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Abstract  

We evaluate the seedling resistance to charcoal rot caused by Macrophomina phaseolina in ninety-seven 

Cucumis melo accessions, from different geographical origins and five F1 generations, derived from crosses 

of five accessions selected for their resistance. Artificial inoculations with the toothpick method, previously 

reported to be useful for predicting shoot resistance, were performed, and plants were scored using a scale 

of disease severity. The average disease severity was calculated for each accession and was used to cluster 

the accession in five reaction classes. The screening revealed that sources of natural resistance to this fungus 

are limited. However, seedlings of seven accessions of different botanic groups displayed a resistant 

response to the stem inoculation, one cantaloup from Israel, one conomon accession from Korea, two wild 

agrestis and one acidulus from Africa, and two dudaim accessions from Middle East. The response of the 

F1 progenies varied from susceptibility to high resistance, the latter in progenies from the two agrestis wild 

types. These results suggest differences in the genetic basis of the resistance in the different selected 

sources. The resistant accessions are suggested to be screened under field conditions to confirm the level 

of resistance at adult plant stage and under stressful conditions.  

 

 Keywords melon; charcoal rot; soilborne fungus; germplasm; resistance. 

 

Introduction 

 Melon (Cucumis melo L.) is an important cucurbit of growing importance in international markets. 

Nearly 31 million tons of melons were produced worldwide in 2012 being China, Turkey and Iran the major 

producers (Food and Agriculture Organization 2014). 

 Due to continuous cropping, soilborne pathogens are an increasing problem, resulting in reduced 

yields and fruit quality. Among them, Macrophomina phaseolina (Tassi) Goidanich is one of the most 

serious and potentially damaging fungus worldwide. It is a destructive pathogen that causes charcoal rot 

(Salari et al. 2012). It has a broad host range and is capable of attacking and infecting more than 500 

cultivated and wild plant species throughout the world (Khan 2007; Radwan et al. 2014). The fungus has 

been reported worldwide, but it is economically more important in subtropical and tropical countries with 
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a semi-arid climate (Wrather et al. 2001; Purkayastha et al. 2006).This pathogen has often been detected 

causing outbreaks in warm and hot areas under dry weather conditions.  

In Brazil, this pathogen is consistently isolated from roots and stems of melons (Andrade et al. 

2005; Dantas et al. 2013) and associated weeds (Sales Jr et al. 2012).  In the last few years M. phaseolina 

has been also one of the main fungus isolated from roots of collapsed watermelon and melon plants in 

several regions of America, Europe and Asia, such as Texas and California (Bruton et al. 1987; Aegerter et 

al. 2000), Honduras and Chile (Bruton and Miller 1997; Jacob et al. 2013), Spain (García-Jiménez et al. 

1993), Israel (Cohen et al. 2012) and Iran (Salari et al. 2012), being the leading cause of the drastic reduction 

in cucurbits cultivation in some of these countries (Krikun et al. 1982). 

 Macrophomina phaseolina is seed-borne and seed-to-seedling transmission has been documented 

(Kaur et al. 2012). Generally this pathogen can cause a range of symptoms, such as seedling blight, pre and 

post-emergence damping-off, bleaching of stems, gum exuding from stems as the bleached areas turn drier, 

stem and root rot, leaf blight and death near the crown of the plant and wilting of the plant. In fields, the 

pathogen commonly infects melon stems soon after planting, but the extended lesions that result in the 

wilting of the plant occur late in the growing season and are especially severe under high temperature and 

drought conditions (Watson and Napier 2009). M. phaseolina is considered to be difficult to control due to 

its heterogeneous host specificity and to the specialized resistance structures that can survive for more than 

10 months under dry soil conditions. The severity of the disease is directly related to the population of 

viable sclerotia in the soil (Khan 2007).  

 The chemical control of M. phaseolina in intensive horticultural systems, similarly to other 

soilborne pathogens, was based for years on the use of methyl bromide (Noling and Becker, 1994). The 

restriction on the use of this fumigant increased the risks for soilborne pathogen outbreaks and has resulted 

in efforts to develop chemical and non-chemical environmentally user-friendly alternative control methods 

(Stapleton 2000; Ambrósio et al. 2009; Cohen et al. 2012; Dantas et al. 2013; Chamorro et al. 2015). One 

of the most feasible measures of control is the use of resistant varieties, which has the advantage of being 

safe for the environment, easy to adopt when resistance is available, and that can be used complementarily 

to other methods of control. In this sense, the screening of germplasm collections for resistance to this 

fungus is necessary to identify useful sources to control this disease. 

 C. melo is a highly diverse species, originally thought to originate in Africa. However, recent data 

suggests that melon may be of Asian origin (Sebastian et al. 2010). Several recent papers dealing with the 

variability of the species confirm the previously proposed taxonomic subdivision into two subspecies, subsp 

melo and subsp agrestis (Pitrat 2008; Esteras et al. 2013). The huge intra-specific variability reported in 

melons has not yet been exploited for resistance to M. phaseolina.  

