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Summary

Habitat suitability models (HSM) are concerned witlte abundance or distribution of species as a
consequence of interactions with the physical emvirent. Generalized Additive Models (GAMs) weredise
to model brown trout§almo trutta L.) density as a function of environmental varégbat the scale of river
reach and hydromorphological units (HMU) in thealiRiver Basin (Eastern Spain). The data reprasgnti
trout density after 4 years of observation (20088)0wnere split into two categories, young (<2 ygarsd
adult & 2 years), for modelling independently. The envinemtal descriptors at reach-scale described the
geographical position, hydrological conditions, gmwdions and diversity of habitats. At the scaldHdiUs
(pool, glide, riffle or rapid), habitat descriptaepresenting dimensions, substrate, cover anctiglovere
used. The best and parsimonious GAM for each categas selected after the comprehensive trial lodfal
the possible combinations of input variables. Thedets explained 61% (adult) and 75% (young) of the
variability of the data (Radj). The results demonstrated the relevance ohmeédth, mean depth, cover
index, mean velocity and slope for adult brown tr{oung trout densities were mainly related to mmaxm
depth, cover index, mean velocity, elevation, agerdistance between rapids and number of slow water
HMUSs. This article shows the relevance of considgrgeographical and habitat-related requirements at
different scales to describe the patterns of tdmrisity. Furthermore, the importance of considering-
linear relationships with habitat variables was destrated. The results are useful for environmental
managers designing effective and science-baseoraish measures, which may result in a more effici

management of brown trout populations.



Introduction

Over the past decades, ecological models have asioigly been applied to guide conservation and
management decisions related to fish species. Maodelge from individual to population levels andiero
diverse aspects such as age structure of the ggamd, natural and fishing mortality, size of #pawning
stock biomass and recruitment patterns as well rasitg rate, gene flow, habitat quality and spatial
distribution patterns (for a synthesis about edollgmodelling literature on stream fish, see Frankal.,
2011). Among the diversity of approaches, habm#gability models (HSM) are statistical models imbéd
within the species distribution models that analylze relationships between species and their habita
Studies of fish habitat selection have been exendehe prediction of distribution and abundaraenial
summer densities estimated for each age clasg)rder to understand how they are influenced by the
spatiotemporal habitat heterogeneity (Lobon-Cer2@#)7; Aylién et al., 2013). HSM have used hydmauli
variables (e.g. velocity, depth, substrate) meakatealifferent spatial scales. Commonly used saaldade
micro, meso and macro-scale which approximatelyespond to one or a few squared meters, tens of
meters, or an entire catchment area respectiBelyge et al., 1998).

Initially, HSM for fish were developed at the miesoale, using an univariate approach based on the
relationship between a single variable and itsability (Bovee, 1982; Bovee et al.,, 1998). The most
common variables were not only hydraulic ones ksd aover (e.g. vegetation, undercut banks or dogs).
These particular variables were demonstrated toelevant for fish habitat selection and fish deesit
(Bovee, 1986; Gibson, 1993), especially for salmdish but also for cyprinids (Grossman and De &ast
1994; Martinez-Capel et al., 2009). There are s¢veethods to generate habitat suitability indif@sa
single variable, but the continuous univariate tatsuitability curves are by far the most commppraach
in studies involving the physical habitat simulati@ayne and Allen, 2009). However, several authake
suggested that considering each variable indepdgdeay be questionable, because it could indub&s
as a result of overlooking possible interactionsvieen variables (Orth and Maughan, 1982; Lambaedit an
Hanson, 1989). To deal with this limitation, the livariate approach has increased in popularity r@gno
researchers (De Pauw et al., 2006). Also, a widayaof techniques have been applied in micro-scale
habitat suitability models, such as Logistic Regi@s (Hayes and Jowett, 1994), Fuzzy Logic (MuficzsM
et al., 2012) and Artificial Neural Networks (Bresand Lek, 2000). In many cases the distributiothef

environmental variables violates the assumptions mdrmality, linearity, independence and



homoscedasticity, typical of the popular linearresgions models.hErefore, models that incorporate non-
linear behaviours could be more advisable and meaigstic for many applications (Venables and Diohim
2004). The development of advanced techniquesamthchine learning area has allowed the creation of
predictive models with the ability to identify ndinear relationships and greater power for exprajnand
predicting ecological patterns (Olden et al., 200Bya-Marin et al., 2012).

At a larger scale, macro-scale HSM analyze thetiabfactors controlling the spatial patterns of
species distributions in river networks, catchmemtsiver basins. This approach has been succéssful
applied using several techniques, including Germe@lLinear Models (Anlauf et al., 2011), Multivaie
Adaptive Regression Splines (Leathwick et al., 208%d Artificial Neural Networks (Olaya-Marin et al
2012). These studies combined variables derivenh §everal sources and applied different techniqoes
reveal potentially suitable areas for the targetss (Fukuda et al., 2013). However, there is sevigence
suggesting that the consideration of micro and pxacale variables in independent studies is hotgmado
cover all the variability involving the predictiasf fish habitat suitability (Bdour et al., 2004)dditionally,
models based on multiple spatial scales usuallyestdrm single-scale analysis (Olden et al., 2006).

