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Abstract

Dimension reduction techniques are used to explore genomic data. Due to
the large number of variables (genes) included in this kind of studies, vari-
able selection methods are needed to identify the most responsive genes in
order to get a better interpretation of the results or to conduct more spe-
cific experiments. These methods should be consistent with the amount of
signal in the data. For this purpose, we introduce a novel selection strategy
called minAS and also adapt other existing strategies, such us Gamma ap-
proximation, resampling techniques, etc. All of them are based on studying
the distribution of statistics measuring the importance of the variables in
the model. These strategies have been applied to the ASCA-genes analysis
framework and more generally to dimension reduction techniques as PCA.
The performance of the different strategies was evaluated using simulated
data. The best performing methods were then applied on an experimental
dataset containing the transcriptomic profiles of human embryonic stem cells
cultured under different oxygen concentrations. The ability of the methods
to extract relevant biological information from the data is discussed.
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1. Introduction

High-throughput genomic and transcriptomic experiments generate data
for a high amount of variables (e.g. genes) on a much lower number of in-
dividuals (samples). Common approaches to explore this kind of data are
clustering methods such as hierarchical or KNN clustering [1, 2], and dimen-
sionality reduction techniques such as Principal Component Analysis (PCA).
PCA is frequently used in transcriptomic data to group samples, identify as-
sociated genes or to spot those genes or samples behaving completely different
from the rest [3, 4]. In simple case-control studies, the methodology is able
to provide biologically interpretable results. However, more complex exper-
imental designs can also be found in transcriptome research, that include
factors such as time effect, treatment, tissue, strain, etc., at different levels,
giving rise to high-dimensional multifactorial datasets. For these multifacto-
rial experiments, other dimension reduction techniques exist that tackle the
analysis of the data in a more efficient way and achieve a better interpreta-
tion of the results. Some examples are Tucker3 [5] or PARAFAC [6], which
have been successfully applied to the analysis of genomic data [7]. Another
interesting approach is ASCA (ANOVA-Simultaneous Component Analysis)
[8], adapted to genomic data in the ASCA-genes software [9]. ASCA-genes
is a powerful tool to extract targeted signals from noisy data in complex ex-
perimental setups using a combination of ANOVA-like data decomposition
and PCA.

In many cases, though, descriptive analysis is not the only goal of the ex-
periment, but also the identification of responsive (or activated) genes, since
they give the clue to the molecular biology interpretation of transcriptional
regulation. When facing the issue of variable selection within the framework
of dimension reduction techniques, there exist some rules of thumb such
as considering that a variable is important if its loading absolute values are
higher than a certain threshold. However, this is a rather arbitrary way of se-
lecting variables. More sophisticated variable selection methods can be found
in the literature, especially for PCA. Jolliffe [10, 11] used the absolute value
of PCA loadings to measure the contribution of the original variables to the
model and selected as many of these variables as the number of selected la-
tent variables in order to retain the maximum variance of the data. McCabe
[12] recommended four different criteria to select what he called principal
variables and then evaluated all possible subsets of original variables to find
the one optimizing the pursued criterion. Krzanowski [13] combined PCA
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with Procrustes analysis to select those variables preserving the multivariate
data structure, and used a Procrustes criterion to quantify the similarity of
compared structures. Since exploring all the subsets of q variables (being q
the number of variables to be selected) might be very computationally expen-
sive, he included a backward procedure to discard variables. Guo et al. [14]
improved the search of the best subset in the latter method by applying a
genetic algorithm to avoid exhaustive searching. Westad et al. [15] used Stu-
dent’s t-tests based on loadings and their estimated standard uncertainties
to calculate the significance on each variable for each component. Principal
Feature Analysis [16] is based on taking PCA loadings and clustering them
using K-Means algorithm. The number of clusters must be equal or greater
than the number of PCs. In each cluster, the closest variable to the mean of
the cluster is selected (principal feature). Finally, variable selection can be
carried out by applying Sparse Principal Component Analysis [17]. Sparse
PCA generates linear combinations of the data variables explaining a maxi-
mum amount of variance in the data while having only a limited number of
nonzero coefficients.

The purpose of most of these methods is reducing the number of vari-
ables to achieve a better interpretation of the principal components. Several
of them are unfeasible in the context of genomic data due to the large number
of variables (genes) or inappropriate due to the low signal to noise ratio that
characterizes these data. Another drawback is that the majority of these
approaches need to set in advance the number of variables to be selected (or
removed), which is generally an unwanted constraint when trying to identify
responsive genes. In this work, we compile several selection strategies that
avoid this constraint and compare these methods when being applied to the
analysis of multifactorial genomic data. This issue had been previously ad-
dressed by our group in the adaptation of ASCA [8] to genomic experiments,
the ASCA-genes tool [9]. ASCA-genes was shown to be an effective approach
for the analysis of complex datasets and the gene selection strategy presented
in that work was proven to give good results with signal rich transcriptomic
datasets. Here, we extend that study and consider a vast array of signal to
noise conditions together with different selection strategies to provide a com-
prehensive understanding of the behavior of complex transcriptomic designs.

This work proposes two novel approaches, minAS and Gamma approxi-
mation, for variable selection in the context of multifactorial gene expression
experiments. We use the ASCA-genes framework for treating the multifac-
torial nature of the data. However, the gene selection strategies we propose
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rely on the probability distribution of PCA statistics and can be applied to-
gether with other dimension reduction techniques. Both minAS and Gamma
methods in combination with ASCA-genes have been implemented in the web
suite for Serial Gene Expression Analysis: SEA (http://sea.bioinfo.cipf.es/)
[18], which is freely available for the scientific community.