 Few reports describe the screening of cucurbit germplasm against this pathogen. Salari et al. (2012) 

reported the seedling screening of Iranian melon landraces against M. phaseolina and other soilborne 

pathogens (Monosporascus. cannonballus Pollack & Uecker and Rhizoctonia. solani J.G. Kühn) under 

greenhouse conditions. None of the tested melon cultivars was immune to all the soilborne pathogenic 

fungi. However, two of the landraces were moderately resistant to the three fungi, both showed low levels 

of stem damage after infection with M. phaseolina. These melon cultivars are promising sources of 

resistance to M. phaseolina, but it is necessary to find higher levels of resistance. Another recent study has 
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focused on the screening of watermelon germplasm (Cohen et al. 2014) using soil naturally infested with 

M. phaseolina from northeastern Israel, and has resulted in the selection of four accessions with promising 

resistance.  

 In this context, the current study was conducted to screen for resistance to Macrophomina 

phaseolina a collection of C. melo of diverse origins, representing the species diversity. We analyzed the 

seedling responses of melon germplasm to different isolates of the pathogen from Brazil, where this fungus 

is now one of the main problems of melon, and Spain, where this pathogen is still a potential problem. 

Several sources of both subspecies, melo and agrestis, with quite high levels of seedling resistance that can 

be used to develop resistant cultivars, were selected.  

 

Materials and methods 

 

Melon germplasm 

 

 Two screening assays were performed, in 2013 and 2014. A total of 97 melon accessions (Table 

1) from different geographical origins and representing the different botanical groups of the species were 

tested for seedling resistance to M. phaseolina. The first assay was performed in 2013 in Brazil, including 

33 accessions from the genebank collection of the Department of Plant Sciences of the Universidade 

Federal Rural do Semi-Árido (UFERSA, Brazil). These Brazilian accessions have been morphological and 

molecularly characterized recently (Dantas et al. 2014) being tentatively classified in the momordica and 

conomon (subspecies agrestis), and in the chate, ameri and cantalupensis (subspecies melo) botanical 

groups within C. melo. This collection was screened along with 12 additional accessions (`Amaral`, `Edisto 

47`, `Gulf Coast`, `HBJ`, `Olimpic`, `PMR 5`, `PMR 6`, `Védrantais`, `WMR-29`, `PMR 45`, `MR-1` and 

`PI 414723`), mostly reference commercial cultivars and breeding lines of the cantalupensis, reticulatus, 

inodorus and momordica groups.  

  The second assay was performed in Spain, screening part of the core collection of melon 

maintained by the Cucurbits Breeding group of the Institute for the Conservation and Breeding of 

Agricultural Biodiversity (COMAV) of the Universitat Politècnica de València (UPV, Spain). Fifty-two 

accessions of the COMAV´s core collection were selected, representing most of the botanical groups of the 

species, but trying to include a high number of variable accessions from Northern Africa, Eastern Europe, 

Western and Central Asia and India. In the Spanish assay we included 6 control accessions selected from 

those tested in Brazil (AC-13, AC-16, AC-24, AC-25, AC-26 and PI414723) (Table 1). 

In the experiment performed in 2014 in Spain five F1 generations, derived from crosses of 5 

accessions, selected for their resistance, with susceptible cultivars, were assayed (Table 2).  

Isolates of Macrophomina phaseolina 

 

Three Brazilian isolates of M. phaseolina were used. These isolates were obtained from roots of 

melon plants with symptoms of charcoal root rot caused by M. phaseolina collected from two different 

commercial fields in Rio Grande do Norte (Me 248), Ceará (Me 250), and one experimental field of 

UFERSA (Me 249). The three isolates (Me 248, Me 249 e Me 250) were deposited in the culture collection 
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of plant pathogenic fungi of UFERSA, Brazil and COMAV, Spain. They were selected for this work on the 

basis of a preliminary assessment of pathogenicity. One isolate from Spain (isolated from infected soybean 

roots), was also tested. 

 

Inoculation conditions  

 

The experiment performed in 2013 in Brazil was conducted from May to August, under 

greenhouse conditions. The average air temperature was 33.6 °C and average humidity 39.8 %. The forty-

five melon accessions (Table 1) were inoculated with the three Brazilian isolates (Me 248, Me 249 and Me 

250) of M. phaseolina. A total of fifteen plants per accession (five per each fungal isolate) were tested. 

The experiment performed in 2014 in Spain was conducted from May to October under greenhouse 

conditions. The average air temperature was 28 °C and average humidity 65%. The fifty-eight melon 

accessions and the five derived F1 generations (Tables 1 and 2) were inoculated with the most aggressive 

Brazilian isolate of M. phaseolina (Me 248). Fifteen plants per accession were used. All the genotypes with 

moderately or highly resistant response in the first inoculation round were tested in two additional 

independent inoculations, using the same conditions and fifteen plants per accession. 

One genotype selected for its highly resistant response against Me 248 in Spain and a highly 

susceptible control (Can-NyIsr and Flex-KhiIrak) were tested with the four isolates (Me 248, Me 249, Me 

250 and Soy Spain) using fifteen plants per genotype and isolate. 

