equipment is

interconnected. The demo runs in node A, whereas node B

hosts an rCUDA server.

B. Description of the Demo

Figure 3 presents a screen shot of the demo. A video of the

demo can also be seen at http://youtu.be/qblh6wW3DHA.

The demo consists of 245 different color pictures, each of

them available in three different sizes: 1024x768 (2.4MB),

2048x1536 (9.4MB), and 4096x3072 (37.7MB). The current

1170

Figure 3. Screen shot of the demo.

image size being computed during the live demo is shown

at the top right part of the screen under the label “Current

picture size”. For each image and size, the next steps are

followed:

1) The original image is displayed on the screen.

2) The image is converted to grayscale first using CUDA

(the calculations are done in a local GPU), then using

rCUDA (the calculations are done in a remote GPU).

For so, we employ the filter exposed in Subsec-

tion III-A. The image conversion times with CUDA

and with rCUDA are stored separately.

3) Although the complete image is converted to

grayscale, only the top right part of the image dis-

played on the screen is changed to grayscale due to

Node A

Node B N

No

VGA
connection

InfiniBand
dual-port
connection

K80

K80

Figure 4. Scheme of the equipment used for the demo.

aesthetic reasons.

4) The blur filter explained in Subsection III-B is then

applied to the image using again CUDA and rCUDA.

Both conversion times are also stored.

5) Though the whole image is blurred, only the bottom

right part of the blurred image is displayed on the

screen for aesthetic reasons.

6) The conversion time of CUDA and rCUDA for both

filters (grayscale and blur) is numerically displayed at

the right side of the screen. It is also represented in the

form of a bar chart: the green part of the bars is the

CUDA conversion time, while the blue part of the bars

refers to the overhead of doing the same conversion

with rCUDA. The bar chart keeps track of the results

for the last 20 images.

7) The bottom right part of the screen is then updated

showing the average rCUDA overhead over CUDA

for the different image sizes and filters, taking into

account all the executions since the demo started.

Once the previous sequence is completed, a new image is

displayed on the screen, and the process starts again. It is

repeated for all the images and all the sizes.

C. Performance Results

The applications used in the demo have different behav-

iors in order to show the performance of rCUDA under

distinct scenarios. In general, three factors influence rCUDA:

1171

• Transfers: CUDA memory copies translate into network

transfers when using rCUDA, what introduces an over-

head which depends on network bandwidth.

• Computations: the time employed by CUDA kernels

in the GPU is the same for CUDA and rCUDA.

Therefore, performing a large amount of computations

helps rCUDA to compensate the overhead caused by

transferring data across the network.

• CUDA calls: when using rCUDA, calls to the CUDA

API turn into small size network transfers, which incre-

ment rCUDA overhead depending on network latency.

Figure 5 presents the rCUDA overhead over CUDA when

running the applications explained in Section III using the

three different image sizes commented in Subsection IV-B.

The results are the average of ten executions, and the

maximum Relative Standard Deviation (RSD) observed was

0.077. This RSD was achieved when using CUDA and the

grayscale filter over an image of size 1024x768. To ease

the interpretation of the results, we also show in Figure 6

and Figure 7 profiling information obtained by using the

NVIDIA profiling tools.

Regarding the application which converts the images from

color to grayscale, referred to as “grayscale” in the figures,

we can observe that the overhead experienced by rCUDA

noticeably increases with image size (see Figure 5). This is

due to the fact that the time spent in transfers (Figure 7),

�������	 ���	��
�� ���������

�

�

�

�

�

�������� ����

���������

��
�
�

�!
"
�
�#
�
�
$
�%
&
'

Figure 5. rCUDA overhead over CUDA when running grayscale and blur
filters.

�������	 ���	��
�� ���������

�

��

�

��

�

��

�

��

�������	
 �	��

���
����

�
�

�
�

�
��

��
�

�
��

��

��
�
�

Figure 6. Time spent in computations (i.e., CUDA kernels) by grayscale
and blur filters.

�������	 ���	��
�� ���������

�

��

�

��

�

��

�

��

�

���

���

���

���

��

���

���

	��

�������� ���� �������� ����

���������

�
��

�
�
��
��
�
��
�
��
�
�
�

�
�

	

��
�
��
�

Figure 7. Time spent in transfers (i.e., CUDA memcopies) and calls made
to the CUDA API by grayscale and blur filters. Bars represent transfers,
whereas lines depict calls.

is growing much faster than the time spent in computations

(Figure 6) when increasing the image size, thus making more

notorious the overhead introduced by rCUDA because of

network transfers.

With respect to the application which blurs the images,

labeled as “blur” in the figures, it can be seen that the over-

head presented by rCUDA for an image size of 1024x768

is higher than in the grayscale application (see Figure 5).

This is because the number of calls to the CUDA API for

this filter is larger than for the grayscale one (Figure 7),

what introduces an overhead due to the network latency

which is not compensated by the time spent in computations

(Figure 6).

In contrast, rCUDA overhead for image sizes of

2048x1536 and 4096x3072 is lower when running the blur

filter than the grayscale one (Figure 5). The reason lies in

the fact that the time spent in computations (Figure 6) in

this case is enough to counterbalance the overhead due to

network transfers (Figure 7).

ACKNOWLEDGMENT

This work was funded by the Spanish MINECO and

FEDER funds under Grant TIN2012-38341-C04-01. Au-

thors are also grateful for the generous support provided

by Mellanox Technologies and the equipment donated by

NVIDIA Corporation.

REFERENCES

[1] NVIDIA, NVIDIA CUDA C Programming Guide 6.5, 2014.

[2] A. J. Peña, C. Reaño, F. Silla, R. Mayo, E. S. Quintana-Ortı́,
and J. Duato, “A complete and efficient cuda-sharing solution
for HPC clusters,” Parallel Computing (PARCO), vol. 40,
no. 10, pp. 574–588, 2014.

[3] C. Reaño, R. Mayo, E. S. Quintana-Ortı́, F. Silla, J. Duato, and
A. J. Peña, “Influence of infiniband FDR on the performance of
remote GPU virtualization,” in IEEE International Conference
on Cluster Computing (CLUSTER), 2013, pp. 1–8.

[4] Udacity, Intro to Parallel Programming, 2015.

1172