Therefore, a promising approach is the developmkatoss-scale models including the meso-scale as
a relevant component. In the modelling of fish sgedistribution, the meso-scale resolution camded to
capture the confounded effect of biotic and abietiwironmental variables (Vezza et al., 2012) uging
on the interaction of aquatic species with theiapatrangement of habitat variables (Addicottlet 087).
This approach can rely on the concept of Functidtadditat developed by Kemp et al. (1999). The meso-
scale was demonstrated to perform well in desagiltire relationship between fish species distrilvuto
densities and habitat features, such as cover gration barriers (Fausch et al., 2002; Costa el 2).
More recent studies have demonstrated the valweosk-scale investigations in linking fish ecolofigw
and physical habitat variability but considering timeso-scale as the central frame (Gosselin e2@10;
Gosselin et al., 2012).

Some of the aforementioned approaches have bedérdappmodel salmonids distribution, involving
several techniques and scales. In the context dfitbfeanean rivers at the microhabitat scale, drgables
of mean velocity, depth and substrate have beeclnaea for the establishment of habitat suitabitityves
(Ayllon et al., 2009; Mufioz-Mas et al., 2012). Aetmacrohabitat level, Filipe et al. (2013) havedasted

distribution shifts of brown trout in Pyrenean risebased on environmental predictor variables, sash



mean annual temperature and precipitation. At masitdt scale, habitat suitability criteria for mean
velocity, depth, substrate and cover have beenlojgs® on data collected by HMU (Gortazar et al120
Mouton et al., 2011).

Herein, we present HSM for brown trout in four ny@f Eastern Spain. The ecological importance of
these native trout populations lies in their adigmato Mediterranean conditions. These conditians
characterized by the marked seasonality in climatents, intermittent periods of torrential rainsdan
droughts, and high inter and intra-annual flow aton (Gasith and Resh, 1999; Baeza et al., 2005he
long term these populations are declining becatifgechabitat degradation, flow regulation, rivedlption,
overfishing, inter-specific competition with exospecies and introduction of foreign trout genea assult
of stocking (Almodévar et al., 2006; Sanchez-Montat al., 2009; Maceda-Veiga, 2013). Furthermore,
studies about Mediterranean brown trout demons&rdaek of information about the regional pattamthe
habitat selection as well as the structure, distidim and abundance of their populations (Alcarazridndez
et al., 2007) which are influenced by a large nundfeenvironmental factors. Some of those factoesthe
geological history of the area (Machordom et al0®), habitat availability (Rincon and Lobdn-Cervia
1993; Ayllon et al., 2009), hydrological variabjlit{Lobon-Cervia, 2009; Nicola et al., 2009), global
warming (Almodoévar et al., 2012), accessibility andilability of food (Sanchez-Hernandez et al1D4),
and intra or inter-specific relationships (Sanchieznandez and Cobo, 2012).

In four Mediterranean rivers, diverse variablestioé physical habitat at different scales were
considered to predict the abundance of native brtosuri. The objectives of this research were: géoerate
predictive Generalized Additive Models for browmout density in two age groups, independently;di. t
investigate the main factors of the physical hahitaich control trout density at the reach scald areso-
scale in Mediterranean rivers; and iii. to comp#re performance of Generalized Linear Models and

Generalized Additive Models in the modelling ofutaensity.

Materials and methods

Study area

The field surveys were carried out in summer seagoom 2003 to 2006 in four Mediterranean rivers
(Ebrén, Vallanca, Villahermosa and Palancia) of didear River Basin District. All four are withingh
Valencian Region (Eastern Spain), where brown tpmyulations are resident and dominant in the fish

community (Fig. 1). The study sites were locateduimegulated sections of the headwaters (elevations
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greater than 600 m above sea level) with a Straimlgr from 2 to 3. The catchment areas ranged 28
to 268 kni and were dominated by carbonated rocks (pH oft7092), favouring the aggregation of the

substrate particles and producing an apprecialblonate layer in some reaches.
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Fig. 1. Location of the study areas in the EbréB)(EVallanca (VA), Palancia (PA) and Villahermosé)(Rivers,

within the Jdcar River Basin District (Eastern $paiThe study sites were located in unregulatedises of the
headwaters. The elevations at each of the sitem(rto 4) are: 880, 792, 763 and 743 m asl. irEf&g968, 890, 752
and 718 m asl. in the VA; 769, 688, 655 and 627sinia the PA, and 728, 647, 621 and 605 m asihénVI. The

catchment areas ranged from 123 to 268 km

The climate is typically Mediterranean, with raithfaoncentrated at the end of winter and the
beginning of spring resulting in low flows duringet summer. The largest inter-annual variation ccaur
January and March. The average annual rainfaltfjigyaries between 442 mm and 583 mm. However, the
mean annual flows vary from 0.26 to 1.183 s4. The mean annual water temperature is very honemgen
in the four rivers. Water temperature oscillatesveen 12 and 14°C in winter, with minimum temperagu
usually greater than 5°C, while in summer maximamgeratures do not usually exceed 20°C. The sdlecte
reaches are mountainous, with snaterage width (2.51-5.66 m), average depth (0.28-6n) and high
average slope (23.0-13.6 m ®m A detailed environmental description of the feex was included in
Alcaraz-Hernandez et al. (2011) and Mouton et2f1().