Seeds of the tested melon accessions were germinated in commercial substrate previously 

autoclaved. The plants were manually irrigated daily to drainage with tap water and were not fertilized 

during the experiment. The inoculation technique used in both cases was a modification of the toothpick 

method used by Scandiani et al. (2011) with Fusarium spp. This method has proved to be useful for 

discriminating levels of aggressiveness among isolates of M. phaseolina and other fungal pathogens, and 

for detecting resistance rankings comparable with those obtained using infested soils (Keeling 1982; 

Bramel-Cox et al. 1988; Diourte et al. 1995; Mertely et al. 2005). To obtain inoculum using the toothpick 

method, 12 mm long toothpicks were placed, with the sharpened end up, in holes made in a 90 mm diameter 

filter paper. The toothpicks were then placed in a Petri dish and autoclaved for 30 min, for two days with 

an interval of 24 hours, at 121ºC. Twenty mL of melted PDA (potato-dextrose-agar) + streptomycin sulfate 

was added to each toothpick-containing Petri dish. Once solidified, the PDAS plates were inoculated with 

five mycelial plugs (6 mm in diameter) of one isolate of M. phaseolina and then were incubated at 28±2˚C 

in the dark for 8 days. Seedlings were inoculated 14 days after planting by inserting a toothpick tip 

overgrown with mycelia and microsclerotia of the corresponding isolate in each hypocotyl, 1 cm above the 

soil. Non infested and autoclaved toothpicks were used as negative controls. Seedlings were kept in the 

greenhouse for 30 days. All the experiments were performed with a completely randomized design. 

 

 

 

Symptoms scoring  
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 Thirty days after each inoculation, disease severity was assessed using a modified version of the 

scale described by Ravf and Ahmad (1998), where, 0=symptomless, 1=less than 3% of shoot tissues 

infected, 2=3 to 10% of shoot tissues infected, 3=11 to 25% of shoot tissues infected, 4=26 to 50% of shoot 

tissues infected and 5=more than 50% of shoot tissues infected.  

 The average disease severity was calculated for each cultivar and was used to classify the cultivars 

in five reaction classes: 0=immune (I); 0.1 to 1.0=highly resistant (HR); 1.1 to 2.0=moderately resistant 

(MR); 2.1 to 4.0=susceptible (SU) and 4.1 to 5.0=highly susceptible (HS) (Salari et al. 2012). 

                

INSERT TABLE 1 

 

INSERT TABLE 2 

 
Statistical analysis 

 

Data from the Brazilian and Spanish assays were analyzed using ANOVA separately for each 

isolate. The ANOVA was performed with the PROC GLM of SAS® (Sas Institute, 2000). We used the 

methodology described by Scott-Knott (1974) for grouping treatment averages. 

 

Results 

Screening of the Brazilian collection 

 The three Brazilian isolates of M. phaseolina induced typical symptoms of stem rot in all the 

assayed accessions, indicating that there was no immunity to this pathogen in this germplasm collection, 

when inoculated using the toothpick method (Table 3).  

The aggressiveness of the three fungal isolates was different. The isolate Me 248 appeared to be 

the most aggressive. No significant differences were found among accessions in the response to Me 248 

according to the method of Scott-Knott (1974) (F = 1.30; p> 0.05) (Table 3), being most of them highly 

susceptible (93.3%). However, we were able to distinguish different symptom levels among accessions in 

response to the inoculations with isolates Me-249 (F= 1.76; p< 0.05) and Me-250 (F= 1.71; p< 0.05).  

Some Brazilian landraces and reference cultivars were classified as highly resistant (AC-09 and 

´PMR 45´) or moderately resistant (AC-13, AC-16, AC-27, AC-31, ´Gulf Coast´, ´HBJ´ and ´Olimpic) to 

Me249. Also some others were highly resistant (AC-26) or moderately resistant (AC-12, AC-24, AC-25 

and ´MR-1`) to Me 250. Despite some accessions showed certain levels of resistance to the toothpick 

inoculation with one isolate of M. phaseolina, no one was resistant to the three isolates and all were 

susceptible to the most aggressive Brazilian isolate Me 248. 

Some of the accessions that were susceptible to Me 248, but displayed different levels of resistance 

to the other two isolates (AC-13, AC-16, AC-24, AC-25, AC-26 and PI 414723) were selected to be tested 

in the Spanish trial. 
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INSERT TABLE 3 

Screening of a melon core collection   

We selected the most aggressive Brazilian isolate, Me-248, to screen the core collection of melons 

conserved at COMAV-UPV in Spain. In this assay, seven accessions selected in the Brazilian trial were 

included as controls (AC-13, AC-16, AC-24, AC-25, AC-26 and PI 414723). In general, these accessions 

displayed symptoms that were less severe in the Spanish than in the Brazilian trial (Table 4). The lower 

average temperature in the Spanish trial (28 versus 33.6ºC) might explain these results as the virulence of 

M. phaseolina is influenced by the temperature regime (Fang et al. 2011). Even so, all these control 

accessions ranged from susceptible to highly susceptible to M-248 (Table 4), confirming the aggressiveness 

of the isolate and the accuracy of the screening procedure in both assays.  

Similarly to the Brazilian assay, no immunity was found to the toothpick inoculation and all melon 

accessions developed different levels of stem rot during the course of the experiment. However, in this 

assay we found statistical differences in symptoms severity among the accessions (F=16.28; p< 0.01), that 

were allocated into four groups by the method of Scott-Knott (1974) (Tables 4 and 5). Most accessions 

were highly susceptible (24.1%) or susceptible (55.2%), but  some groups  were classified as moderately 

resistant (8.6%), and seven accessions (12.1%) were highly resistant, one cantaloup and 6 exotic accessions 

from Africa, Asia and Eastern Europe (Can-NyIsr, Dud-CUM296Georg, Dud-QPMAfg, Ac-

TGR1551Zimb, Con-Pat81Ko, Ag-15591Ghana and AgC38Nig). The resistance of these accessions was 

confirmed in two additional inoculation rounds (Table 5). 

