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Abstract 
With the aim of understanding the flux distributions across a metabolic network, i.e. 

within living cells, Principal Component Analysis (PCA) has been proposed to obtain a 

set of orthogonal components (pathways) capturing most of the variance in the flux 

data. The problems with this method are (i) that no additional information can be 

included in the model, and (ii) that orthogonality imposes a hard constraint, not always 

reasonably. To overcome these drawbacks, here we propose to use a more flexible 

approach such as Multivariate Curve Resolution - Alternating Least Squares (MCR-

ALS) to obtain this set of biological pathways through the network. By using this 

method, different constraints can be included in the model, and the same source of 

variability can be present in different pathways, which is reasonable from a biological 

standpoint. This work follows a methodology developed for Pichia pastoris cultures 

grown on different carbon sources, lately presented in [González Martínez et al. 2014]. 

In this paper a different grey modelling approach, which aims to incorporate a priori 

knowledge through constraints on the modelling algorithms, is applied to the same case 



of study. The results of both models are compared to show their strengths and 

weaknesses. 
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1. Introduction 
Systems Biology has become very popular during the last decade. Scientists with 

different backgrounds are nowadays working together in order to reach a systematic 

understanding of organisms. The impact of Systems Biology in biotechnological 

processes is so great that the term "industrial systems biology" is today very common 

within this kind of industries [1,2]. Measurement, monitoring, modelling and control 

(the so-called M3C methodology) are critical for obtaining high value-added 

biochemicals [3]. 

First principles-based models of microbial systems can be developed to describe the 

cells behaviour and achieve a predictive understanding of how they operate [4]. At a 

lower-intermediate degree of details, a cell can be roughly described as a collection of 

metabolites, which are consumed and produced dynamically by a set of biochemical 

reactions occurring within the cell and also being exchanged with their environment. 

These systems can be represented as directed graphs, or, in fact, directed hypergraphs, 

which are called metabolic networks. 

Metabolic networks are used to represent an organism metabolism and its growth [5,6]. 

These networks are modelled assuming that certain constraints rule at steady-state, such 

as environmental constraints [7], regulatory constraints [8,9], gene expression data [10], 

mass balances or reactions irreversibilities [11] (the so-called constraint-based 

perspective) [12,13]. The imposed constraints define a solution space that encloses all 

the possible states of the network (i.e. flux distributions through the reactions).  

A limitation of these type of models based solely on the fundamental information 

available is that other aspects will remain unknown, and some of their underlying 

assumptions (e.g. specific kinetics of the reaction system, unknown dynamics, values of 

the model parameters, objective functions) may not be valid for all the metabolic 

possible states of the network [13–15]. To face this limitation, hybrid (grey) models can 



be useful [16]. They combine knowledge-based models (which fit the theoretical, well-

known phenomena), and empirical models (which fit any remaining systematic 

variation). 

In the context of grey modelling, there are different approaches to decompose the data 

into the three types of variation (known causes, unknown causes and residuals) [17]. In 

the previous work [13], a model based on known constraints was imposed. In this way, 

the first principles-based model of the yeast Pichia pastoris was combined with 

experimental measurements of the external fluxes found in the literature. Defining the 

flux across each reaction in the network as a variable, Principal Components Analysis 

[18] (PCA) was used to obtain a set of uncorrelated components, representing groups of 

reactions, associated to the relevant biological functions of the cell. However, two 

problems arise when one applies PCA on metabolic networks: (i) no extra, available 

knowledge can be included in the model, and (ii) the components (pathways) have to be 

orthogonal among them. 

In order to overcome these drawbacks, a different grey modelling approach is presented 

here, based on incorporating the fundamental knowledge through constraints on the 

modelling algorithms using the Multivariate Curve Resolution (MCR) technique. This 

is a flexible method for multivariate modelling, being its Alternating Least Squares 

version [19] (MCR-ALS) one of its most used iterative versions. MCR focuses on 

describing the evolution of the experimental multicomponent measurements through 

their underlying component contributions [20], without imposing hard-to-accomplish 

constraints from a chemical, physical or biological point of view, as orthogonality in the 

components. This methodology has been applied to other different types of data, such as 

spectral data [21,22], chromatographic data [23], hyperspectral data for multivariate 

image analysis [24], microarray data [25] or dynamic MRI data [26]. 