Study design
Four reaches were selected in each river whererbtmut are usually present. Data from two reache®
collected in each of the Ebron, Vallanca and Vilahosa Rivers during the first year (2003), whefeas

reaches were surveyed in each of the four riversiguhe following years (2004-2006). Years 200% an
5



2006 suffered intense drought; then a few of thedhater reaches in the Vallanca and VillahermosarRi
were dried, thus the survey did not take place {gm@lls under 2005 and 2006 in Table 3).

Habitat data acquisition

Twenty three environmental variables were colleded used in the development of density models for
brown trout (Table 1). The environmental varialtesresponded to different spatial scales, reacle soad
HMU or meso-scale. The reach-scale variables imdudlevation above sea level (ELE, m) and megreslo
of the study reach (SLO, m1)) these were measured using a geographic infoomatystem (ArcGI8"
9.3.1). Additionally, spring flow (FSP, $1%%) and annual flow (FAN, fs?') were provided by the Jucar
River Basin Authority. The HMU data were assessedviery reach using an adapted version of the BVET
(Hankin and Reeves, 1988; Dolloff et al., 1993)s#y, each reach was visually stratified accordiogts
different biotopes, mesohabitats or HMUs using BMET protocol. Measurement of their main physical
characteristics such as length, width, depth abdtsate (instead of a visual estimation) allowezhthio be
classified into four types: pool, glide, riffle anapid (Alcaraz-Hernandez et al., 2011). Theseattaristics
were quantified in reaches 300 m long. In this eessveral authors have recommended a similar sampl
site length for habitat characterization (Leopdidile 1964; Meador et al., 1993). These data wees to
obtain other variables such as the number of si8L( slow habitats i i.e. pool and glide) and fast HMU
(NFA, fast habitats rhy i.e. riffle and rapid). The diversity of habitagpes was calculated using the
Shannon-Weaver index (DIV, 0-1) and the averagtaniée between rapids (DBR, m) or average length

between pairs of consecutive fast HMU were alsictamed.



Table 1. Description of the variables assesse@athr scale and meso-scale (hydromorphological ;udil) at the

Ebrén, Vallanca, Palancia and Villahermosa Rivéigér River Basin District, Eastern Spain).

Spatial Variable Code Description (units)
scale
Reach Altitude ELE Elevation above sea level (m)
Slope SLO  Mean slope of the study reach (%) m
Spring flow FSP  Mean spring flow rate {at)
Annual flow FAN  Mean annual flow rate ')
Number of slow habitats NSL  Number of slow halitatthe reach (slow habitatsin
Number of fast habitats NFA  Number of fast habitatthe reach (fast habitatstjn
Diversity habitat index DIV ~ Shannon-Weaver divgrsindex of habitat types (0-1)
Distance between rapids DBR  Average distance hetwapids (m)
HMU Mean length LEN  Mean length of surface watethef HMU (m)
Mean width WID Mean width of surface water of tHBIU (m)
Mean depth DME Mean depth of the HMU (m)
Maximum depth DMA Maximum depth of the HMU (m)
Area ARE  Area of each HMU (i
Volume VOL Volume of the HMU (/)
Shading SHA  Shading over the HMU (%)
Embeddedness FCO Riverbed covered by fine mat€pia)

Coarse substrate
Medium substrate
Fine substrate
Substrate index

SCO  Coarse substrate with diemett mm (%)
SME  Medium substrate with diam2{56 mm (%)
SFI Fine substrate with diame@nm (%)

SIN Substrate index (3, sande@8,rbck)

Velocity VEL Velocity of the HMU (m %)
Woody debris WOD Number of woody debris on theehe@voody nt)
Cover index CIN Refuge index (0, no refuge; 1@ edent)

The main physical characteristics of each HMU wexeasured each year at each site as follows.
Mean length of the HMU (LEN, m) with measuring tapdean width of water surface (WID, m) was
obtained from three cross-sections correspondifg, te, and % of the total length of the HMU. Meapith
(DME, m) was calculated from nine points correspogdo measurements taken at each cross-sectiorewhe
width was estimated, and maximum depth (DMA, m) wasasured in the corresponding point. These
measurements were used to calculate the area of KIMRE, n?) by simplifying its calculation as the
product of length and width. Volume of HMU (VOL *hwas calculated as the product of length, widtth an
mean depth. Other variables were visually estima&@ding, was determined as the percentage cdver o
shade over the channel (SHA, %). The percentagendfeddedness (FCO, %) and substrate (%) were
divided into three categories: coarse (SCO, g >r6f, medium (SME, g 2-256 mm) and fine (SFIl, g < 2
mm). Substrate composition was converted into glsisubstrate index (SIN) by summing weighted

percentages of each substrate type (Jowett di9811). The weights were slightly modified from tréginal



substrate codes of the Instream Flow Incrementahmlogy (Bovee, 1982; Mouton et al., 2011) as
follows:

SIN = 0.08 x bedrock + 0.07 x boulder + 0.06 x debb0.05 x gravel + 0.04 x fine gravel + 0.03 xddn
addition, mean velocity in the HMU (VEL, m'swas calculated by dividing the gauged flow anel tiean
cross section area. Density of woody debris (WQOBges of wood per fhand cover index (CIN, from 0 —
no refuge to 10 —excellent) by Garcia de JalonSafinidt (1995) were determined. Cover index folldwes
equation:

Ce+Csub +Csv + Cd

CIN =Cb +
4

where, Cb is the available refuge due to the pEseh undercut banks or caves; Cs is the refugeused

by shading; Csub produced by substrate types; @xluped by submerged vegetation and Cd by the depth
of the water column. At five categories of covéristindex assigns scores from zero to five (beingoO
refuge and 5 maximum score) using the recommendaiio Table 2. A total of ninety three HMU were
sampled, with fifty corresponding to slow water HMpbols and glides) and forty three to fast watbtUH

(riffles and rapids).

