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Termination of programs, i.e., the absence of infinite cotafans, ensures the existence of normal
forms forall initial expressions, thus providing an essential ingnetfer the definition of anor-
malization semanticfor functional programs. Ihazy functional languages, thoughfinite data
structuresare often delivered as thmutcomeof computations. For instance, the list of all prime
numbers can be returned as a neverendirgamof numerical expressions or data structures. |If
such streams are allowed, requiring termination is hogeleghis setting, the notion @roductivity
can be used to provide an account of computations with iefihdtta structures, as icéptures the
idea of computability, of progress of infinite-list progréhB.A. Sijtsma, On the Productivity of
Recursive List DefinitionsACM Transactions on Programming Languages and Sysidr{#:633-
649, 1989). However, in the realm @&rm Rewriting Systemsvhich can be seen as (first-order,
untyped, unconditional) functional programs, terminatid Context-Sensitive RewritingSR) has
been showeequivalentto productivity of rewrite systems through appropriategfarmations. In
this way, tools for proving termination afsr can be used to prove productivity. In term rewriting,
CSRIs the restriction of rewriting that arises when reductiares allowed on selected arguments of
function symbols only. In this paper we show that well-knaesults about the computational power
of csrare useful to better understand the existing connectiotwvegte® productivity of rewrite sys-
tems and termination afSR, and also to obtain more powerful techniques to prove priddtycof
rewrite systems.
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1 Introduction

The computation ofiormal formsof initial expressions provides an appropriate computatirinciple
for the semantic description of functional programs by nsezfranormalization semantioshere initial
expressions are given an associated normal form, i.e., @ession that do not issue any computation.
However, lazy functional languages (likéaskell [14]) admit giving infinite valuesas the meaning of
expressions. Infinite values are limits of converging indirdequences gfartially definedvalues which
are more and more defined and only cont@dnstructor symbolsAn appropriate notion gbrogressin
lazy functional computations is given by the notionpodductivity [27] which concerns the progress in
the computation of infinite values when normal forms canmobitained.

Term Rewriting Systems (TRSs![4,125,]28]) provide suitalidsti@ctions for functional programs
which are often useful to investigate their computatiomalpprties. We can see a term rewriting system
as a first-order functional program without any kind of typérmation associated to any expression,
and where all rules in the program are unconditional rédlesr where/ is a termf (¢1,...,¢) for some
function symbolf and termds, ..., ¢, andr is a term whose variables already occuf.ifT he following
example illustrates the use of infinite data structures teitin rewriting systems.
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evenNs —  cons(0,incr(oddNs)) 1)

oddNs — incr(evenNs) 2

incr(cons(x,xs)) —  cons(s(X),incr(xs)) 3

take(0,xs) — nil 4)
take(s(n),cons(x,xs)) — consF(x,take(n,xs)) (5)
zip(nil,xs) — il (6)

zip(xsnil) — il @)
zip(cons(x,xs),cons(y,ys)) — cons(frac(X,y),zip(XSYys)) (8)
tail(cons(x,xs)) — XS 9

rep2(nil) — il (10)

rep2(cons(X,xs)) — cons(X,cons(X,rep2(xs))) (11)

0+x — X (12)

sSX)+y — s(X+y) (13)

Oxy — 0 (14)

S(X)xy — y+(xxy) (15)
prodFrac(frac(x,y),frac(zt)) — frac(xxzyxt) (16)
prodOfFracs(nil) — frac(s(0),s(0)) a7)
prodOfFracs(consF(p,ps)) —  prodFrac(p, prodOfFracs(ps)) (18)
halfPi(n) — prodOfFracs(take(n,zip(rep2(tail(evenNs)),tail(rep2(oddNs))))) (19)