This paper completes the work developed for P. pastoris cultures grown on different 

carbon sources [13] by using MCR-ALS to obtain the set of biological pathways 

through the cell. This method permits to include modelling constraints, both from 

biological and mathematical points of view, in the optimisation algorithm. Another 

advantage of MCR-ALS is that, as opposed to PCA, the obtained pathways can share a 

single source of variability, which is reasonable from a biological standpoint. The paper 

is organised as follows. Section 2 presents the metabolic network reconstruction of the 



yeast P. pastoris and the different scenarios used in the study. Section 3 describes the 

grey modelling approach, explaining briefly the common part with [13] and deeply the 

new methodology proposed here. This procedure is applied to the available data from P. 

pastoris in Section 4. MCR-ALS results are compared to PCA ones [13] in Section 5. 

Finally, some conclusions on the use of MCR-ALS method are shown in Section 6. 

 

2. Materials 

2.1 Metabolic network reconstruction 

The methylotrophic yeast P. pastoris has become one of the most widely studied 

microorganisms, since its development in the early 1970s, as it is reportedly one of the 

most useful and versatile systems for heterologous protein expression [27]. Many 

factors have contributed to the increasing interest in this yeast: (i) its easy molecular 

genetic manipulation, (ii) its ability to produce foreign proteins at high levels, (iii) its 

capability to perform many eukaryotic post-translational modifications, and (iv) its 

commercial availability [28]. 

A constraint-based model, whose corresponding metabolic network is shown in Figure 

1, has been used throughout this work. The model represents the most significant 

features of P. pastoris metabolism, including the main catabolic pathways of the yeast, 

such as glycolysis, the citric acid (TCA) cycle, glycerol and methanol oxidation and 

fermentative pathways [29]. Anabolism is introduced through the pentose phosphate 

pathway and a general lumped biomass equation, according to which growth is assumed 

to depend exclusively on key biochemical precursors. Branch-point metabolites, such as 

NADH, NADPH, AcCoA, oxalacetate and pyruvate, are considered in 

compartmentalised cytosolic and mitochondrial pools [30]. 
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Figure 1: Metabolic network of P. pastoris used in this contribution, representing the 

central carbon metabolism of the yeast during growth on glucose, glycerol and 

methanol. 

 

2.2 P. pastoris experimental data set 

In this work, experimental data from several fermentation runs with different P. pastoris 

strains have been taken from the literature, defining the different scenarios considered 

for the subsequent statistical analysis. The 40 scenarios under study show different 

uptake rates of the substrates glucose, glycerol and methanol (see Figure 2). Scenario 

A1 corresponds to a P. pastoris culture expressing the Fab fragment of the human anti-



HIV antibody 3H6 [30]. Scenarios B1-B7 and C1-C2 correspond to cultures producing 

a lipase from Rhizopus oryzae (ROL) [31,32]. Scenarios D1-D10 have been taken from 

P. pastoris cultures expressing and secreting recombinant avidin [33]. Scenario E1 has 

been obtained from a macrokinetic model for P. pastoris expressing recombinant 

human serum albumin (HSA) [34]. Scenarios F1-F7 correspond to cultures of a P. 

pastoris strain genetically modified to produce sea raven antifreeze protein [35]. 

Scenarios G1-G10 have been extracted from P. pastoris cultures producing recombinant 

human chymotrypsinogen B [36]. Scenario H1 corresponds to the continuous 

fermentation of a P. pastoris strain for the extracellular production of a recombinant 

ovine interferon protein [37]. Finally, scenario I1 comes from the culture of a 

genetically modified P. pastoris strain to produce recombinant chitinase [38]. The 

experimental data for all these scenarios are given in Figure 2. 
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Figure 2: Set of 40 experimental scenarios corresponding to P. pastoris chemostat 

cultures grown on glucose, glycerol and methanol mixtures. For each scenario, the 



values of measured fluxes belonging to substrate and product specific consumption and 

production are shown. The substrates are glucose (QGLU), glycerol (QGLYC), methanol 

(QMET), citrate (QCIT) and oxygen (OUR). The products are ethanol (QETOH), carbon 

dioxide (CPR), biomass (μ) and protein (QP). Note that NaN values stand for non-

measured external fluxes. 