Table 2. Scores of the cover index (CIN) basedhenatvailability of different cover types: bank gbel(Cb), shading
(Cs), river bed substrate (Csub), submerged vagetéEsv) and depth (Cd).

Score Cb Cs (%) Csub Csv (%) Cd (cm)
0 None 0 Rock surface None <15

1 Aerial undercut bank <10 Sand <1 15-50

2 Submerged undercut 10-25 Fine gravel 1-5 50-80
3 Deep submerged undercut 25-50 Gravel 5-15 80-100
4 Riparian roots 50-75 Cobbles 15-30 100-150
5 Deep undercut and roots > 75 Boulder > 30 > 150

Biological data acquisition

During summers of the years 2003-2006, the bioklgiarvey took place by electrofishing in each ohe
the selected HMU, one fast and one slow. The elsiting equipment consisted of a 950 W electrivegator

connected to an electric rectifier to get contiraiourrent and select the appropriate voltage. EMb was

surveyed at least three times without replacenadtel;, placing nets at both extremes of the HMU. twmber

of captures, in each of the independent size dqsse below) was divided by the sampling area;hwi@nged

from 11 to 399 rh



The fork length (mm) and weight (g) of each induadl were measured. In addition, scales were
extracted from the individuals older than one yteaverify the longitudinal-age classification arme tlength
frequency analysis of the captured fish. Two indelemt scale readers analysed the age and in case of
unclear scales the fish was discarded. Trout dessitrout n¥) were calculated using the weighted
maximum likelihood of Carle and Strub (1978) andevdivided into young (DYO, < 2 years) and adult
(DAD, > 2 year) for the data analysis. The age classean@+1+ were classified into the same category
(DYO, < 2 years) because they had disappeared $@me reaches as a consequence of extreme events
(floods and droughts) that occurred during the yexdirthe study. Therefore, the data corresponadingyt
and juvenile brown trout included more zeros thapeeted. Zero inflated databases can lead to some
problems. Firstly, the estimated parameters anddata errors may be biased. Secondly, the excessive
number of zeros can cause overdispersion in thistgtal analysis with GAMs (Zuur et al., 2009).€rh

values of young and adult brown trout densitiesibar, reach, HMU and year are shown in Table 3.

Table 3. Young (DYO) and adult (DAD) brown troutndéies (trout r¥) recorded by river, reach, hydromorphological
unit (HMU) simplified as fast or slow, and yearsafmpling.

2003 2004 2005 2006
River Reach HMU DYO DAD DYO DAD DYO DAD DYO DAD
Ebrén 1 Fast 0.000 0.010 0.000 0.000 0.000 0.007 0.022 0.000
1 Slow 0.035 0.013 0.006 0.000 0.019 0.010 0.010 o0.010
2 Fast - - 0.031 0.000 0.055 0.000 0.046 0.009
2 Slow - - 0.011 0.000 0.045 0.006 0.028 0.022
3 Fast - - 0.018 0.023 0.226 0.016 0.080 0.101
3 Slow - - 0.017 0.063 0.122 0.041 0.036 0.051
4 Fast 0.016 0.000 0.000 0.000 0.043 0.000 0.032 0.000
4 Slow 0.014 0.057 0.014 0.000 0.060 0.000 0.000 o0.000
Vallanca 1 Fast - - 0.541 0.000 0.000 0.000 0.000 0.000
1 Slow - - 0.237 0.086 0.000 0.000 0.000 0.000
2 Fast - - 0.196 0.071 0.549 0.000 0.068 0.000
2 Slow - - 0.133 0.111 0.461 0.194 0.153 0.017
3 Fast 0.060 0.012 0.068 0.011 0505 0.031 0.195 0.020
3 Slow 0.030 0.005 0.028 0.057 0.335 0.010 0.213 0.015
4 Fast 0.092 0.092 0.075 0.030 - - - -
4 Slow 0.063 0.094 0.065 0.131 0589 0.109 0.817 0.136
Palancia 1 Slow - - 0.000 0.000 0.000 0.000 0.000 0.000
2 Fast - - 0.000 0.006 0.013 0.000 0.007 0.000
2 Slow - - 0.000 0.010 0.021 0.017 0.022 0.004
3 Fast - - 0.014 0.000 0.185 0.007 0.014 o0.007
3 Slow - - 0.007 0.013 0.066 0.019 0.000 0.030
4 Fast - - 0.021 0.000 0.000 0.017 0.034 0.000
4 Slow - - 0.000 0.000 0.008 0.008 0.000 0.000
Villahermosa 1 Fast - - 0.005 0.005 - - - -