2. Methods

Gene expression in high-throughput experiments has been traditionally
measured by means of microarrays. New technologies to quantify the gene
expression, such as RNA-seq, are now emerging. However, they are still ex-
pensive and the analysis of complex experimental setups giving rise to mul-
tifactorial genomic data are very rarely addressed with these new sequencing
techniques. Therefore, all the methods presented in this work have been vali-
dated on microarray data and the simulation studies also mimic the behavior
of this kind of data.

Let X0 be the gene expression matrix, with dimensions M ×N , where N
is the number of variables (e.g. genes) and M is the number of observations
(biological samples). If samples have been taken according to a certain ex-
perimental design, including one or more different factors such as treatment,
tissue, time, etc. with different levels and different number of replicates in
each level, we are dealing with multifactorial datasets. The experimental
setup must be taken into account when choosing the appropriate dimension
reduction technique in order to better extract the information contained in
the data. ASCA model was used because it tackles the problem of complex
experimental designs and efficiently separates signal from noise to achieve an
optimal interpretation of the results in terms of experimental factors effects
[9].

2.1. The ASCA-genes framework

To present the ASCA-genes methodology, we consider the specific case
of an experiment with two factors. In the context of genomic experimental
designs, one of the factors is usually time (say, for example, factor a). The
other factor b indicates the experimental group, such as treatment or tissue.
ASCA separates the different sources of variation in the data (as ANOVA
does) by decomposing the mean centered data matrix X, resulting from sub-
tracting the column means to X0, into different submatrices as in (1). Each
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one of these submatrices contains the estimated effects associated to a deter-
mined experimental factor, for example factor a, factor b, the interaction ab
between them or the residuals abg (see [9] for further details). The estima-
tion of these effects depends on the nature of the factors (between or within
subjects, random or fixed effects, etc.). In this work, we have considered
the most simple case of ANOVA-like decomposition: fixed effect factors be-
tween subjects. Independence of measurements holds when expression values
along time are independent, as frequently happens in genomics because they
correspond to different biological samples.

X = Xa +Xb +Xab +Xabg (1)

As the goal in time-course experiments is usually to detect gene expres-
sion profile changes between experimental groups (factor b), in this study,
the interaction effect has been joined to factor b effect and analyzed in one
submodel as it is shown in (2). More information on whether or not joining
submodels b and ab can be found in [8, 9]:

X = Xa +Xb+ab +Xabg (2)

For the remainder of this work, ASCA submodels in (2) will be named as
“submodel a” and “submodel b+ ab”, respectively.

PCA is applied to each one of the submatrices (Simultaneous Component
Analysis) to reveal major expression patterns associated to the experimen-
tal factors and to identify relevant experimental conditions. At this point,
dimensionality reduction is undertaken by selecting for each submodel kx
principal components (for x=a, b + ab, abg). The resulting ASCA-model is
given in (3):

X = TaP
t
a +Tb+abP

t
b+ab +TabgP

t
abg + E (3)

where, the scores of each submodel are given by the M × kx matrices
indicated by Ta, Tb+ab, Tabg, and the submodel loadings are given by the
N × kx matrices Pa, Pb+ab, Pabg, where Pt

xPx=I for x=a, b + ab or abg.
E is a matrix in which the residuals of all submodels of ASCA-model are
collected: E = Ea +Eb+ab +Eabg, where Ex = Xx −TxP

T
x for x = a, b+ ab

or abg. The extension of this model to more than two experimental factors
is straightforward.

Once the major variability patterns have been identified and assuming
that the model is biologically meaningful, next step is to select genes whose
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expression is affected by the experimental factors. When considering the
expression of an individual gene, this might follow the general model, change
but with a different pattern or simply present a flat profile. Two statistics
are proposed to characterize the behavior of genes within each submodel: the
leverage and the Squared Prediction Error (SPE).

The leverage measures the importance of a variable (gene) in the PCA
model. Leverage values for all the genes in the submodel x can be computed
from loadings matrix according to (4) (see [19]):

hx = diag[PxP
t
x]; x = a, b+ ab (4)

The SPE associated to a particular gene is a measure of the goodness
of fit of the model for that specific gene. Genes not following the general
structure of the model will have high SPE. SPE values can be computed
from residuals matrix in each submodel (Ex = Xx - TxP

t
x) according to (5):

SPEx = diag[Et
xEx]; x = a, b+ ab (5)

In general, “interesting” (or regulated) genes will be those showing high
leverage (i.e. genes following the major expression trends) or high SPE val-
ues (i.e. having odd but distinct behaviors). Genes with low leverage and
low SPE will be regarded as not affected by the experiment (for an exten-
sive explanation on the interpretation of leverage and SPE values, we refer
the reader to the original ASCA-genes paper from [9]). To decide which
genes should be classified as “interesting”, a threshold must be established
for both leverage and SPE in such a way that those genes presenting SPE or
leverage higher than this threshold will be selected. Nueda and co-workers
calculated SPE threshold by using Box’s approximation [20] for SPE dis-
tribution. Leverage threshold was obtained by resampling techniques [21].
However, they observed that these selection strategies presented a good per-
formance when the signal to noise ratio in the dataset was high, but they
were not so effective for data with low signal to noise ratio. Hence, in this
work, we introduce other selection methods and compare them with the ones
in ASCA-genes under a much wider variety of biological scenarios. Both
simulated and real datasets will be used to evaluate the performance of the
proposed selection methods. All of these methods have been implemented in
the statistical language R and are available from the authors.
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2.2. Variable selection strategies

Once the dimension reduction model has been established, the goal is of-
ten finding the variables with higher contribution in the model. In our case,
the most “regulated” genes. The variable selection strategies we propose
in this paper always consist of three steps: first, choosing an appropriate
statistic to measure the importance of the variables in the model (leverage
and SPE in this study); second, estimating the probability distribution of
this statistic (in a parametric or non-parametric way) and, finally, estab-
lishing the threshold to separate “interesting” from “uninteresting” variables
(genes). As in ASCA-genes, our proposals are focused on studying the uni-
variate distribution of both SPE and leverage statistics, although most of the
methods we present are valid for other statistics or even other multivariate
methods.