Figure 1: Computing Wallis’ approximation %

Example 1 The TRSZ in Figure[ [1, Example 1] can be used to compute approxinmatim 5 as 5 =
limn 5532 522 520 (Wallis’ product). InZ, symbol®) ands implement Peano’s representation of
natural numbers; we also have the usual arithmetic operatildition and product. Symbolgons and
nil are list constructorgo build (possibly infinite) lists of natural numbers likeenNs (the infinite list of
even numbers) ansddNs (the infinite list of odd humbers), which are defined by mute@lrsion with
rules (1) and[(R). Functiofncr increases the elements of a list in one unit through the apptin ofs
(rule 3)). Functionzip merges a pair of lists into a list of fractions (ruléd (6) kd)8ndtail returns the
elements of a list after removing the first one (rlile (9)). &ion take (defined by ruled{4) andl(5)) is
used to obtain the components of a finite approximatiof vehich we multiply wittprodOfFracs, which
calls the usual addition and product of natural numbers defiby rules[(IR) to (15). The explicit use
of consF to build finite lists of fractions of natural numbers by meansaie ensures that the product of
their elements computed pyodOfFracs is well-defined. A calhalfPi(s"(0)) for some > O returns the
desired approximation whose computation is launched by {@9).

Note thatZ is nonterminating For instance we have the following infinite rewrite sequenc

evenNs — cons(0,incr(oddNs)) — cons(0,incr(incr(evenNs))) — <+ — - (20)

Context-sensitive rewritingcsr [20, [21]) is a restriction of rewriting which imposes fixesntactic
restrictions on reductions by means aeplacement map that, for eactk-ary symbolf, discriminates
the argument positionis= u(f) C {1,...,k} which canbe rewritten and forbids themiifZ u(f). These
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restrictions are raised to arbitrary subterms of terms éindbvious way. Withcsr we can achieve a
terminating behavioufor TRSs% which (as in Examplgl1) are not terminating in the unresidatase.

Example 2 Let the replacement magp be given by:
U(cons) =@ andu(f)={1,...,ar(f)} forall f €.% — {cons}

That is, u disallows rewriting on the arguments of the list construgtons (due top(cons) = &). This
makes a kind ofazy evaluationof lists possible. For instance, the rewrite sequeficé (2@ve isnot
possible withcsr  The secondstep is disallowed because the replacement is issued oseitend
argument otons and2 ¢ p(cons), i.e.,

cons(0,incr(oddNs)) 4+, cons(0,incr(incr(evenNs)))

where we write—, to emphasize that the rewriting step is issued usisg under the replacement map
K. This makes the infinite sequence impossible. Terminafias®for the TRSZ and u in Examplé_1
can be automatically proved with the termination tew-TERM [2].

A number of programming languages likafeOBJ, [10], OBJ2, [9], OBJ3, [12], andMaude [5] ad-
mit the explicit specification of replacement restrictions under the sled&bcal strategies which are
sequences of argument indices associated to each symbel pmdagram.

Restrictions of rewriting may turn normal forms of some teumreachable leading toincomplete
computations. Sufficient conditions ensuring that corsexisitive computations stop yielding head-
normal forms, values or even normal forms have been inagstigin [17] 18, 19, 20, 21].

The notion ofproductivityin term rewriting has to do with the ability of TRSs to compptessibly
infinite valuesrather than arbitrary normal forms (as discussed i _[6, fB]instance). InCSR, early
results showed that, for left-linear TRS4 if the replacement map is madecompatiblewith the left-
hand sideg of the rules? — r of #Z, thencsrhas two properties which are specifically relevant for the
purpose of this paper:

1. everyu-normal form (i.e., a termhwhere no further rewritings are allowed witisrundery) is a
head-normal forn{i.e., a term that does not rewrite into a redéx) [20, ThedBgm

2. every term that rewrites into @onstructor head-normal forman be rewritterwith csr into a
constructor head-normal form with the same head symbolMB8prem 9].

The aforementionedompatibility of the replacement map with the left-hand sides of the rules (which
is then called a&anonicalreplacement map) just ensures that the positions of n@larsymbols irf
are alwayseducibleunderu. For instanceu in Example[l is a canonical replacement map4oin
the example. See also [22] where the role of the canonicideement in connection with the algebraic
semantics of computations wittsr, as defined in[13] and alsb [24], has been investigated.