  

INSERT TABLE 4 

INSERT TABLE 5 

 

We selected the resistant cantaloup Ca-NyIrs to test its response to all the M. phaseolina isolates 

(Me 248, Me 249, Me 250 and Soy Spain) (Fig. 1), using Flex-KhiIraq as susceptible control. Can-NyIsr 

accession was highly resistant to all isolates tested, with an average symptom severity below 1 in all cases. 

The Flex-KhiIrak accession was highly susceptible to all Brazilian isolates (average scores of 5), Me 248, 

Me 249 and Me 250. However, the Spanish isolate from soybean was the least aggressive one, also in this 

highly susceptible genotype.  

INSERT FIGURE 1 

 We also selected the most resistant accessions to cross them with susceptible genotypes. Four F1 

generations derived from the crosses of Dud-QPMAfg, Con-Pat81Ko, Ag-15591Ghana, and Ag-C38Nig 

with the susceptible In-PsPiñSp were evaluated along with their parents against the Me 248 isolate. The 

two F1 derived from the African agrestis accessions were highly resistant (with average severity of 

symptoms below 1) and no significant differences were observed between the response of the F1 generation 

and the corresponding highly resistant parental (Fig. 2). However, the F1 progenies of the conomon and 

dudaim accessions were moderately resistant (with average severity of symptoms between 1 and 2), being 

the resistance of these F1 intermediate between the corresponding susceptible and highly resistant parentals. 
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We also tested the F1 progeny from Can-NyIsr x Flex-KhiIrah. In this case the F1 generation was as 

susceptible as the highly susceptible parent, with symptom scores between 4 and 5 (Fig. 3). 

 

INSERT FIGURE 2 

INSERT FIGURE 3 

 

 

Discussion  

 

Macrophomina phaseolina, the causal agent of charcoal rot, is one of the most serious and 

potentially damaging fungus worldwide. After the phase out of methyl bromide, its control has become 

increasingly troublesome (Islam et al. 2012; Kaur et al. 2012; Chamorro et al. 2015). The identification of 

sources of resistance to this fungus can facilitate the management of this emerging disease in melons. 

Several methods have been described to evaluate M. phaseolina resistance in different crops, including 

growth chamber, greenhouse and field experiments in which seedlings and/or adult plants are scored. These 

studies report the occurrence of the resistance response at different plant developmental stages (Grezes-

Besset et al. 1996; Khan and Shuaib 2007; Salari et al. 2012; Twizeyimana et al. 2012).  

Although evaluations in naturally infested soils are employed to confirm the resistance of the 

selected material, the variability among fields with different soil characteristics, non-uniform inoculum 

distribution and microflora, and the variability across locations and seasons with different weather and 

management patterns, make these tests unappropriated for routine screening assays (Nischwitz et al. 2004; 

Roustaee et al. 2011; Kaur et al. 2012). Artificial inoculation methods that induce lesions similar to those 

produced under natural infections are used to avoid inconsistent results between field experiments. These 

facilitate the assessment of large germplasm collections in breeding programs in a rapid and uniform way 

(Sharmishtha et al. 2006; Twizeyimana et al. 2012).  

The toothpick method is one of the most usually employed artificial inoculation protocol to initiate 

uniform M. phaseolina infections (Mughogho and Pande 1984; Bramel-Cox et al. 1988; Diourte et al. 1995; 

Mertely et al. 2005; Shekhar et al. 2006). It has been frequently employed to perform an easy assessment 

of isolate aggressiveness (Shekhar et al. 2006). Phenotypic as well as genetic variation in the pathogen 

population, even from the same geographical region, has been documented, adding difficulties to the 

implementation of successful management strategies (Almeida et al. 2003; Purkayastha et al. 2006; Kaur 

et al. 2012; Mahmoudi and Ghashghaie 2013; Almeida et al. 2014). The use of highly aggressive isolates 

is recommended to optimize the results of screening assays (Mahmoudi and Ghashghaie 2013). In the 

current study, the use of the toothpick method allowed us the selection of the highly aggressive Brazilian 

isolate Me 248 to be used in further screenings. It was also useful to confirm the low virulence of the 

Spanish isolate form soybean. This is consistent with the fact that isolates of M. phaseolina tend to be more 

aggressive towards the host species from where they were isolated than towards other host species (Diourte 

et al. 1995). 
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The toothpick method does not completely reproduce the natural infection processes (Mughogho 

and Pande 1984). For example, this and other methods, where inoculum is introduced into the plant by 

causing tissue wounding, can break down some stem resistance barriers, such us structural barriers, and 

increase disease severity (Hutcheson 1998; Kaur et al. 2012). However, it has been used efficiently to screen 

for resistant sources by reducing field testing expenses and length of time for evaluations. Also some 

authors report good agreement between the seedling response to toothpick, and other similar stem 

inoculation methods, and the response of plants under natural conditions (Keeling 1982; Grezes-Besset et 

al. 1996; Twizeyimana et al. 2012). 