It should be noted that SPE and leverage statistics can be computed for
each gene in each of the different ASCA submodels a, b+ ab and abg. Gene
selection is therefore possible for each of these submodels independently. In
this work we have chosen to evaluate the gene selection coming from both a
and b+ab submodels as these capture the gene expression changes of interest
in the proposed scenario, namely, the time associated changes (submodel a)
and the time-experimental factor interaction (submodel b + ab). Depending
on the aim of the experiment, all or only specific submodels might be rele-
vant for the study, and selection will have to be based on the SPE and/or
leverage statistics of the corresponding submodels. Thus, interpretation of
the gene selection has always to be done on the light of the ASCA submodels
considered.

Generally and because of the nature of expression data, most genes present
low SPE or low leverage values. Hence, it is expected that these statistics
follow a mixture distribution of, at least, two populations. The biggest pop-
ulation is that of “uninteresting” genes (with statistic values closer to zero).
The other(s) population(s) corresponds to “interesting” genes (those with
higher values in the statistic). As our aim is to separate “interesting” from
“uninteresting” genes, the mixture model can be written as in (6):

f(x) = p0f0(x) + p1f1(x) (6)

where, x is the value of either SPE or leverage for a particular gene,
p0 is the proportion of “uninteresting” genes (a priori unknown), f0(x) is
the null probability density function (i.e. probability density function for
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“uninteresting” genes), and p1 and f1(x) are, respectively, the proportion of
“interesting” genes and their probability density function.

Two different approaches can be used to establish the threshold for SPE
or leverage values. The first one consists of estimating the “uninteresting”
genes distribution (null distribution) and using a percentile of this estimated
distribution as the threshold. The methods compared in this work that follow
this first approach are: Box’s method [20], Jackson & Mudholkar’s method
[22], Gamma method and resampling techniques [21]. In the first three, the
null distribution is estimated in a parametric way, while resampling is consid-
ered a non-parametric technique. In the second approach, an approximation
is obtained for the mixture distribution and the threshold is taken as the
value which best separates the two components of the mixture. Many au-
thors have focused on the parametric estimation of the mixture components
distribution (see, for example, Efron’s work at [23] or [24]). But we observed
that, due to the huge difference between the sizes of both populations, it was
very difficult to estimate parametrically the probability distribution of each
component. Therefore, only a non-parametric approach is introduced here,
which is called minAS (MINimum Algorithmic Selection).

Box’s method. Assuming that errors from a PCA model follow approx-
imately a multivariate normal distribution and given that SPE is a quadratic
form of the error associated with a particular variable, Box [20] showed that
SPE distribution could be estimated by a weighted χ2-distribution (gχ2

h). In
ASCA-genes [9], this distribution was used to calculate the (1-α)% confidence
SPE threshold for each PCA submodel. Parameters g and h are estimated
by the matching moments method and the following expression is obtained
for SPE threshold at α level of significance, where m is the sample mean and
v is the sample variance:

SPEα =
v

2m
χ2

2m2

v

(α) (7)

Jackson & Mudholkar’s method. Jackson and Mudholkar [22] found
another approximation for SPE distribution in PCA models, by using the
residuals matrix (E). Then, for PCA coming from each ASCA submodel,
SPE threshold at α level of significance can be computed as follows:

SPEα = θ1[1−
θ2h(1− h)

θ21
+

zα(2θ2h
2)1/2

θ1
]1/h (8)

where V=E’E
N−1

, being N the number of variables (genes) in the model;
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θi=trace(Vi), for i=1,2,3; and h=1-2θ1θ3
3θ22

.

Gamma method. We propose using the gamma distribution to ap-
proximate SPE or leverage null probability density functions because it has
more flexibility than the distributions described above to suit different den-
sity curves. Given the statistic values for each gene in each submodel, shape
and scale parameters for the gamma distribution have been estimated by
maximum likelihood [25]. The corresponding thresholds for either SPE or
leverage are then the percentile (1-α)% of the estimated gamma distribution.

Resampling techniques. Resampling methods are non-parametric pro-
cedures to determine the statistical significance of a result, sampling repeat-
edly within the same data. An empirical distribution is generated for an
statistic under the null hypothesis by taking the original data, randomly
shuffling them numerous times and computing the statistic value for each of
the permuted datasets. The way of permuting the data depends on the null
hypothesis to be tested [21].

In ASCA-genes [9], a permutation method was used to define the thresh-
old of leverage. In the present work, we study the performance of permuta-
tion techniques to obtain the confidence thresholds not only for leverage but
also for SPE. We also compare their permutation strategy with our proposal.
Both strategies are described below.

Given the M ×N data matrix X, the two permutation strategies are:

Strategy 1.- As implemented in ASCA-genes, K row permutations of ma-
trix X are generated, destroying the structure of the experimental design. In
this case, the null hypothesis to be tested is that experimental conditions do
not affect gene expression, i.e. all genes have a flat profile across conditions.