In the following, we show that the factl(1) arid @)fficeto prove that termination ofsr is a
sufficientcondition for productivity (see Theorelm 5 below). As mené&d before, the connection be-
tween termination o€sr and productivity is not new. In particular, Zantema and Blaféper proved
that termination oftsris a sufficient condition for productivity [30], and then Eatlis and Hendriks
proved that, in fact, and provided that some appropriatestcemations are used, it is alsecessary
i.e., termination ofc SR characterizegproductivity [8].
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Example 3 The following TRS?Z can be used to defirrdinal number$8] Example 6.8]:

X+0 — X Xxx0 — 0
X+S(y) — S(x+y) XxS(y) — (Xxy)+x
X+L(o)) — L(x+L0) xxL(o) — L(xx_0)
X+L(y:0) — (X+y):(X+L0) XxL(y:0) — (xxy):(xx_0)
nats(X) — X:nats(S(X)) w — L(nats(0))

Here,0 andS are the usual constructors for natural numbers in Peanottion; a stream of ordinals
can be obtained by means of the list constructbthiat combines an ordinal and a stream of ordinals
to obtain a new stream of ordinals; finalll, represents dimit ordinal defined by means of a stream of
ordinals. For instancew is given as the limit (nats(0)) of nats(0), the stream that contains all natural
numbers. Finally+ and x are intended to, respectivelgdd and multiply ordinal numbers; symbol
-+ is an auxiliary operator that adds an ordinal number x to aestm or ordinals by adding x to each
component of the stream using Operationx| performs a similar task witkx. Endrullis and Hendriks
use a transformation which introduces the replacement pap) = p(+.) = u(x) = u(xL) = {2},
u(S) ={1}, andu(L) = u(:) = p(nats) = @, and also adds some rules to pros&productive

So, what is our contribution? First, we show that the abititycSRto prove productivity is a conse-
guence of essential properties @R, like (1) and (2) above. This theoretical clarification iduable
and useful for further developments in the field and, as fave&now, has not been addressed before.
From a practical point of view, we are able to improve Zantend Raffelsieper’s criterion that uses
unnecessarily ‘permisive’ replacement maps which cantéadonclude productivity as termination of
CSRin many cases. For instance, we can prove productivity?oh Example 8 as termination afsr

for the replacement map in the example. Furthermore, we can do it automatically bggusxisting
tools like AProVE [11] or Mu-TERM. In contrast, with the replacement mapthat would be obtained
according tol[30],Z is not terminating forcsr thus, productivity cannot be proved by using Zantema
and Raffelsieper’s technique. We are also able to improwéréatment in[8] because they need to apply
a transformation tg# that we do not need to use. In fact, we were able to deal witexa@mples of
productivity in those papers by using our main result togettith the aforementioned termination tools
to obtain automatic proofs. Our result, though, doetprovide a characterization of productivity, as we
show by means of an example.

However, our results apply teft-linear TRSs, whereas [8, 30] deal witirthogonal(constructor-
based) TRSs only. Actually, we also supersede the maintresfa6] which applies to non-orthogonal
TRSs which are still left-linear. This is also interestimgunderstand the role afsrin proofs of pro-
ductivity. Actually, the results in the literature aboungoleteness of srto obtain head-normal forms
and values concern left-linear TRSs and canonical replanemaps only. The additional restrictions
that are usually imposed on TRSs to achieve productivitgmmsihation ofcsr (in particular,exhaustive
patterns in the left-hand sides) have to do with the notioprofluctivity rather than witktsritself.

After some preliminaries in Sectidn 2, Sectldn 3 introduitesnotions aboutsrthat we need for
the development of our results on productivity via termimaiof csrin Sectior 4. Sectionl5 compares
with related work and Sectidd 6 concludes.

2 Preliminaries

This section collects a number of definitions and notatidmsuaterm rewriting[[4, 28]. Throughout
the paper,Z” denotes a countable set of variables aAddenotes a signature, i.e., a set of function
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symbols{f,g,...}, each having a fixed arity given by a mappiag: .# — N. The set of terms built
from.% and 2" is 7 (.7, 4). Given a (set of) term(9)e 7 (F#, Z) (resp.T C T (F,Z)), we write
Z(t) (resp..#(T)) to denote the subset of symbols.# occurring int (resp. T). A term is said to
be linear if it has no multiple occurrences of a single vdaablerms are viewed as labelled trees in
the usual way. Positiong,q, ... are represented by chains of positive natural numbers wsaddress
subterms ot. Given positionsp, g, we denote its concatenation pg. Positions are ordered by the
standard prefix orderingt. Given a set of positionB, minimak (P) is the set of minimal positions of
P w.rt. <. If pis a position, and) is a set of positionsp.Q = {p.q | g € Q}. We denote the empty
chain byA. The set of positions of a terinis Z20s(t). Positions of non-variable symbols inare
denoted as”0sz(t), and Z0sy (t) are the positions of variables. The subterm at posifioof t is
denoted as$|, andt[s|, is the termt with the subterm at positiop replaced bys. The symbol labelling
the root oft is denoted asoot(t). Given termg ands, Z70ss(t) denotes the set of positions sfin