In fact, it was observed from the present study that stem inoculation with M. phaseolina at seedling 

stage caused high disease severity to a large number of accessions, but allowed us to select a subset of 

genotypes with different levels of resistant response. The results of our screening with the melon core 

collection revealed that seven accessions displayed high seedling resistance to the aggressive isolate of M. 

phaseolina Me 248. These accessions belong to different botanical groups of the melon species 

(cantalupensis, conomon, acidulus, wild agrestis and dudaim) providing resistance in different genetic 

backgrounds. These results add new sources to those reported by Salari et al. (2012), who, using one isolate 

of M. phaseolina from Iran and a seedling screening method with culture discs, reported that two Iranian 

landraces cultivars, namely `Sfidak khatdar´and `Sfidak bekhat` were moderately resistant to the disease.  

The Can-NyIsr accession was the only resistant accession belonging to the cantalupensis group 

(that includes many commercial market classes), being rated as highly resistant to all four isolates tested. 

This accession has been previously reported as relatively tolerant to Fusarium oxysporum f. sp. melonis 

(Burger et al. 2003) and resistant to powdery mildew (Sphaerotheca fuliginea Race 1) (Cohen 1993; Cohen 

et al. 1996).  Also, a relatively high level of resistance to the most aggressive isolate Me 248 was found in 

the Asiatic conomon and dudaim accessions, Con-Pat81Ko, Dud-CUM296Georg and Dud-QPMAfg, the 

former previously reported to be resistant to Monosporascus cannonballus and Acremonium 

cucurbitacearum (Iglesias et al. 2000; Dias et al. 2004). The lowest index of disease severity to Me 248 

was found in the African wild agrestis AgC38Nig and Ag-15591Ghana, the latter reported as source of 

resistance to gummy stem blight caused by fungus Didymella bryoniae (Wolukau et al. 2007).  

The different behavior of the F1 generations derived from these selected resistant sources suggests 

different mode of inheritance of the resistance. For example, resistance derived from Can-NyIsr seem to be 

recessive, as the F1 generation behave as the susceptible parental. In contrast, the highly resistant behavior 

of the F1 generations derived from the African agrestis sources suggest dominance of the resistance genes. 

Further studies with segregant populations are needed to determine the genetic control of each resistance. 

If the existence of different gene/allelles is confirmed in the different sources, their use could result in a 

more durable resistance.  

The toothpick method successfully distinguished differences in seedling response to the stem rot 

caused by M. phaseolina among melon genotypes. Considering the aggressiveness of the inoculation 

method, and the fact that seedlings, in general, offer less resistance to the attack of pathogens than adult 

plants (Bedendo 2011), this resistance could contribute to improve the response against this pathogen of 

adult plants in field conditions. In naturally infested fields, the plant wilting symptoms occur late in the 

growing season, usually within 1 to 2 weeks of harvest. However, it is known that the pathogen commonly 
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infects melon seedlings early after planting (Davis et al. 2009). Therefore, stem resistance to the fungal 

attack at seedling stage could delay and/or reduce the severity of field infections.  

However, the accessions found resistant here will need to be screened under field conditions to 

confirm the level of resistance at adult plant stage and to evaluate their response under stressful conditions 

that increase disease incidence, such as water stress, a heavy fruit load, high temperatures and /or saline 

conditions (Roustace et al. 2011). 
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Table 1 Origin and taxonomic classification of the melon accessions evaluated against Macrophomina 

phaseolina (Brazilian landraces (AC)ϯ, commercial cultivars, breeding and reference lines (in bold) and 

COMAV´s core collection)ϯϯ.    

 
Accession 

code/name 
Origin 

Botanical 

group 

Accession 

code/name 
Origin 

Botanical 

group 

Accessions 

code/name 
Origin 

Botanical 

group 

AC-06a Brazil cantalupensis `Amaral`a Holanda inodorus Am-GalaTun/Galaoui*b Tunisia ameri 

AC-27a Brazil cantalupensis `Edisto 47`a França cantalupensis Am-KhaIran/Khatoni*b Iran ameri 

AC-36a Brazil cantalupensis `Gulf Coast`a USA cantalupensis Am-SarakIran/Sarakhs*b Iran ameri 

AC-44a Brazil cantalupensis `HBJ`a USA cantalupensis 
Am-HasanTur2/Hasanbey 

PI169310b Turkey ameri 

AC-33a Brazil ameri ‘Olimpic’a Japan cantalupensis 
Am-HasanTur3/ 

Hasanbey PI176947b Turkey ameri 

AC-13ab Brazil chate `PMR 5`a USA cantalupensis Flex-Co20Ind/Snakemelonb India flexuosus 

AC-14a Brazil chate `PMR 6`a USA cantalupensis Flex-KhiIrak/Khiarb Irak flexuosus 

AC-01a Brazil momordica `Védrantais´a França cantalupensis 
Flex-

Co24Irak/Snakemelonb Irak flexuosus 

AC-02a Brazil momordica `WMR-29`a USA cantalupensis Flex-AcukTur/Acukb Turkey flexuosus 