 

At this point, a comment regarding the so-called “batch effects” is in order. These are 

defined as systematic non-biological variation between groups of samples (or batches) 

caused by experimental artefacts [39–42], which can be present when experimental data 

are collected. If replicates of the same scenario are available (i.e. several experimental 

runs with the same strain and same uptake rates for each substrate), the presence of 

batch effects could be removed. Otherwise, the bias introduced by the non-biological 

nature of this kind of effects may confound true biological differences [41], affecting 

the results of statistical analysis. In this study, the scenarios have no replicates (see 

Figure 2). Hence, the variation observed among scenarios with the same strains will be 

(at least partially) due to variations in the substrate uptake rates, and will be of 

biological relevance. This fact, jointly with the scarcity of information about other 

experimentation conditions (temperature, media, etc.), does not allow us to 

straightforwardly confirm actual batch effects in data. 

 

3. Methods 
The methodology applied in this paper is detailed in Figure 3. First, the constraint-based 

model of P. pastoris is combined with the experimental information found in the 

literature. These two sources of information are unified applying a Possibilistic 

consistency analysis. Then, Monte Carlo sampling is performed to obtain a large dataset 

of feasible flux distributions across the metabolic network. Finally, the MCR-ALS is 

applied on the dataset. 
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Figure 3: Flow diagram of the grey modelling applied in this paper. 

 

The main objective of this article is to compare the results between the grey modelling 

approach presented in a previous work [13], where Principal Component Analysis 

(PCA) and Missing data method for Exploratory Data Analysis (MEDA) were applied, 

and the new approach presented here, which is based on MCR-ALS modelling (see 

Figure 3). Both approaches share the Monte Carlo sampling and the Possibilistic 

consistency analysis, as well as their results. However, these methods are described here 

for the sake of completion (see [13] for details in these methods). 

3.1 Stoichiometric modelling 

To build a constraint-based model, the stoichiometric information embedded in the 

metabolic network (i.e. metabolites or cofactors involved in each reaction) must be 

arranged into an I × J matrix S (the so-called stoichiometric matrix). Rows of this 

matrix represent the I metabolites, columns the J metabolic reactions and each element 

(i,j) the stoichiometric coefficient  Si,j of the ith metabolite in the jth reaction. A value of 

Si,j = −1 indicates that the ith metabolite is consumed by the jth reaction. In contrast, a 

Si,j = 1 indicates the ith metabolite is produced by the jth reaction. Finally, a value of Si,j 

= 0 stands for the ith metabolite is not involved in the jth reaction. 

The stoichiometric matrix is used in combination with the flux vector v = (v1,..., vJ ) and 

metabolites concentration vector c = (c1,..., cI) to represent the mass balances through 

the metabolic network. This equation is expressed as: 

 

dc/dt	  =	  Sv	  =	  0	   (1) 

 



In stoichiometric modelling, the dynamic intracellular behaviour is disregarded on the 

basis assumption of pseudo-steady state for the internal metabolites [11]. 

In this work, the fluxes are assumed to flow in a single direction, so reversible fluxes in 

Figure 1 are split into two different ones. Therefore, instead of having 46 reactions 

(reversible and irreversible), now there are 63 irreversible ones (see the stoichiometric 

matrix S in Additional file).  

Finally, a maximum value for each of the J fluxes is also imposed: 

 

0	  ≤	  vj	  ≤	  vj,max	   (2)	  

 

The combination of the constraints imposed by Equations 1 and 2 defines a space (a 

bounded convex cone) of feasible steady-state flux distributions: only flux vectors that 

fulfil Equations 1-2 are considered valid cellular states. In this way, Equations 1-2 

define our model of P. pastoris, following a constraint-based modelling approach 

[12,13,43,44]. 