t, i.e., Zos(t) = {p € Zost) | t|, = s}. A substitution is a mapping : 2" — 7 (%, ") which is
homomorphically extended to a mappiog 7 (%, 2°) — 7 (%, Z") which, by abuse, we denote using
the same symbap.

A rewrite rule is an ordered paif,r), written| — r, with I.,r € (%, 2),| ¢ 2" and¥ar(r) C
var(l). The left-hand sidellfs) of the rule isl andr is the right-hand siderlgs). A TRS is a pair
Z = (7 ,R) whereRis a set of rewrite ruled.(#) denotes the set difis's of . Aninstanceo(l) of alhs
| of arule is aredex. The set of redex positionsigr.220s5(t). ATRSZ is left-linear if for alll € L(%),
| is alinear term. Give? = (.#,R), we consider# as the disjoint uniot¥” = ¢ 2 of symbolsc € ¢,
calledconstructorsand symbolsf € 2, calleddefined functionswhereZ = {root(l) | | —r € R} and
€ =7—9. Then, 7 (¢,2) (resp. 7 (%)) is the set of constructor (resp. ground constructor) terms
ATRSZ = (¢W 2,R) is aconstructor systertCS) if for all f(¢1,...,l) > r€eR e T(€, %), for
1<i<k

Atermt € (., Z") rewrites tos (at positionp), writtent —p@ s(or justt —9), if t|, = o(l) and
s=t[o(r)]p, for some rulep : | —r € R, p € Zos(t) and substitutioro. A TRS is terminating if— is
terminating. A termsis root-stable (or a head-normal formMf, if s—*t, thent is not a redex. A term
is said to be head-normalizing if it rewrites into a headamalrform.

3 Context-sensitive rewriting

A mappingu : .% — [J(N) is areplacement mag.%-map) if for all f € .#, u(f) C{1,...,ar(f)}
[16,120]. M~ is the set of#-maps. Replacement maps can be compared according torésgiiction
power: u C ' ifforall fe.%, u(f)Cp/(f). If uC p’, we say thap is more restrictivehanp’. Then,
(O(N),C,2,N,U) induces a complete lattigdl #,C, 1, , yr,U): the minimum (maximum) element is
Hy (ur), given by, (f) = o (ur(f) ={1,...,ar(f)}) for all f € #. Thelub U is given by (uU
pH(f) =pu(f)up/(f) forall f € #.

The replacement restrictions introduced by a replacemaptinon theargumentsof function sym-
bolsare raised tgositionsof terms te .7 (%, 2"): the setZ?od" (t) of u-replacing positionof t is:

BEn ifte 2
Zod(t) = { {AYU Ureptrootty 1208 (t) ifte 2

Giventermss,t € 7 (%, 27), 204 (t) is the set of positions correspondingtereplacing occurrences
of sint: Zod (t) = Zod'(t) N Pos(t). The set ofu-replacing variablesoccurring int € 7 (%, 27)
isvart(t)={xe 2 | Zog(t) # o}.
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3.1 Canonical replacement map

Givent € 7(%,2), a replacement map € M, is called compatiblewith t (and vice versa) if
P0sz(t) C Pod!(t). Furthermore,u is calledstrongly compatiblewith t if Z20sz(t) = Zod'(t).
And u is (strongly) compatible witih C 7 (%, 2") if for all t € T, u is (strongly) compatible with
[18,120]. Theminimumreplacement map which is compatible with .7 (%, 2") is [20]:

“t B ut/\I_lut‘ll—l'“uut‘ar(root(t)) If t ¢ %

with g/\(root(t)) = {i € {1,...,ar(root(t))} | t|i & 2} andp/(f) = @ if f # root(t).