AC-04a Brazil momordica `PMR 45`a USA reticulatus Flex-AryaInd/Aryab India flexuosus 

AC-09a Brazil momordica ‘MR-1’a Índia momordica 
Flex-

SnakeSA/Snakemelonb Saudi Arabia flexuosus 

AC-15a Brazil momordica ‘PI 414723’ab India momordica 
Dud-CUM296Georg/ 

CUM296b Georgia dudaim 

AC-16ab Brazil momordica 
In-PsPiñSp/Piñonetb 

Piel de sapo 
Spain inodorus 

Dud-QPMAfg/Queen´s 

pocket melon*b 
Afganistan dudaim 

AC-18a Brazil momordica In-AsliTun/Melon Aslíb Tunisia inodorus Chate-CarIta/Carosellob Italy chate 

AC-19a Brazil momordica In-MaazTun/Maazoonb Tunisia inodorus Mom-KhaInd/Kharbujab  

India 
momordica 

AC-22a Brazil momordica 
In-WTTur/Winter type PI 

169329b Turkey inodorus 
Mom-PI124Ind/ 

PI 124112b India momordica 

AC-23a Brazil momordica 
In-kirkTur/Kirkagac 

PI 169333b Turkey inodorus 
Mom-FPInd/Faizabadi 

Pont*b 
India momordica 

AC-25ab Brazil momordica 
In-CV1Tun/Melon 

Jauneb Tunisia inodorus Mom-MR1Ind/MR1b India momordica 

AC-26ab Brazil momordica 
In-HamiChi/Hami 

melonb China inodorus 

Ac-

TGR1551Zimb/TGR1551 

PI482420b 

Zimbabwe acidulus 

AC-28a Brazil momordica 
In-KirkTur2/ Kirkagac 

PI169322b Turkey inodorus 
Con-GMJa/Ginsen 

Makuwab Japan conomon 

AC-29a Brazil momordica Can-NYIsr/Noy Israelb Israel cantalupensis Con-Pat81Ko/Pat 81b Korea conomon 

AC-34a Brazil momordica 
Can-PSUSA/Persian 

Small Type*b 
USA cantalupensis 

Con-CUM188Jap/Omaru 

Gin Makuwab Japan conomon 

AC-39a Brazil momordica 
Can-PresFran/ Prescott 

Fond Blancb France cantalupensis Chi-VellInd/PI 164320b India chito 

AC-41a Brazil momordica 
Can-

VedFran/Vedrantaisb France cantalupensis 
Ag-15591Ghana/PI 

185111b Ghana wild agrestis 

AC-45a Brazil momordica 
Am-NanaGeorg/ 

Melon Nanatrib Georgia ameri Ag-C38Nig/Co38b Nigeria wild agrestis 

AC-11a Brazil conomom Am-6053Iran/ PI140632b Iran ameri Ag-WChInd/Wild chibbarb India wild agrestis 

AC-12a Brazil conomom Am-AfrMor/Afr-c-1b Morocco ameri La-SousIran/Souski*b Iran indet landrace 

AC-35a Brazil conomom Am-KorcaRus/Korcab Russia ameri 
La-AcurTur/Acur 

PI344343b Turkey indet landrace 

AC-42a Brazil conomom 
Am-ChandAfg/ 

Chandalack PI 276660b Afghanistan ameri 
La-PopEthi (11)/ 

PI 193495b Ethiopia indet landrace 

AC-43a Brazil conomom Am-TokTaj/Tokashb Tajikistan ameri La-ErizoSp/Erizob Spain indet landrace 

AC-08a Brazil indet landrace 
Am-AltimTur/Al Timbas 

PI 169£331b Turkey ameri La-Bol (5)/Bol84b Bolivia indet landrace 

AC-24ab Brazil indet landrace Am-CV3Tun/Ananasb Tunisia ameri    

AC-31a Brazil indet landrace 
Am-UrfaTur/Urfa PI 

174150b Turkey ameri    

ϯGenebank collection of the Department of Plant Sciences of the Universidade Federal Rural do Semi-Árido 

(UFERSA, Brazil). ϯϯThe COMAV´s collection was established on the framework of a previous project 

MELRIP 2007-2010 (Esteras et al. 2009; 2013) and was multiplied by the COMAV´s Cucurbits Breeding 

Group (www.comav.upv.es). Genotypes labelled with *were kindly provided by M. Pitrat. PI and CUM 

genotypes were kindly provided by NPGS USDA and IPK Gatersleben genebanks, respectively. Genotypes 

labelled with a were tested in Brazil, b were tested in Spain and ab were tested in Brazil and Spain. 
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Table 2 F1 generations derived from crosses between accessions resistant and susceptible to Macrophomina 

phaseolina, and evaluated for their response to this pathogen in Valencia/Spain. 

 

 

 

 

 

 

 

  

 

Botanical group 

 

 

Accessions 

 
wild agrestis x inodorus F1  (Ag-15591Ghana/PI 185111) X (In-PsPiñSp/Piñonet) 

conomon x inodorus F1 (Con-Pat81Ko/Pat81) X (In-PsPiñSp/Piñonet) 

wild agrestis x inodorus F1 (Ag-C38Nig/Co38) X (In-PsPiñSp/Piñonet) 

dudaim x inodorus F1 (Dud-QPMAfg/Queen´s pocket melon) X (In-PsPiñSp/ Piñonet) 

cantalupensis x flexuosus F1 (Can-NyIsr/Noy Israel) X (Flex-KhiIrak/Khiar)  
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Table 3 Average symptoms severity and reaction class of melon accessions inoculated with three 

Macrophomina phaseolina Brazilian isolates (Me 248, Me 249 and Me 250) using the toothpick method, 

in Mossoró/Brazil.  