3.2 Possibilistic consistency analysis 

The simplest consistency analysis could be performed by checking that a set of 

measurements (or any other given flux state) fulfils the constraints imposed by the 

model [6] (Equations 1-2). However, this simple approach would be impractical 

because measurements are imprecise and do not exactly satisfy the constraints. Such 

difficulty is overcome by taking into account uncertainty as follows: 

 

wj	  =	  vj	  +	  ej	   (3)	  

 

where ej represents the deviation error between the actual fluxes vj and the measured 

values wj. 

The consistency analysis can be also formulated as a possibilistic constraint satisfaction 

problem [45]. The basic idea is that a given flux vector compatible with the 

measurements and fulfilling Equations 1-2 will be considered as "possible", otherwise 

as "impossible". This can be refined to cope with measurements errors by introducing 

the notion of "degree of possibility" [46]. 



This degree of possibility provides an indication of the consistency between the model 

and the measurements. A possibility equal to one must be interpreted as complete 

agreement between the model and the original measurements. Lower values of 

possibility imply that some error in the measurements needs to be assumed to find a 

flux vector fulfilling the model constraints. For further details on this method, readers 

are referred to the original work [6,45] or the more detailed description of the 

Possibilistic consistency analysis performed in the previous paper [13]. 

3.3 Monte Carlo sampling method 

The experimental data found in the literature represent partial flux solutions, because 

few fluxes of the metabolic network have been experimentally measured. In this 

context, Monte Carlo sampling methods can be used to produce complete feasible flux 

distributions across the cell without adding any other assumption nor biasing (i.e. 

keeping the current uncertainty) [13,47–51]. This way, the available experimental data 

(measured fluxes) and the first principles knowledge captured by the model 

(stoichiometry) are coupled together, providing a new richer dataset amenable to further 

analysis with a multivariate statistical method. 

In order to deal with experimental errors, external fluxes are allowed to vary within a 

defined small range of values centred on the original measured value. Then, the 

unmeasured fluxes (internal) are allowed to take values within the boundaries that are 

imposed by putting together the constraints in Equations 1-2 and the limits imposed to 

the values of the measured fluxes. Further details on the sampling can be found in [13]. 

At this point, the feasible solutions for each scenario are obtained by sampling within 

the slice of the cone defined by Equations 1-2 and the experimental data constraints. 

The measured fluxes reduce the feasible solution space from the initial cone, which is 

bounded only by the constraint-based model, to the portion of it fulfilling these specific 

experimental measurements. The complete procedure is depicted in Figure 4. 
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Figure 4: Monte Carlo sampling. The convex cone is obtained by Equations 1-2, the 

experimental measurements constrain the cone, and the sampling is performed on the 

resulting slice of the cone. 

 

Notice that there are scenarios lacking measurements of some external fluxes (see 

Figure 2). In the Monte Carlo sampling, these fluxes are allowed to vary within the 

whole slice of the cone defined by the measured external ones and the constraint-based 

modelling. 

3.4 Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS) 

In this paper, a Multivariate Curve Resolution-Alternating Least Squares [19,25,52–54] 

(MCR-ALS) model is used. The reasons are its ability to provide physically more 

interpretable results by (i) imposing some a priori knowledge through constraints on the 

modelling algorithm, and (ii) avoiding the orthogonality restriction on the internal 

relationships between variables/pathways. The idea behind MCR, traditionally applied 

in analytical chemistry, can be easily expanded to flux analysis by stating that a flux 

distribution across the metabolic network for a particular scenario is a linear 

combination of the different pathways existing in it. 

MCR-ALS is an iterative method that performs a bilinear decomposition of matrix X by 

means of an alternating least squares optimisation: 

 

X	  =	  CPT	  +	  E	   (4)	  

 

where P is a matrix containing in its columns each one of the metabolic pathways 

modelled, C gathers the relative contribution of each modelled pathway in each 

scenario, and E is a residual matrix.  



MCR relies on the determination of the number of “real” metabolic pathways in a 

dataset. When some a priori knowledge about this number is available, it can be used as 

an initial guess. This knowledge can be checked by using some tool able to show up the 

relevant sources of information in the data. One possible way to do this is by applying 

PCA on the data set, and taking a look at the number of latent variables with the highest 

variance. Once the number of likely pathways present in the data is determined, they 

can be sought using some purity based algorithms [55–61]. In this work, since we have 

used the software available at the Multivariate Curve Resolution Homepage [62], the 

algorithm implemented in Pure function is applied. 