1 Slow  0.024 0.000 0.000 0.007 - - - -
2 Fast - - 0.018 0.012 - - - -
2 Slow - - 0.000 0.062 - - - -
3 Fast - - 0.260 0.023 0.223 0.039 0.138 0.000
3 Slow - - 0.052 0.071 0.143 0.075 0.101 0.060
4 Fast - - 0.037 0.008 0.136 0.010 0.108 0.000
4 Slow  0.073 0.030 0.022 0.067 0.029 0.066 0.036 0.027

Data analysis

Generalized Additive Models (GAMs) were used to meldorown trout density, as they are useful to deal
with non-linear relationships between species abooe and environmental variables. Additionally, the
models are additive, hence they can examine tleetedf several independent variables on the deménde
variable (James et al., 2013). GAMs have showncaemable or good performance in modelling habitat-
fish relations at the meso-scale in previous stu@@osta et al., 2012). Furthermore, this technajleavs
the modeller to include normal and non-normal \J@éa in the model. GAMs follow the next equation:

E (y) =Bo+ si(x1) + (X2) + s(Xa) + ...

where y represents the response varighlthe constant parameter of the modgl,ssand sthe smoothing
functions and x x. and % the predictive variables (Wood, 2001). This moddiusts a response to the
aggregation of each variable modelled through g@i@ation of multiple constrained splines, prowviglia
smooth response according to each of the invohaibies. Therefore, the non-parametric transfdaonat
of the predictive variables was implemented usingn@othing function. The choice of the degrees of
freedom of the smoothing functiordf) was carried out by applying a penalized splirgression (Wood,
2006).

A pre-processing procedure of the entire database executed in order to discard correlations and
collinearity among variables in the models, acamydio Zuur et al. (2009). Firstly, all the combioat of
variables were generated (of 2, 3, 4 variables) ata the combinations where any relevant Spedsnitimo
was observed by pairs (Rho > 0.5) were discardedhi® modelling. In addition, the Variance Inflatio
Factor (VIF) was used to check collinearities amdmg predictive variables, and variables with VIFS >
were discarded (Zuur et al., 2009). Finally, toestekhe variables involved in the generation of @#&M,
young and adult brown trout regression models wematively calculated by trying all of the possibl
combinations of datasets including variables irfiedént sets, comprising of two to eight variablEach

combination met the aforementioned requirements-garelation and non-collinearity of variables).
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Between the function families tested, quasipoisdistribution function was selected for modelling
trout density and an offset was introduced (offsebg ARE) in accordance with other studies witsirailar
modeling procedure (Nislow et al., 2011). The numbieknots in the splines was limited to four. The
signification of theF test was used to discard any combination whereoértlge variables did not have a
signification smaller than 0.1. None of the varébivere transformed for the modelling process.

The Re-adjusted (hereafter Radj) was the performance criterion selected to saahe best model
with the least number of variables (Aertsen et2010). The model with the best performance frochea
iteration was the one finally selected; in thisecéise model with the largest?’®lj for each number of
variables was retained. The selection of the fimatlel was based on the marginal improvement rétibeo
R?adj. No more variables were added when the margmpaitovement ratio of Rdj was less than 10 %.
There are other statistide select the subsets of predictors in order toravg prediction accuracy and
model interpretability, suchs Cp, AIC or BIC. These three anéaB are based on penalizing tresidual
sum of square by the number of observations andiqtoe variables The statisticiR?adj, Cp, AIC and BIC
are reliablein scenarios where the sample size is very larg their results are asymptotic (James et al.,
2013) In this study the sample size was relatively $ipat as the asymptote &adjis always 1t was
decided to uséR?adj. In addition, Generalized Cross Validation sc¢GCV), visual inspection of the
response of each variable and its error distributicere considered in the selection of the best GAMs
(Wood, 2006; Pierce et al., 2007). The residualeevpdotted against the predictive variables to #tigate
the violation of the assumption of independence.

Finally, generalized linear models (GLMs) were oldted, with the same procedure used to generate
the GAMs. Specifically, the models were generatétt wach of all the possible combinations of vaeap
with similar requirements (non-correlation and roatlinearity), using the same function family aruet
same performance criteriorfd&lj. The entire process was carried out with tmetfons gam and glm of the
packagesngcv (Wood, 2006) andtats developed in R 2.15 for Windows (R Development eCoeam,
2010).

The models were generated for the entire datansftding all four rivers, as the data collection
covered a relatively small area in the headwatktBenJicar River Basin District, and multi-site aiets are
very interesting for supporting habitat managenaamt river restoration (Lamouroux et al., 1999).viRnas

studies have demonstrated that multi-site or regionodels do not necessarily reflect broad randes o
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suitable conditions (Lamouroux et al., 1999). Salstudies have succeeded in developing regiondkefao
(Hayes and Jowett, 1994; Lamouroux et al., 199%aNgn and Huusko, 2004). However, several models at
catchment scale showed difficulties to be transfierguestioning its generalization ability (Fukug@l10).

Due to the multiple factors affecting fish habis&lection, it is generally recommended the germranf
site-specific models of habitat suitability, esjdlgi for the application of physical habitat modtedl and

environmental flows assessments (Moyle and Ba@&51Bovee et al., 1998).

Results

The process to combine variables and generate G&Msted in a total of 59009 models for GAM as well
as for GLM. A total of 210 composed of two variahlé149 of three variables, 4009 of four, 9383id, f
15069 of six, 16667 of seven and 12522 of eighiabdes. All these models met the selection critémian-
correlation and non-collinearity among variables).