Strategy 2.- The null hypothesis to test in this strategy is that all genes
are equally responsive. If this is true, all the genes would have the same
contribution in the PCA model and the residual errors would be also similar.
Hence, the novel permutation strategy we propose in this work consists of
performing K column permutations. Moreover, the permutation of values
in the columns is different for each row so that the structure in the data
(associations among genes, and among genes and experimental conditions)
is totally broken.

In this work, the number of permutations K was set to 1000. Once the
permuted matrices have been generated, an ASCA model is fitted to each
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Table 1: Methods to calculate SPE or leverage threshold by resampling techniques

Method Permutation strategy Threshold computation
1 1 - Permuting conditions Option (a) - For each gene
2 2 - Permuting genes Option (a) - For each gene
3 2 - Permuting genes Option (b) - Globally

one of them. SPE and leverage values are then obtained for each gene in
each permutation to generate the reference distribution. The threshold can
be calculated from this reference distribution in two ways:
Option (a).- First, the (1-α)% percentile of the K statistic values for each
gene is computed and the threshold is obtained as the (1-α)% percentile of
the N gene percentiles. This is the option implemented in ASCA-genes.
Option (b).- We propose using the (1-α)% percentiles of the KxN statistic
values obtained from the K permutations and N genes.
The three resampling methods to be compared in this work are combinations
of permutation strategies 1 and 2 and options (a) and (b) to compute thresh-
olds. They are described in Table 1.

minAS. We introduce in this work the minAS method. This algorithmic
approach consists of estimating empirically the mixture density function for
either the SPE or the leverage and then computing the first local minimum
closest to the “uninteresting” genes probability density curve. The SPE or
leverage value in which this minimum is reached is taken as the threshold that
separates both distributions. The minAS strategy assumes that the mixture
distribution in (6) for SPE or leverage is, at least, bimodal. The intrinsic
nature of genomic data makes this assumption hold in general. However, it
is not always possible to visualize this bimodality in histograms, due to the
large difference between sizes of both populations.

To estimate the mixture density curve, a kernel density estimator (KDE)
[26] was used (provided by density function from the R library stats). A
KDE is a sophisticated version of histograms that produces smoothed den-
sity curves. The KDE depends on a smoothing parameter called bandwidth,
which is equivalent to the bin width of histograms. To estimate the curve
in a given point, all the observations are weighted by a continuous function
(kernel) instead of considering only the observations falling into the bin as
histograms do. The default option for kernel in the R “density” function is
the Gaussian distribution. It is well known that KDE goodness of fit relies
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more on bandwidth than in the kernel choice. There are different rules of
thumb to compute the optimum bandwidth. For instance, [27] takes into ac-
count the dispersion in the data and the sample size to compute bandwidth
for KDE with Gaussian kernel. It is implemented as the default option in
density function (“nrd0”).

The minAS algorithm allows users to choose the kernel and the method to
calculate bandwidth (offering the same options than density function), as well
as the number of points for which the density is fitted. The smoothing of the
KDE is determined by the bandwidth computed by the chosen method. To
increase or decrease this smoothing, the value of the coefficient adjust (which
defaults to 1) can be increased or decreased, respectively. In the appendix, we
provide an study of the influence of the parameter adjust in the performance
of the method. If several kernel functions or methods to calculate the band-
width are chosen, minAS selects the mixture estimation that best fits the
data according to one of the two implemented options: “max” and “mean”.
As the true density function is unknown, cumulative distribution functions
computed from the KDE are compared with the empirical cumulative distri-
bution function derived from SPE or leverage values. In order to compare
them, the difference between the empirical distribution and the KDE cumu-
lative distribution is computed for each value. Then, in the case of “max”
option, the maximum of these differences (Kolmogorov-Smirnov distance) is
taken. For “mean” option, the mean of all these differences is obtained. The
KDE with the smallest maximum (or mean) difference is selected.

Once the best KDE has been obtained, minAS computes the minima of
this curve. By default, the first local minimum after the highest peak is taken
as the cutoff value to separate the two populations, i.e. “interesting” from
“uninteresting” genes. However, minAS users can also set the maximum
number of minima to be computed, calculate all of them or provide the
interval where the minimum has to be found. A plot is provided in which all
the computed minima are represented over the mixture distribution. Then,
if more than one minimum is found, users may decide to reduce the number
of selected genes by choosing a more restrictive threshold.

3. Results

The variable selection methods described above were firstly evaluated on
simulated data along several comparative studies. According to the results
of these comparisons, the best strategies were determined and applied on
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an experimental dataset. Additionally, performance was evaluated using the
biological information associated with the selected genes.

3.1. Simulated data

Simulation studies have been conducted, on the one hand, to compare the
performance of the proposed variable selection methods and, on the other
hand, to see which methods are preferred under certain biological scenarios
or which ones are less affected by the biological characteristics of the data.
In order to measure the performance of the variable selection methods on the
simulated data, we have chosen the Matthews Correlation Coefficient [28],
which is considered a good performance measure since it can be used even
if the sizes of the sets are very different- as it happens in genomic contexts-
and it takes into account all types of classification errors.

MCC =
TP ·TN − FP ·FN√

(TP + FP )(TP + FN)(TN + FN)(TN + FP )
(9)

where TP is the number of True Positives, TN the number of True Neg-
atives, FP the number of False Positives and FN the number of False Neg-
atives. Unless otherwise stated, MCC is calculated from the selection made
using both SPE and leverage values.

To simplify the interpretation of results, for each simulated dataset, only
two factors (e.g. time and experimental group) have been considered: the
time factor consisted of three time points and the number of experimental
groups was also three. Four replicates have been generated for each experi-
mental group at each time point. The description of the simulation algorithm
can be found in the Supplementary Material. Two different simulation exper-
iments were conducted. The first experiment was used to compare different
options in each selection method and determine a good range for parameter
values. Next, a global comparison of the best methods combinations was
carried out on the second simulation experiment to obtain a more precise
benchmarking of the selection approaches.