Also, three additional constraints can be imposed to the MCR procedure. First, we have 

introduced a non-negativity constraint on the relative contributions and pathways. We 

have also imposed a closure constraint on the relative contributions [63,64]. This 

constraint is usually applied to closed systems, where the principle of mass balance is 

fulfilled. With this constraint, the sum of the contributions of the "real" pathways in 

each scenario (the elements in each row of the C matrix) is forced to be equal to a 

constant value, in our case, 1. Finally, depending on the biological information of each 

scenario, another constraint can be imposed: selectivity. This constraint forbids some 

pathways to be used in some scenarios, and it is applied by multiplying the relative 

contribution of each scenario by 0 if the corresponding pathway is not allowed to be 

active, and by 1 otherwise. The idea is to reduce the noise in data, avoiding inconsistent 

behaviours from a biological standpoint.  

3.5 Software 

All methods have been computed in Matlab environment (The Mathworks Inc., Natick, 

MA, USA). The Monte Carlo sampling method has been applied using the COBRA 

toolbox [65]. The MCR-ALS algorithms can be found at the Multivariate Curve 

Resolution Homepage [62]. 

 

4. Results 
The results of the grey modelling approach of the yeast P. pastoris described in 

Methods section (see Figure 3) are discussed throughout the following subsections. The 

results of the Possibilistic consistency analysis and the Monte Carlo sampling are 

discussed here to ease the understanding of the general procedure; however, for a 



deeper explanation readers are referred to our previous work [13]. MCR-ALS procedure 

is explained here in full detail, pointing at the different models fitted and the problems 

found in each one. 

4.1 Possibilistic consistency analysis 

To perform the Possibilistic consistency analysis, the set of measured values for each 

scenario is compared with the stoichiometric modelling proposed in Section 3.1. 

Scenarios with NaN values for the external fluxes, e.g. F1 (see Figure 2) are analysed 

considering only the available values. The result of this analysis on each experimental 

scenario is a degree of possibility, between 0 to 1, reflecting a degree of consistency 

between each scenario and the biological model (Equations 1-2). With the aim of 

discriminating between "consistent" and "not consistent" scenarios, a minimum degree 

of consistency is imposed. In this way, 4 out of 40 original scenarios are classified as 

"not consistent", which implies that there are errors in the model regarding these 

scenarios, or more likely, that there are large measurement errors in those scenarios (the 

degree of possibility for each experimental scenario are given in [13]). These scenarios 

are B3, B4, C2, and E1. For this reason, these scenarios are not considered in the 

following analysis. 

4.2 Monte Carlo sampling 

Since only the external fluxes of each solution have been measured in the literature, the 

Monte Carlo sampling method is proposed to simulate different complete possible flux 

solutions. These sampled scenarios are consistent with the proposed model and the 

measured subset of fluxes. Once the sampling has been performed, the fluxes for each 

scenario are arranged by rows in a feasible flux solution matrix X. This matrix has the 

complete 3600 sampled flux solutions in its rows (36 scenarios × 100 samples) and the 

corresponding 63 flux values, including the protein production rate for each scenario, in 

its columns. The sampled fluxes for reactions 55-63 are zero for all scenarios. This 

implies that given the stoichiometric modelling and the available measured fluxes for 

each original scenario, it is not likely that these fluxes can be positive. Therefore, 

columns 55-63 of matrix X are removed. 



4.3 MCR-ALS: Data considerations 

In our previous work [13], the data were autoscaled (each column was mean-centred 

and divided by its standard deviation) in order to be analysed using PCA. Here, the data 

are not autoscaled. Considering that the aim is to estimate the percentage of usage of 

each pathway in each scenario, the columns of the dataset are scaled by its maximum 

value. Therefore, the flux values have a value 0 if the flux is not used in this particular 

scenario, and 1 if the flux is used at its maximum.  