Figure 2 illustrates the?Rdj of the best model at each iteration, givenrthimber of variables in the
training dataset for the GAM as well as the margimaprovement ratio. Adult density presented a
monotonic increment of the performance criteriates number of variables included increased. However
the young trout presented a maximum with a decréase the six-variable model to the seven-variable
model. This decrease was due to the presence widesired combination of variables, as explainedihe
The seven-variable model included among othersntimber of slow (NSL) and fast (NFA) habitats, and
the Shannon-Weaver diversity habitat index (DIV1)0OThat model was rejected because the former (six
variable model) indirectly included the conceptdofersity, as it included NSL and NFA. Thereforke t
model with six variables was selected for youngwordrout. For the adult trout, the 10% of marginal
improvement ratio was used to finally select thstlmeodel with five variables. Regarding GLM, thedals
for adult trout showed an?&dj equal to 18% with five variables and 15% with svhereas the models for
young trout showed an?&j of 23% with six variables and 19% with sevehe Radj penalizes the number

of variables, thus the reductions of performaneepassible with more variables.
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Fig. 2. Variation of the performance criterioiR¥adjusted; dots) of the best model at each iteration (bars) with
increasing number of variables in the training detaf the Generalized Additive Model (GAM) based4years of
sampling (2003-2006). The marginal improvementorairresponds to the marginal percentage of impnevd in
relation to the best previous model (dots). Riadjusted of the best two-variable model was used as a\mise. The
best model for adult trout included five variab{esean depth, velocity, cover index, mean width alube), and six

variables for young trout (maximum depth, velocitpver index, elevation, distance between rapidk ramrmber of

slow habitats).

The results of the best GAM (Table 4) indicated #ault trout density was successfully explained by
mean width (WID), mean depth (DME), cover indexNE Ivelocity (VEL) and slope (SLO). The model for
young trout included maximum depth (DMA), CIN, VEglevation (ELE), distance between rapids (DBR)
and NSL. The models for adult and young trout dgresiplained 61% and 75% of the variability of tteta
(R?adj), respectively. Both models showed non-linedationships with some of the explanatory variables
with effective degrees of freedom larger tharedf ¢ 1). There was a linear relationship betweentadult
density and one predictor variable (VEL) as welbatveen young trout and DMA. In addition, mostha
variables were highly significanp & 0.001), except CIN and VEL in the adult modedl &1N in the young
trout model (Table 4). Relevant statistical diffezes between GAMs and GLMs were noted. GLM models
for adult and young trout density with the same benof variables as the GAM models, explained 18% a

23% of the data variability, correspondingly. Thaukh model comprised the following variables: mean
13



length (LEN), WID, DME, VEL and DBR. While the yogrmodel was comprised of: WID, DME, coarse

substrate (SCO), density of woody debris (WOD), \éfid NFA.

Table 4. Summary of the best Generalized Additived®ls (GAMs) for adult and young brown trout densithe
predictive variables finally selected by the modskre mean width (WID), mean depth (DME), coverexdCIN),
mean velocity (VEL) and slope (SLO) for adult browwvaut; and maximum depth (DMA), cover index (CiM)ean

velocity (VEL), elevation (ELE), distance betweeapids (DBR) and number of slow habitats (NSL) fougg brown
trout.

Age Predictve =~ GAM

group variable Re-adjusted edf P-value F
WID 0.61 285 <0001 42.102
DME 267 <0001 7.244

Adult  CIN 220 0.035 3.180
VEL 1.00  0.002 9.917
sLo 296 <0001 5822
DMA 0.75 100 <0001 17.452
CIN 245  0.052 4.259
VEL 290 <0001  10.289

voung o g 251 <0001 7.506
DBR 283 <0001 11.197
NSL 300 <0001  21.807

The partial effects of each individual predictorighle on adult trout density (DAD) at the mesolsca
(leaving other parameters fixed) are shown in BigDAD increased with DME in an approximately linea
fashion from 0 to 0.4 m and decreased slowly wittreasing DME, thus showing approximately a bell-
shaped effect. A less marked bell-shaped effectsias/n by CIN and SLO. DAD increased slightly with
CIN when CIN < 5 and decreased when CIN > 5. Sloflaenced DAD positively, with an optimum at
0.015 m nmt and decreasing thereafter. DAD slightly increasétd SLO when slopes were over 0.04 m,m
presenting another peak. However, VEL and WID destrated an opposite trend. Adult density slowly
decreased with VEL, decreased with WID from O tan5n approximately linearly, and remained almost

invariable for WID > 5 m.
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Fig 3. Partial effects of mean depth (DME), velpdWEL), cover index (CIN), mean width (WID) andogle (SLO) in
adult brown trout densities modelled using GeneealiAdditive Models (GAMS) based on 4 years of darg2003-
2006). The solid black line is the general trendhef effect of the considered variable on the naghuit trout density,
while the shaded areas represent 95% confidemti@hials. The numbers in the labels of y-axis deribe effective

degrees of freedom. Training data are shown a% Iplainits.