Simulation experiment 1. The biological scenarios to be simulated for
this first experiment were defined by the values of the following parameters:

• Number of genes in the dataset (N): 3000, 15000 or 30000.

• Percentage of differentially expressed genes (responsive or signal genes)
with regard to the total number of genes (%deg): 1%, 5% or 15%.
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• Number of gene classes (class): 5, 10 or 25. Genes in the same class
have the same expression time pattern under the same experimental
group.

• Level of noise in the data (noise): 10% or 30%.

These parameters define 54 different biological scenarios and 10 datasets
were generated for each one of them.

As already mentioned in Section 2.1, variable selection strategies imple-
mented in ASCA-genes were Box’s method for SPE and resampling tech-
niques for leverage. However, these approaches were not efficient in sepa-
rating “interesting” from “uninteresting” genes in large datasets scenarios
(unpublished results). So in this work, a complete study was designed to
determine under which biological scenarios these selection strategies failed
and to compare the three different resampling options to calculate leverage
threshold (see Table 1) at significance levels 0.01 and 0.05. The Box’s method
was maintained to compute SPE threshold, as in the ASCA-genes paper.

Hence, the ASCA model was obtained for each of the 540 simulated
datasets and these variable selection strategies were applied. The Matthews
Correlation Coefficient (MCC) was obtained in each case and the results
were analyzed by means of an ANOVA model with repeated measures [29]
to evaluate the effect of the biological factors indicated above, the resam-
pling strategy (“leverage method”) and the significance level (α) on MCC
values. An ANOVA with repeated measures was used because the variable
selection methods were applied to SPE and leverage values obtained from the
same simulated datasets, so the measurements were not independent in this
sense. The ANOVA results indicated that factors with a significant effect
on MCC (p-value<0.002) were: leverage method, significance level, number
of signal gene classes (class) and percentage of signal genes (%deg). The
noise level and the number of genes had no statistically significant influence
on MCC (p-value>0.6). Post-hoc tests showed that the best MCC results
(p-value<0.001) were obtained for leverage method 3, i.e. permuting genes
and computing threshold as a global percentile; α=0.01; low number of sig-
nal genes classes and medium signal genes percentage (5%). Further details
on this analysis may be found in Supplementary Material. We also observed
that for α=0.01, the real False Positive Rate (FPR) obtained with any of the
resampling methods was similar to the significance level, but when setting α
to 0.05, FPR reached 80% in some cases. Classification failures were mainly
due to the strategy used to calculate SPE threshold (Box’s method).
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In the second study on these simulated datasets, Box’s method was com-
pared to the other SPE parametric methods: Jackson & Mudholkar’s and
Gamma. In this case, twelve different significance levels were evaluated,
varying from 0.001 to 0.1. No leverage thresholds were calculated, so gene
selection was based only on SPE values. Consequently, MCC results can be
used to compare SPE methods, but not as a measure of the global perfor-
mance of the methods. It can be observed in Fig. 1 that when significance
level is around 0.03, all the three methods present a similar performance.
For the rest of significance levels, Box’s method produces much worse results
than the other two, which behave similarly.
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significance level

m
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n 
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C
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SPE methods

Box
J&M
Gamma

Figure 1: SPE selection methods performance (measured by MCC) according to signifi-
cance level.

An ANOVA model with repeated measures showed that SPE method,
significance level and all the biological factors had a statistically significant
effect on MCC (p-value<0.001), except the number of genes (p-value>0.7).
From post-hoc tests, it was deduced that SPE methods were significantly
different (p-value<0.008), being Jackson & Mudholkar and Gamma the ones
presenting better results. For significance levels between 1% and 3% the
best MCC results were obtained (p-value<0.001). No statistically significant
differences were observed between 5 or 10 signal genes classes (p-value>0.3),
but significantly better results were obtained when number of classes was 25
(p-value<0.001), maybe because when so many different patterns are present
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Figure 2: FPR according to significance level for each one of the SPE methods studied.

in the data, there are more genes badly explained by the model and hence
those genes have a high SPE value. The best MCC results were obtained
when responsive genes percentage was 5%, followed by 15% and lastly 1%
(p-value<0.001). Finally, MCC was higher when noise level was 30% (p-
value<0.001).

Joining the results of this study, we determined the most convenient sig-
nificance levels for each method to obtain the best MCC value whichever
the signal genes percentage and the number of signal gene classes were. The
recommendations were α=0.03 for Box’s method, 0.005<α <0.02 for Jackson
& Mudholkar’s method and α=0.01 for Gamma approximation (see Fig. 1).

Again, the significance level was compared to the False Positive Rate
(FPR) obtained for each method. Fig. 2 presents these results and shows that
in Gamma and Jackson & Mudholkar’s methods this relation was preserved,
while this did not happen for Box’s method.

Once the methods estimating the null distribution were compared, we
included minAS method in the study (always taking the first local minimum
after the highest peak as the threshold for both SPE and leverage). To see if
minAS selection was satisfactory enough to continue studying the method in
depth, it was compared to the combinations of methods evaluated in the first
study (Box’s method for SPE and resampling techniques for leverage). In this
preliminary comparison, default options in R “density” function (Gaussian
kernel and “nrd0” method to compute bandwidth) were used. As it can be
seen in Fig. 3, MCC obtained from minAS was, in general, higher than MCC
obtained with the other methods.