4.4 MCR-ALS: Initial estimation 

Since the MCR-ALS method is an iterative approach of MCR, it needs an initial 

estimation of either pathways or relative contributions matrix to start the alternating 

least squares estimation of both matrices. MCR-ALS Toolbox [19] has implemented the 

Pure estimations method, which uses the most different rows or columns to estimate P 

or C matrix, respectively. Here, the pathways matrix is (initially) estimated using the 

most different scenarios in the dataset.  

4.5 MCR-ALS: solution as PCA-MEDA approach 

MCR-ALS needs, unlike PCA, the number of components (or pathways) to be extracted 

before running the algorithm. Since our main objective is to compare the results of the 

PCA+MEDA approach and the results of MCR-ALS, it makes sense to start the MCR-

ALS algorithm with three pathways, which was the number of principal components in 

the previous paper. Additionally, the SVD estimation of the number of components 

indicates that 3-4 components describe well the data set. 

As explained above, different constraints are imposed in the MCR-ALS algorithm to 

achieve the solution in the way defined in the previous subsections. The first constraint 

is that both the pathways and their relative contributions have to be positive. This is 

attained by the non-negativity constraint. Secondly, for each scenario, the relative 

contributions of pathways are forced to sum one, in order to represent a percentage of 

usage. This is the closure constraint, which is applied in the contributions direction (C 

matrix). 

The variance in data explained by the MCR-ALS model is 78.5%. The pathways 

obtained in this first approach are represented graphically in Figure 5. Each row 

represents the weights of the original variables in each pathway: the clearer is the 



corresponding square the higher is the weight. These pathways are represented on the 

metabolic network in Figure 6. 

 
Figure 5: Pathways obtained extracting three components in the MCR-ALS method.  
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Figure 6: Metabolic network of P. pastoris with the three pathways obtained in the 

MCR-ALS method. The solid blue lines represent the first pathway, the dashed green 

lines the second one, and the dotted red lines the third one. 

 

These results are in fact similar to the ones obtained in [13]: the first pathway is related 

to energy generation, in the form of ATP equivalents, mostly provided by glucose 

consumption through glycolysis and oxidative phosphorylation. The second pathway 

identified can be related to anabolism, and particularly to NADPH and AcCoA 

generation (thus indirectly to biomass growth) from glycerol. Finally, the third pathway 

seems to identify methanol consumption. Note that protein production is directly related 

to the first pathway as ATP is used as its single precursor in reaction 46. These 

pathways do not correspond exactly to the ones obtained in [13], especially in the case 

of the green (#2) and red (#3) pathways on the pentose phosphate route (reactions 21-26 

in Figure 6), because the stoichiometric model was slightly different in that approach 

(i.e. the reversible reactions were not split into two irreversible ones).  

The MCR-ALS approach allows studying the relationship between each scenario and 

the pathways obtained. This relationship is depicted in Figure 7. This figure shows three 

plots, the first one represents the percentage of usage of the first pathway in each of the 

3600 scenarios. As well, the other two plots represent the percentage of usage of the 

second and third pathways, respectively. The first pathway is surprisingly not strongly 

associated to some scenarios (1-200) in which glucose is the only carbon source. In an 

analogous way, the third pathway is used nearly at 100% in scenarios in which 

methanol is consumed. The second pathway is contributing both to scenarios in which 

only glucose or glycerol are used as a substrate, despite the fact that (as shown in Figure 

6) this pathway does not consume glucose. 
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Figure 7: Relative contributions of the three pathways. The blue columns (scenarios 1-

300) represent the percentage of usage of each pathway in glucose scenarios. The green 

columns (scenarios 301-500) represent the percentage of usage in glycerol scenarios. 

The brown ones (501-2400) are the scenarios with a glycerol-methanol mixture. The red 

columns (2401-3600) represent scenarios with only methanol as a substrate. 

 

Once the relative contributions and the pathways have been visualised (Figures 5-7) 

some comments can be drawn. The second pathway depicted in Figure 6 does not flow 

in a thermodynamically feasible way through the metabolic network. The dashed green 

line crosses the pentose phosphate zone (reactions 22-26) and reaches reactions 3-4, 

where the glycerol consumption (reaction 27) ends in the opposite direction. This result, 

in addition with the poor contribution of the first pathway (solid blue) to the first two 

scenarios with glucose (1-200 in Figure 7), and the percentage of usage of the second 

pathway in glucose scenarios, indicates that the current model does not fully 

comprehend the behaviour of the scenarios analysed. 