Accession 

Me 248 Me 249    Me250 

Average Reaction Average Reaction Average Reaction 

AC-01 5.0aϯ HS 4.2b HS 4.2b HS 

AC-02 5.0a HS 3.8b SU 3.8b SU 

AC-04 5.0a HS 3.4b SU 4.2b HS 

AC-06 5.0a HS 4.6b SU 3.4b SU 

AC-08 5.0a HS 4.6b HS 4.4b HS 

AC-09 5.0a HS 1.0a HR 4.4b HS 

AC-11 5.0a HS 4.0b SU 3.8b SU 

AC-12 5.0a HS 3.2b SU 1.2a MR 

AC-13ϯϯϯ 5.0a HS 1.8a MR 4.0b SU 

AC-14 5.0a HS 4.0b SU 4.2b HS 

AC-15 5.0a HS 5.0b HS 5.0b HS 

AC-16 5.0a HS 1.8a MR 4.8b HS 

AC-18 5.0a HS 4.8b HS 4.4b HS 

AC-19 4.4a HS 4.2b HS 4.2b HS 

AC-22 3.8a SU 4.2b HS 4.8b HS 

AC-23 5.0a HS 4.6b HS 3.6b SU 

AC-24 3.8a SU 4.4b HS 1.6a MR 

AC-25 5.0a HS 4.2b HS 1.4a MR 

AC-26 4.4a HS 4.6b HS 0.6a HR 

AC-27 4.6a HS 1.6ª MR 3.4b SU 

AC-28 4.4a HS 4.4b HS 3.8b SU 

AC-29 5.0a HS 3.8b SU 4.2b HS 

AC-31 4.4a HS 1.6ª MR 5.0b HS 

AC-33 5.0a HS 4.0b SU 4.8b HS 

AC-34 5.0a HS 5.0b HS 4.4b HS 

AC-35 5.0a HS 3.2b SU 3.4b SU 

AC-36 5.0a HS 4.0b SU 4.6b HS 

AC-39 5.0a HS 4.0b SU 3.2b SU 

AC-41 5.0a HS 3.6b SU 4.6b HS 

AC-42 5.0a HS 4.4b HS 3.8b SU 
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AC-43 5.0a HS 5.0b HS 4.2b HS 

AC-44 4.6a HS 3.6b SU 3.2b SU 

AC-45 5.0a HS 4.4b HS 4.2b HS 

‘Amaral’ 5.0a HS 3.2b SU 4.2b HS 

‘Edisto 47’ 4.4a HS 3.2b SU 3.6b SU 

‘Gulf Coast’ 3.6a SU 1.8a MR 4.8b HS 

‘HBJ’ 5.0a HS 2.0a MR 4.6b HS 

‘MR-1’ 4.2a HS 4.6b HS 1.8a MR 

‘Olimpic’ 4.6a HS 1.4a MR 3.4b SU 

PI 414723 4.4a HS 3.6b SU 3.6b SU 

‘PMR 45’ 4.2a HS 0.8a HR 3.4b SU 

‘PMR 5’ 5.0a HS 3.6b SU 3.4b SU 

‘PMR 6’ 5.0a HS 3.4b SU 3.4b SU 

‘Védrantais’ 5.0a HS 3.6b SU 4.0b SU 

‘WMR 29’ 4.2a HS 3.2b SU 3.6b SU 

Average 4.28 3.72 3.75 

Fϯϯ: 
1.30  

(p>0.05) 

1.76 

(p<0.05) 

1.71 

(p<0.05) 

HR: Highly resistant [0.1-1.0]; MR: Moderately resistant [1.1-2.0]; SU: Susceptible [2.1-4.0]; HS: Highly 

susceptible [4.1-5.0].  ϯAverages in a column followed by the same letter do not differ (p<0.05) according 

by the Scott-Knott cluster (1974). Each number is the mean of five plants. ϯϯEstimate of value F de Snedecor. 
ϯϯϯAccessions marked with bold letters were also included in the Spanish trial (Table 4) 
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Table 4 Average symptoms severity and reaction class of melon accessions inoculated with one 

Macrophomina phaseolina Brazilian isolate (Me 248), using the toothpick method, in Valencia-Spain. 

Accessions classified as susceptible or highly susceptible have been included. 