In addition, using the same simulated datasets, the default options in
minAS (Gaussian kernel and “nrd0” bandwidth computing method) were
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Figure 3: MCC obtained by applying the three resampling methods in Table 1 for α=0.01
and α=0.05 and minAS method.

compared to the best estimators according to minAS options “max” and
“mean” (see 2.2). Fig. 4 shows that minAS resulted in better MCC scores
when using the default KDE than with the KDE producing the minimum
maximum or minimum mean distance to the empirical data distribution. The
reason is that the other kernels or methods to compute bandwidth tended
to generate infra-smoothed curves with too many local minima. In these
cases, the selection by the first local minimum increased the number of false
positives. Therefore, default “density” options were used when applying the
minAS procedure hereinafter.

The influence of biological parameters defining the scenarios on MCC
results for minAS method was also analyzed using an ANOVA model. All
the parameters had a statistically significant effect on MCC (p-value<0.01),
especially the number of genes, the number of classes and the signal genes
percentage, as well as the interactions between them. It was observed that
the greater the number of classes and the percentage of signal genes, the
better MCC results minAS produced, no matter the number of genes. As
number of genes and signal percentage increased, MCC was less dependent
on the number of classes. Boxplots describing these results can be seen in
Supplementary Material. Hence, as general guidelines, we recommend us-
ing minAS for datasets with a high number of variables because otherwise
the goodness of fit of KDE is not guaranteed and the multimodality is more
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dependent on the value of the smoothing parameter. The method can be ap-
plied to datasets with a thousand variables approximately, but results show
that the best performance is obtained for more than 15000 variables. A
Gaussian kernel and the method “nrd0” to compute bandwidth have been
proved to offer the best minAS performance. Furthermore, increasing the pa-
rameter “adjust” to get a more smoothed KDE produces even better results
(see Supplementary Material), although this parameter was not changed in
any of the simulation experiments we performed.

Simulation experiment 2. To conclude the evaluation of variable selec-
tion methods on simulated data, a new simulation experiment was designed
in order to compare simultaneously all of the previously described methods
for computing SPE and leverage thresholds. In this last comparison, other
biological scenarios were simulated taking into account the results obtained
in the previous studies. The level of noise was not included as a parameter
in these simulations because it had, in general, very little influence on MCC
results, so it was set to 20%. The values for the rest of biological parameters
were:
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Table 2: Selection methods combinations included in global comparison.

Combination SPE method Leverage method
1 Box - α=0.03 Permut2b - α=0.01
2 Box - α=0.03 minAS
3 Box - α=0.03 Gamma - α=0.01
4 J&M - α=0.01 Permut2b - α=0.01
5 J&M - α=0.01 minAS
6 J&M - α=0.01 Gamma - α=0.01
7 Gamma - α=0.01 Permut2b - α=0.01
8 Gamma - α=0.01 minAS
9 Gamma - α=0.01 Gamma - α=0.01
10 minAS Permut2b - α=0.01
11 minAS minAS
12 minAS Gamma - α=0.01
13 Permut2b - α=0.01 Permut2b - α=0.01
14 Permut2b - α=0.01 minAS
15 Permut2b - α=0.01 Gamma - α=0.01

• Number of genes in the dataset: 5000 or 20000.

• Percentage of responsive genes: 3% or 10%.

• Number of gene classes: 5 or 25.

For each one of the 8 possible scenarios, again 10 datasets were gener-
ated. SPE selection methodologies to be compared in this analysis were Box’s
method, Jackson & Mudholkar’s (J&M), Gamma, minAS and resampling us-
ing permutation strategy 2 (genes permutation) and option (b) to compute
threshold by global percentile (Permut2b). Regarding to leverage, we com-
pared resampling method (Permut2b), Gamma approximation and minAS
method. The resulting combinations of all these methods are shown in Ta-
ble 2. The significance level that produced the best results in the previous
studies was chosen.

Fig. 5 shows 95% confidence intervals for mean MCC produced by each
one of the methods. It can be deduced from this plot the overall good per-
formance of the methods, since all of them got a mean MCC higher than 0.9.
However, the ANOVA model with repeated measures showed a statistical
significant difference among them (p-value<0.001). The worst results were
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obtained for those combinations in which resampling techniques were used
to compute SPE threshold. Box’s method for SPE is not recommended for
its high standard deviation. The Gamma approximation for leverage worked
excellently. Considering both MCC mean and standard deviation, the best
combinations were number 6 (J&M+Gamma), number 8 (Gamma+minAS)
and number 9 (Gamma+Gamma). The ANOVA model also showed that
the number of genes and the number of signal genes classes had no signifi-
cant effect on mean MCC value (p-value=0.137 and p-value=0.353, respec-
tively). However, signal genes percentage significantly affected MCC value
(p-value<0.001), as well as the interaction between signal genes percentage
and method combination (p-value<0.02). In general, the higher signal genes
percentage, the higher mean MCC. Combination 9 (Gamma+Gamma) did
not result in big differences in mean MCC for the different percentages of
signal genes. However, some combinations including minAS, for example
numbers 10, 11 and 12, worked much better when the percentage of signal
genes was higher. Additionally, interaction plots illustrating the methods
combinations performance can be found in the Supplementary Material.

In all the simulation studies, the bandwidth was computed following the
Silverman’s rule (“nrd0” option). To check what happened if bandwidth
was modified with the “adjust” coefficient, minAS was applied to the 80
simulated datasets in simulation experiment 2, using the default options in
“density” and varying the coefficient “adjust” from 0.5 (i.e., half the band-
width obtained by “nrd0” method) to 5 (i.e., 5 times the bandwidth obtained
by “nrd0” method), as it is described in Supplementary Material. Interest-
ingly, minAS performance improves for “adjust” values higher than one, that
is, when the estimated density curve is more smoothed (see Supplementary
Material).