4.6 MCR-ALS: solution with four pathways 

The results shown previously lead us to think that the actual MCR-ALS model may be 

improved by extracting another pathway, in order to discover if some of the pathways 

can be refined or if there is another pattern in the data that is not explained at the 

moment. So a new model with four pathways is fitted. 



The model explains 82.4% of variance in data. The pathways obtained in this model are 

directly represented onto the metabolic network in Figure 8. The current first, third and 

fourth pathways are similar to the ones obtained in the previous MCR-ALS model (3 

pathways). However, the second pathway represents a new metabolic route across the 

network.  
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Figure 8: Metabolic network with four pathways. The solid blue lines represent the first 

pathway, the dash-dotted black lines the second pathway, the dashed green lines the 

third one, and the dotted red lines the fourth one. 

 



The relative contribution of each pathway is plotted in Figure 9. Again, there is a plot 

for each pathway extracted from data. The first and second pathways seem to be 

associated mainly to glucose scenarios. The third pathway is widely used in the glycerol 

and glycerol+methanol scenarios, being the highest contribution attained in scenarios 

where glycerol is used as single carbon source. Finally, scenarios with only methanol 

use nearly at 100% the fourth pathway, and so do mixed scenarios with higher amount 

of this substrate. 
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Figure 9: Relative contributions of the four pathways. The blue columns (scenarios 1-

300) represent the percentage of usage of each pathway in glucose scenarios. The green 

columns (301-500) represent the percentage of usage in glycerol scenarios. The brown 

ones (501-2400) are the scenarios with a glycerol-methanol mixture. The red columns 

(2401-3600) represent scenarios with only methanol as a substrate. 

 

The percentages of usage of the four pathways depicted in Figure 9 suggest that each 

one is dominating in a single type of scenario, i.e. in those where the substrate is 

glucose, glycerol, glycerol+methanol or only methanol.  

As explained above, the flexibility of MCR-ALS method allows including different 

kind of constraints during the optimisation process. One of the most used constraints is 



selectivity. In this context, selectivity allows to constrain each pathway to not be used or 

"expressed" in all scenarios. By visual inspection of Figure 9 it seems that the first two 

pathways are related mainly to the glucose scenarios, the third one to glycerol and 

glycerol+methanol ones, and the last one to glycerol+methanol and methanol. This 

hypothesis is supported by the fact that P. pastoris cannot consume a substrate that is 

not present initially in the culture, so it makes sense to avoid this unrealistic metabolic 

behaviour through the statistical modelling. 

The percentage of variance explained by including the selectivity constraint in the 

MCR-ALS model is 81.6%, which is only slightly lower than the percentage explained 

without this constraint (an admissible loss of explained variance). The variances 

explained by each pathway are: 11.8% (1st pathway), 9.6% (2nd pathway), 26.8% (3rd 

one) and 39.3% (4th one). The sum is 87.5%. Since the variance explained by the MCR 

model with 4 components using selectivity is 81.6%, the pathways have a degree of 

orthogonality of 93.2%. 

The relative contributions of the pathways extracted with this model are plotted in 

Figure 10. The pathways obtained with this extra constraint in the model are basically 

the same as the ones represented in Figure 8 (results not shown). 
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Figure 10: Relative contributions of the four pathways, including selectivity constraint. 

The blue columns (scenarios 1-300) represent the percentage of usage of each pathway 

in glucose scenarios. The green columns (301-500) represent the percentage of usage in 

glycerol scenarios. The brown ones (501-2400) are the scenarios with a glycerol-

methanol mixture. The red columns (2401-3600) represent scenarios with only 

methanol as a substrate. 

 

Nevertheless, the inclusion of the selectivity constraint on the model produces a more 

clear usage of each pathway. In this way, the first two pathways explain the glucose 

scenarios, and the third and fourth pathways explain the glycerol and methanol ones, 

respectively, including their mixtures.  