In Fig. 4 the partial effects of young trout depiDYO) are illustrated, DYO decreased linearly as
DMA increased. The response demonstrated inversthged curves for VEL and DBR with a positive
effect at low values, and a central range withresaiiable effect and a negative effect at highdmes (over
0.8 m &' for VEL and 125 m for DBR). DYO was invariable WiCIN from O to 4 points and increased
slightly thereafter. A similar partial effect wakasvn by ELE. Specifically, DYO exhibited similar luas
from 600 to 750, increasing slightly thereaftertedthatively, a normal distribution was observed wbe'O
was plotted against NSL. With DYO increasing slowligh low NSL values, being optimum at 0.05 and
tailing off linearly with larger NSL values. FingJl Fig. 5 depicts the comparison between observed a
predicted values of DYO and DAD as assessed byGthkls (using five variables for adult trout and six
variables for young trout). As depicted, differemdetween observed and predicted values were giithll

Rho values of 0.89 and 0.81 for DYO and DAD, resipety.
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Discussion

The present study provides an appropriate methggdio generate predictive fish density models
with GAMSs, focusing on the best subset selectidre &xhaustive selection of variables led to thelpcton
of optimal models, with performance %Rlj) of 0.61 and 0.75 for adult and young, respebti These
values can be considered similar to those obtaingatevious studies based on multivariate appraache
(Ayllon et al., 2010; Vezza et al., 2012; Ayllon at, 2013), and equivalent or superior (specifjcébr
young trout) to the study performed with randomefts and fuzzy logic upon the same Valencian rivers
(Mouton et al., 2011). Although the present stuelgsted more predictive variables than the afor¢imesd
studies, it is remarkable that we dealt with a pobthat is considered as a further degree in cexitgl
such as fish density. While previous studies in téechnean rivers afforded the problem of
presence/absence or classification. Interest mdisnsity models has recently increased becaugentbhg
provide more gradual information on species halsilection (Fukuda et al., 2011), thus the present
approach is a step forward in the research on Meditean brown trout.

To our knowledge, this is the first study genemtil the possible models combining the predictor
variables (from 2 to 8 variables) and analysingltest parsimonious GAM, instead of using step-fodaa
step-backward algorithms of variables selectiore Edmprehensive trial of all of the possible corations
of input variables and selection of the best passious model after predefined criteria is the amigthod
that is guaranteed to determine the optimal sitmft variables (Bonnlander and Weigend, 1996).

The presented methodology was considered compugdifioaffordable and more systematic than
previous approaches (Tutz and Binder, 2006), becaospreliminary assumptions must be done and the
systematic search provides us with the best cortibinaf predictors for the optimal model. In theute, a
new sample design will be necessary to acquire gina@ata to develop density models by age classes.
Another potential limitation in this study was tbeer-fitting, which was limited by setting a maximuwof
four knots in the models due to the limited numbiesbservations.

Moreover, the data-driven procedure to generate Gédllted in models with a limited predictive
power, thus other techniques of higher complexity commended (e.g. GAM). This result has been
confirmed in other studies on fish habitat requieais (Olden and Jackson, 2002; Ahmadi-Nedushah, et a
2006; Armitage and Ober, 2010; Vezza et al., 20l4=ajeed, GAMs are considered an important

methodological step forward in regression analysssause they are a semi-parametric extension of GLM
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with the only underlying assumption that the fuoies are additives and the components are smooilgiGu
et al., 2002).

Regarding our second objective, the models fortaalull young Mediterranean trout remarked the
importance of considering a hierarchical approacfodelling fish-habitat relationships (Armstroeigal.,
2003; Olden et al., 2006; Ferreira et al., 2007)gréat proportion of the selected variables opeghtine
reach-scale (slope, elevation, distance betweedsand number of slow habitats), especially foung
trout, but there is a considerable improvementarfqgmance with HMU variables (depth, mean velqcity
cover).

Four reach-scale predictor variables were selec®ape was selected for the adult trout density
model, whereas elevation, distance between rapidsnamber of slow habitats were selected for young
trout. After examining the results, the optimalpgtosalue for adult trout was around 0.0457, i.e. reaches
characterized by low to moderate gradient. In ataace with these results Filipe et al. (2013) aglioh et
al. (2010) found that the slope affects the distidn of trout at large scale. Macro-scale topobiap
variables were important to determine the micraoialie variability present within the study area,sthu
improving the model predictions.

Elevation can be seen as a surrogate of water tatope, which has been revealed as a key driver of
young brown trout distribution. It is expected thégher temperatures predicted for the future wdinhik
the fry growth (Parra et al., 2012) and would l¢sghdwaters to become refuge areas for brown trout
(Almodovar et al., 2012). Young trout respondedh® sequence of habitat units, especially with adex
proportion of pools along the reach and short dista between rapids. The resulting partial pladgcated
an optimum degree of habitat diversity (Fig. 4)isTiesult supports the studies by Hauer et al. {p@here
young trout occupied shallow waters in pool and mabitat types close to rapids, finding lower véiles,
higher water temperatures and appropriate condemtsaof dissolved oxygen. As trout density depeoils
the HMU configuration in the river segment (i.eoportions and sequence), density models could ingpifo
they were estimated upon combinations of HMU, djediy on density data at the scale of morpholatijc
representative reaches. For example, as the sunalm@mdance at different HMU weighted by habitat-
specific densities (Hankin and Reeves, 1988; Retn2003; Hauer et al., 2011).