To summarize, minAS and Gamma approximation (with α=0.01) be-
haved slightly better than the rest of the studied methods. Furthermore,
Gamma method presented less differences in MCC value for different signal
genes percentages, while minAS had a better performance when this percent-
age was higher.

3.2. Experimental data: Hypoxia

Once the benchmarking with simulated data was completed, the meth-
ods producing the best results were applied on an experimental dataset and
evaluated for their ability to select genes that led to outstanding biological
information. The Hypoxia gene expression data in [30] was used for this
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Figure 5: 95% confidence intervals for mean MCC according to methods combination.
Horizontal dashed-line corresponds to overall average MCC.

biological validation. This dataset collects the transcriptomic profile of hu-
man embryonic stem cells cultured under different oxygen concentrations.
The oxygen conditions were: normoxia (21% of oxygen) and hypoxia (5%
or 1% of oxygen). Gene expression for 30826 genes was measured in several
time points using Agilent microarrays. An ASCA model was fit to the data.
Factor a is the time (0 hours, 12 hours, 24 hours, 5 days and 10 days) and
factor b was used for the oxygen level (21%, 5% and 1%). Oxygen level and
interaction effects were joined together in the model (as in Equation 2). Two
principal components were selected in each submodel (a and b+ab), which
explained 83.2% of the variability in submodel a and 71.9% in submodel
b+ab. Model analysis showed different gene behaviors for each oxygen level,
differentiating clearly normoxia from hypoxia conditions, and time points 12-
24 hours from 5-10 days (results not shown). In order to compute SPE and
leverage thresholds, several combinations of selection methods showing the
best performance in the previous simulation studies were used: Jackson &
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Table 3: Number of genes selected by the studied combinations of methods in hypoxia
dataset.

Combination SPE
method

Leverage
method

Sub-model a Sub-model b+ab Total

5 J&M minAS 1347 1827 2668

6 J&M Gamma 1182 1919 2618

8 Gamma minAS 1287 1076 2034

9 Gamma Gamma 1122 1176 1976

11 minAS minAS 1862 1309 2705

12 minAS Gamma 1706 1405 2649

Mudholkar’s SPE method (α=0.01), Gamma approximation (α=0.01) and
minAS method. Table 3 shows the number of genes selected by each one of
these combinations and Fig. 6 shows the histograms and distributions fit-
ted for SPE and leverage values in each submodel, as well as the thresholds
obtained by the selection methods.

To evaluate the validity of the different variable selection methods, se-
lected genes lists were investigated to see whether the biological information
they contained was relevant for the study. Hence, for each one of the selected
genes sets, we carried out a functional enrichment (FE) analysis by means of
FatiGO tool, included in Babelomics suite [31], using Gene Ontology (GO)
gene function annotation to compare selected versus non-selected genes. FE
is a established methodology to interpret and evaluate transcriptomic data,
that assesses whether specific cellular functions (in this case, GO terms) are
overrepresented within the set of significant genes . Significant enriched GO
terms for the selected genes sets were visualized with the Blast2GO soft-
ware [32], that allowed to color them depending on the number of selection
methods by which they had been detected. This kind of graph enabled us
to evaluate which of the selected genes sets contributed more to the biolog-
ical interpretation of the experimental results (see graphs in Supplementary
Material).

In general, all tested methodologies generated gene selections enriched in
a number of GO terms that represent key general processes of the hypoxia
treatment. These were, among others, “developmental process”, “metabolic
process”, “response to stimulus”, “transcription factor activity”, “chemokine
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computed from these distributions. The X-axis have been zoomed for better visualization
and therefore they do not show the full range of SPE and leverage values.
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receptor binding”, “lipid transport activity”, “immune system process”, “in-
trinsic to plasma membrane”, “organ morphogenesis”, “angiogenesis”, “re-
sponse to wounding” and “humoral immune response”. “Organ morphogen-
esis” and “angiogenesis” refer to the establishment of the circulatory system
in mammals, one of the first events during the embryo development [33, 34];
while the metabolism of lipids has also been postulated to play an important
role in the embryo differentiation [35]. Also “ectoderm development” and
“epidermis development” were functions identified by most of the methods,
and are directly related to the differentiation process analyzed in this ex-
periment. Additionally, some specific processes were only revealed by some
of the selection methods. For example, combinations 5 and 6 (both using
J&M method for SPE selection) highlighted the “central nervous system
development” (associated to normoxia) and “sensory organ development”
or “chemokine receptor binding” (both related to hypoxia). Combinations
11 and 12 (SPE selection by minAS) discovered metabolic processes such
as “hormone metabolic process”, “hexose metabolic process” and “glucose
metabolic process”. Combinations 9 and 12 (leverage selection by Gamma)
found “extracellular matrix part” GO term, which plays a fundamental role in
regulating remodeling processes in embryo development and is also involved
in repair processes, inflammation and tumor invasion [36].

In summary, most of the biological information is shared by all the com-
pared methods combinations, but not all of them contribute equally to im-
prove our biological knowledge about the gene products dynamics in this
context. Each one of the combinations leads to the extraction of some par-
ticular biological functions than the rest of the methods cannot detect or, at
least, not in such degree of specificity.