 

5. Discussion 
Our PCA (with the MEDA improvement) and MCR-ALS models of P. pastoris deserve 

some discussion here. The final model of MCR-ALS includes all 36 possible 

experimental scenarios, while in the PCA method scenario C1 (sampled scenarios 101-

200) were discarded. The reason was that this scenario, in fact the hundred simulated 

ones, widely exceeds the 99% control limit for the Squared Prediction Error (SPE) of 

PCA. However, this scenario is clearly described in MCR-ALS by the first and second 

pathways. Moreover, the second pathway, which is describing scenario C1 up to 90% 

(Figure 10), consumes glucose and produces biomass. This pathway was not described 

by the PCA model, because biomass was only associated to glycerol consumption, 

while glucose consumption was only associated to TCA cycle, ATP and protein 

production. PCA associates a source of variability to a single principal component, so 

biomass cannot be explained by two orthogonal components. However, it is obviously 

possible for the microorganism to grow using glucose as the only carbon source, as can 

be seen in Figure 2 (µ values of scenarios A1 and C1). Actually, this is highly desirable 

as the biomass yield on this substrate is the highest. This situation illustrates the main 

advantage of using MCR-ALS: a source of variability can be associated to more than 

one pathway —in the present case, biomass growth, which appears in the second 

pathway (associated to glucose consumption) and the third one (associated to glycerol 



consumption)—. This is also related to the degree of orthogonality of the MCR-ALS 

pathways. They are highly orthogonal (and that is the reason why some of its pathways 

are similar to the PCA ones), but without imposing this constraint a new biologically 

meaningful metabolic route (Pathway 2) can be isolated. 

The ability to include constraints during the optimisation is an advantage of MCR-ALS 

over PCA. Different types of biological knowledge can be included in a 

multicomponent model by using MCR-ALS. In the present case, non-negativity and 

closure are very useful in order to clearly identify and associate pathways to scenarios, 

while selectivity permits to avoid inconsistent behaviours related to known 

experimental conditions. The closure constraint allows us to explain the percentage of 

usage of each pathway in each scenario, but the total amount of flux flowing through a 

pathway cannot be compared between scenarios. This represents a disadvantage of the 

MCR-ALS model over a classical PCA, in which the more related is a scenario with a 

pathway the more flux is flowing through it. 

 

6. Conclusions 
Investigate the metabolic phenomena occurring within microorganisms is mandatory to 

really understand their observed behaviour. The knowledge derived from these studies 

is also relevant for biotechnological industries, which exploit these microbial cultures to 

produce top quality biochemicals. In the present work, the use of a grey modelling 

approach combining a first principles-based model with experimental information, 

followed by multivariate statistical techniques, such as MCR-ALS, provides an insight 

on the main metabolic relationships underlying on actual P. pastoris cultures. 

In this way, the new approach presented here relates experimental substrates, metabolic 

pathways and biological functions of the yeast. Four pathways, from the bunch of 

possible routes, seem to be particularly relevant to represent the cellular state of a given 

culture. The first two pathways describe glucose consumption, but the first one is 

describing its use to produce a recombinant protein, while the second one addresses 

biomass growth. The third pathway also describes biomass growth, but using glycerol 

as substrate instead of glucose. Finally, the fourth pathway represents methanol 

consumption and the related pentose phosphate pathway. 



The new methodology presented here leads to biologically more meaningful metabolic 

pathways than the previous approach that was using PCA-MEDA [13]. Additionally, 

the flexible modelling of MCR-ALS, which permits to include many sources of 

biological knowledge in the model, opens a new framework of collaboration between 

statistical and biological modellers. This framework, which can be considered as a two-

step grey modelling (first step: experimental data + constraint-based model, second 

step: statistical models + additional biological knowledge) leads to a better 

understanding of these complex systems, and thus allows us to constrain the models into 

the desired direction and exploit all the available knowledge —first-principles, 

experimental data, etc.— in a suitable way.  
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Appendix. Supplementary data 
The stoichiometric matrix S of the constraint-based modelling of P. pastoris can be 

found online. 
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