 

Highly Susceptible 

[4.1-5.0] 

Susceptible 

[2.1-4.0] 

In-HamiChi 4.01ϯd Can-VedFran 2.23b Am-GalaTun 3.00c 

Am-KorcaRus 4.24d La-ErizoSp 2.33b Flex-AryaInd 3.07c 

PI 414723ϯϯϯ 4.43d Am-AltimTur 2.36b Am-AfrMor 3.09c 

La-SousIran 4.44d In-kirkTur2 2.36b Flex-SnakeSA 3.13c 

Can-PSUSA 4.56d Con-CUM188Jap 2.37b AC-13 3.41c 

Am-ChandAfg 4.60d Mom-PI124Ind 2.41b Flex-Co24Irak 3.44c 

Flex-Co20Ind 4.60d Am-CV3Tun 2.44b Ag-WChInd 3.57c 

Am-UrfaTur 4.61d In-kirkTur 2.46b Mom-FPInd 3.57c 

Mom-MR1Ind 4.67d Chi-VellInd 2.51b Am-HasanTur3 3.61c 

Flex-AcukTur 4.75d Con-GMJa 2.60b Am-6053Iran 3.64c 

Am-NanaGeorg 4.76d In-WTTur 2.68b In-MaazTun 3.66c 

Flex-KhiIrak 4.83d Mom-KhaInd 2.70b Am-HasanTur2 3.74c 

La-AcurTur 4.90d AC-25 2.71b Chate-CarIta 3.87d 

Am-KhaIran 4.94d Am-TokTaj 2.78b AC-16 3.94d 

  Am-SarakIran 2.90b AC-24 3.96d 

  In-PsPiñSp 2.96c AC-26 3.96d 

Fϯϯ = 16.28 (p < 0.01) 
ϯAverages in a column followed by the same letter do not differ (p < 0.05) according by the Scott-Knott 

cluster (1974). Each number in the mean of fifteen plants. ϯϯEstimate of value F de Snedecor. ϯϯϯAccessions 

marked with bold letters were also included in the Brazil trial (Table 3).  
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Table 5 Average symptoms severity and reaction class of melon accessions to one Macrophomina 

phaseolina Brazilian isolate (Me 248) inoculated by the toothpick method, in Valencia-Spain. Accessions 

classified as moderately or highly resistant have been included. 

 
 

ϯAverages in a column followed by the same letter do not differ (p<0.05) according by the Scott-Knott 

cluster (1974). Average of the three round of inoculations (the first screening and the two independent 

inoculation rounds two confirm the resistance, each round with fifteen plants) is shown for each accession. 
ϯϯEstimate of value F de Snedecor.  

 

 

 

  

Highly Resistant 

[0.1-1.0] 

Moderately Resistant 

[1.1-2.0] 

Ag-15591Ghana 0.10ϯa Can-PresFran 1.12a           

Dud-CUM296Georg 0.11a In-CV1Tun 1.40a                  

Ag-C38Nig 0.25a La-PopEthi 1.62a 

Can-NYIsr 0.44a In-AsliTun 1.88a 

Con-Pat81Ko 0.61a La-Bol(5) 1.97a 

Dud-QPMAfg 0.61a   

Ac-TGR1551Zimb 0.69a   

Fϯϯ = 16.28 (p < 0.01)    
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Table 6 Average symptoms severity and reaction class of five F1 hybrids to one Macrophomina 

phaseolina Brazilian isolate (Me 248) inoculated by the toothpick method, in Valencia-Spain 

 

Highly Resistant 

[0.1-1.0] 

Moderately Resistant 

[1.1-2.0] 

Highly Susceptible 

[4.1-5.0] 

F1: Ag-15591Ghana x 
InPsPiñSp 

0.13ϯa F1: Con-Pat81Ko x In- 
PsPiñSp 

1.50a F1: Can-NyIsr x Flex-
KhiIrak  

5.0b 

F1: Ag-C38Nig x In-
PsPiñSp 

0.61a F1: Dud-QPMAfg x In-
PsPiñSp 

1.92a  

Fϯϯ = 16.28 (p < 0.01)     

ϯAverages followed by the same letter do not differ (p<0.05) according by the Scott-Knott cluster (1974). 

Average of the three assays (the first screening and the two independent rounds two confirm the 

resistance, each one with fifteen plants) is shown for each accessionϯϯ. Estimate of value F de Snedecor. 
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Fig. 1 Comparison of the resistance found in two melon accessions to four isolates (Me 248, Me 249, Me 

250 and Soy Spain) of Macrophomina phaseolina inoculated by the toothpick method, in Valencia-Spain. 

Average severity: Highly resistant [0.1-1.0]; Moderately resistant [1.1-2.0]; Susceptible [2.1-4.0]; Highly 

susceptible [4.1-5.0].   

Fig. 2 Comparison of the resistance of melon accessions and progenies derived from crosses with 

susceptible controls to Me 248 isolate of Macrophomina phaseolina inoculated by the toothpick method, 

in Valencia-Spain.  Highly resistant [0.1-1.0]; Moderately resistant [1.1-2.0]; Susceptible [2.1-4.0]; Highly 

susceptible [4.1-5.0]. A= (Ag-15591Ghana x In-PsPiñSp); B= (Con-Pat81Ko x In-PsPiñSp); C= (Ag-

C38Nig x In-PsPiñSp); D= (Dud-QPMAfg x In-PsPiñSp) and E= (Can-NyIsr x Flex-KhiIrak). F=7.18 (p < 

0.01). 

 

Fig. 3 Symptoms of Macrophomina phaseolina in stems of the susceptible control Flex-KhiIrak (in the 

middle), of the resistant accession Noy Israel (on the right) and their corresponding F1 hybrid (on the left) 

inoculated by the toothpick method, in Valencia-Spain with isolate Me 248. 