4. Conclusion

In this work, we have presented and compared several strategies to se-
lect the most relevant genes in multivariate models applied to the analysis of
complex genomic data. The starting point of this contribution is the adop-
tion of a multivariate dimension reduction strategy, commonly used in data
exploration for the identification of important genes. In comparison to uni-
variate methods that carry out gene-wise analysis, the multivariate approach
exploits the coordinated nature of gene expression and avoids the application
of multiple testing corrections that seriously diminishes statistical power in
genomic research. In these scenarios, two additional factors are also impor-
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tant. Firstly, the high-dimensionality of the feature space, that results in
data structures where the number of variables can be two or three orders of
magnitude the number of observations. And second, the low signal to noise
ratio of the measurements. This implies that traditional multivariate feature
selection methods are generally not applicable. The basic contribution in
this paper is that the variable selection choices we propose always involve
studying the distribution of the statistics used to measure the importance of
the variables. Hence, the threshold for these statistics is set according to the
shape of the distribution rather than selecting a fixed percentage of the total
number of variables, which is a common and rather arbitrary practice in this
kind of analysis. Our main concern in this study was to identify method-
ologies that will generally work well in different scenarios of dataset size,
diversity of gene expression signals and levels of noise, since these are nor-
mally given features not fixed by the experimentalist. We have also tried to
gather selection methods with an easy implementation and comprehension,
as we understand that variable selection is only a small part of a genomic
study and researchers may need quick but consistent solutions. In this work,
some methods were taken from the literature (Box, Jackson & Mudholkar) or
adapted to be used in this context (resampling), while others are novel pro-
posals (minAS, Gamma approximation). These variable selection methods
were first compared on simulated datasets to evaluate which ones presented
the best performance and to quantify the influence of some biological data
features on the goodness of the selection. In general, Gamma and minAS
methods showed the best behavior for both SPE and leverage thresholds
computation, as well as Jackson & Mudholkar’s method for SPE. It was also
seen that the higher the percentage of signal genes or the number of genes
are, the better minAS performance is, while Gamma approximation is not
significantly affected by these biological parameters, being therefore a more
robust methodology. However, modifying minAS default options (such as in-
creasing the smoothing parameter) proved to improve the performance of this
method. The application of these three approaches on a real experimental
dataset verified their usefulness to select relevant genes. In all cases, rele-
vant biological conclusions could be obtained on the gene selection provided
by the different methods, although specific biological functions were differ-
entially uncovered by each approach. Interestingly, the major differences
in gene selection and functional enrichment were the result of the method
choice for the SPE statistic, while leverage seemed to be more robust for the
statistical model applied. This result is interesting as the SPE measures the
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deviation of each gene from the general multivariate model. Differentially
expressed genes that follow a minority expression pattern tend to have high
SPE values [9]. Our results indicate that selection on this part of the signal
is also biologically relevant.

It should be outlined that the conclusions of this work are based on the
simulation studies performed and might not be valid outside the biological
scenarios analyzed. However, since the simulation algorithm was carefully
designed to mimic real datasets and a vast variety of scenarios was considered
(comprising more than 600 datasets), we believe that the results are generally
valid for most multifactorial gene expression experiments.

Finally, we have focused on multifactorial designs because the variable
selection issue has not been sufficiently developed for these complex experi-
mental setups. The ASCA-genes framework was chosen to model these data,
since it is considered a suitable methodology for the analysis of genomic
datasets with such experimental designs. However, as the proposed vari-
able selection methods are based on modeling the distribution of multivari-
ate statistics, they are generally applicable to different dimension reduction
techniques and kind of data by changing the statistic measuring the impor-
tance of the variables in the model. In fact, we have successfully applied our
methods in other contexts, as for example in [37], where minAS was used
for selecting variables from genomic and metabolomic data in Tucker3 and
N-PLS models.

The minAS and Gamma variable selection methods applied to ASCA-
genes analysis have been implemented in the web suite for Serial Expression
Analysis, SEA (http://sea.bioinfo.cipf.es/) [18], and is freely available to the
scientific community.
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R. Moreno, J. Dopazo, D. J. Burks, M. Stojkovic, Hypoxia promotes
efficient differentiation of human embryonic stem cells to functional en-
dothelium, Stem Cells.

[31] F. Al-Shahrour, P. Minguez, J. Tarraga, D. Montaner, E. Alloza, J. M.
Vaquerizas, L. Conde, C. Blaschke, J. Vera, J. Dopazo, BABELOMICS:
a systems biology perspective in the functional annotation of genome-
scale experiments, Nucl. Acids Res. 34 (suppl 2) (2006) W472–476.

28



[32] A. Conesa, S. Gotz, J. M. Garcia-Gomez, J. Terol, M. Talon, M. Robles,
Blast2GO: a universal tool for annotation, visualization and analysis in
functional genomics research, Bioinformatics 21 (18) (2005) 3674–3676.

[33] P. Carmeliet, Angiogenesis in life, disease and medicine, Nature 438
(2005) 932–936.

[34] J. C. Kovacic, J. Moore, A. Herbert, D. Ma, M. Boehm, R. M. Graham,
Endothelial progenitor cells, angioblasts, and angiogenesisold terms re-
considered from a current perspective, Trends Cardiovasc. Med. 18 (2)
(2008) 45–51.

[35] Y. A. Hannun, L. M. Obeid, Principles of bioactive lipid signalling:
lessons from sphingolipids, Nature Reviews Molecular Cell Biology 9
(2008) 139–150.

[36] S. C. Huang, B. C. Sheu, W. C. Chang, C. Y. Cheng, P. H. Wang, S. Lin,
Extracellular matrix proteases - cytokine regulation role in cancer and
pregnancy., Front Biosci. 14 (2009) 1571–1588.

[37] A. Conesa, J. Prats-Montalbán, S. Tarazona, M. Nueda, A. Ferrer,
A multiway approach to data integration in systems biology based on
Tucker3 and N-PLS, Chemometrics and Intelligent Laboratory Systems
104 (1) (2010) 101–111.

29