Three predictor variables were selected at medessc&. depth, mean velocity and cover, in

accordance with previous studies in Mediterranéaers (Mouton et al., 2011; Vezza et al., 2012; xteet
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al., 2014b). Regarding water depth, Baran et 897} found a clear segregation by habitat unite/éen fry

and adult stages of brown trout, because fry waveerfrequently detected in riffles and glides, addlts
were concentrated in deep habitats. Elso and GRI@d1) found that trout fry utilize faster flowirigabitats
rather than slower habitats until they reach aageize, after which they move into pools. Thisideour

can been explained by intra-specific competitioteanitoriality (Elliott, 1990; Elso and Giller, 2Q) and the
reduction of energy expenses (low energy swimmiogfs) has been also suggested (Bridcut and Giller,
1995; Railsback and Harvey, 2002).

In Northern Europe, Heggenes et al. (1999) dematestrthat depth is the most important habitat
variable for brown trout in small rivers, espegialuring low flow. Maki-Petays et al. (1997) obssivthat
in general there is a relation between large salkdnfish and deep habitats, although there are memtsiof
fish towards shallow microhabitats in summer orteindepending on the habitat availability. Regagdhe
observed decrease of density in large depths 8&Fjdt could be produced by the expected redudtiotine
drift provision; upholding that premise, microhabisuitability modelling has been recently improweith
the consideration of macroinvertebrate drift agn@ut variable (Hauer et al., 2012).

On the contrary, mean velocity for adult trout skdva negative linear trend (Fig. 3). For youngttrou
there was a negative effect at high velocity, imeaghent with a previous microhabitat study in Spain
(Ayllon et al., 2013). In comparison with the addétta, the partial plot for young trout demonsttatertain
dispersion at higher velocities. The results of ti® size classes mostly concur with studies in
Mediterranean rivers where velocity curves showedoptimum at low velocity and a decreasing trend
(Martinez-Capel et al., 2007; Ayllon et al., 20Myioz-Mas et al., 2012; Aylion et al., 2013) budimilar
discrepancy about the suitability of the null véipbeing present. This result it not surprisingcause trout
fry consume a relevant percentage of invertebrategy on erodible substrate (i.e. faster flowingbitat)
whereas adult trout tend to feed on prey availabléhe water column (Sanchez-Hernandez and Cobo,
2012). The differences between age groups coulchraganteraction of velocity with other variablesg.
substrate, because coarse substrate may produstyehelters at higher velocities and suitableheg for
feeding, which can be more relevant for fry in deralivers with a medium-high gradient.

The adult trout density presented a maximum pasiéffect at intermediate values of cover index,
decreasing where cover is scarce or extremely amintlowever, the effect of cover on young tro@nse

to be of very little importance. Some studies & thicro-scale indicated that older trout tend tkecte
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increasingly deeper and covered habitats to redizeedependent predation risk (Ayllon et al., 200®10;
Ayllén et al., 2013). However, such studies usedecoas a categorical variable, thus the cover index
provides us with a more gradual perspective anidtagrative combination of cover types. Our resotiald

be the product of excessive cover, which could nadeess to the best bio-energetic positions difficu

the adult trout (Sanchez-Hernandez et al., 2011b).

The presented results were mostly in agreement Midhton et al. (2011) who trained two models
based on fuzzy logic and Random Forests, and selewdth, cover index and mean velocity as the most
relevant variables for trout (all ages combined}. width was here inversely correlated with elevatib
could be considered that in general, elevation passtively related with density. We hypothesizet ttee
influence of human activities is partly explanatdpgcause flow regulation and river pollution irage in
the downstream direction. Another reason can bettielimitations in river connectivity (especialfgr
weirs in the Vallanca River) do not allow a goodpdirsion of the fish as they grow. Therefore, tigh h
densities in the headwaters of the Vallanca (iriolgdery narrow reaches) may produce this trencthvis
not transferable to the majority of other trouens.

This article demonstrates that modelling habitaability at different scales can provide interagti
insights on fish density patterns, in agreemenkt wther authors (Bisson et al., 2006; Mouton et24111),
especially when non-linear techniques are appliéd. modelling procedures demonstrated that younlg an
adult brown trout density depend on meso-scaleabbes and reach-scale variables. Therefore, river
restoration actions in Mediterranean rivers shon@ude the assessment of river connectivity anitag
diversity to quantify the ratio and distribution sibw and fast habitats. In the Jacar river Batkia,positive
effect of small weir removal has already been detrated (Olaya-Marin et al., 2012), as has the
accessibility to lateral tributaries (and the cep@nding catchment area) in highly fragmented réyetems
(Olaya-Marin, 2013).

Our models provide useful information for the desigf effective restoration measures by
environmental and water managers. Models at th@+sease allow the assessment of habitat suitabidity
fish in response to flow management or other mestoration actions. Accordingly, meso-scale matiate
models with GAM have been used in studies of edalrduylics to assess environmental flows with exoelle
results (Jowett and Davey, 2007; Costa et al., 20TRe exhaustive search for the best subset of

environmental predictors was a relevant aspechefrodel selection, in contrast with previous ssdi
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Thus, this study has provided valuable guidelimesnodelling habitat requirements for freshwateh fis

species as well as a better insight on habitaalsilitty for brown trout in the Mediterranean coritex
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