Fora TRSZ = (#,R), we useM instead oM »~. The canonical replacement maff" of % is the
most restrictive replacement map ensuring that the nomabéa subterms of the left-hand sides of the
rules of# are active

Definition 1 [20] Let# be a TRS. Theanonical replacement map.% is uZ" = Ujcy () 1 -

Note thatuZ" can be automatically associatedztby means of a very simple calculus: for each symbol
feZandie{l,.. . ar(f)},icud"(f)iff A cL(Z),pec Posz(l),(root(l|p) = fApic Fosz(l)).
Given a TRSZ, CMy = {4 € My | u2" C u} is the set of replacement maps that are equal to or
less restrictivethan the canonical replacement map.ule CMy,, we also say thatt is a canonical
replacement map fa%.

Example 4 For # in Exampld B, we halfle

HE(S) = USEN(L) = p(nats) = pSE() = @
M) = HE(+) = HE(x) = pS(x1) = {2}

For instance,u2"(S) = @ because for all subternf(t) in the left-hand sides of the rules/ — r of %,
t is always avariable HoweveruZ"(+) = {2} because the second argumentioin the left-hand side
X+ 0 of the first rule inZ is nota variable.

Note that,u in Examplé B prescribeg(S) = {1}. Thus,uZ" C p and u € CMy but i # pu™".

3.2 Strongly compatible TRSs

Givent € (%, %), the only.Z (t)-mapu (if any) which is strongly compatible withis i [18, Propo-
sition 3.6]. We callt € .7 (%, 2") strongly compatible ifu; is strongly compatible witt. Similarly,
the only % (T )-map i which can be strongly compatible with is pr = Uiet . We call T strongly
compatibleif ur is strongly compatible witfT; we call T weakly compatiblé t is strongly compatible
forallteT.

Definition 2 [18,/19]A TRSZ is strongly(weakly) compatible, if (%) is a strongly (weakly) compati-
ble set of terms.

The only replacement map (if any) which mak&sstrongly compatible igu". For instance,Z in
Example[B is strongly compatible, butis not strongly compatible with. (%) (variabley in the left-
hand side of the second rulejisreplacing).

1The specification for constant symbalss omitted, as it is always the empty sefa) = .
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3.3 Context-sensitive rewriting

GivenaTRSZ = (#,R), U € My, ands,t € (%, Z"), s u-rewrites ta at positionp, writtensi%ﬂt
(ors—gut,s—yt, orevens— t), if s—p@t andp € 2o (s) [16,[20]. A TRSZ is pu-terminating
if <, is terminating. Several tools can be used to prove ternuinaif Csr; for instance AProVE and
MU-TERM, among others.

Remark 1 In the following, when considering a TR together with a canonical replacement map
u € CMg, we often say that-, performscanonicalcontext-sensitive rewriting stegs [21].

The—;-normal forms are calleg-normal forms andN Ff’% is the set ofu-normal forms for a given TRS
Z. As for unrestricted rewriting, € NF% if and only if L@osﬁ/‘z(t) = o (i.e., t contains nqu-replacing
redex). Rewriting with canonical replacement maphkas important computational properties that we
enumerate here and use below.

Theorem 1 [20, Theorem 8]Let Z be a left-linear TRS angt € CMy. Every p-normal form is a
head-normal form.

Theorem 2 [20, Theorem 9L et Z = (% ,R) = (¢ W Z,R) be a left-linear TRS angi € CMy. Let
se 7(7,42),and t=c(ty,...,t) for some c= ¢. If s—*t, then there is u= c(uy, ..., Ux) such that
s—*uand, forali,1<i<k,uy—*t.

4 Productivity and termination of CSR

The operational semantics of rewriting-based programrtanguages can be abstracted, for each pro-
gram (i.e., TRS)%Z, as a mapping from termse .7 (%, .2") into (possibly empty) sets of (possibly
infinite) termsTs C 7 “(.%,.2"), which are (possibly infiniteleductsof s. Theintended shapef terms

in Ts depends on the application:

1. In functional programming(ground)values te .7 (%) are the meaningful reducts of (ground)
initial expressions (evaluationsemantics) ands C .7 (%¢).

2. Inlazyfunctional programmingnfinite valuesare also accepted in the semantic description, i.e.,
Ts € 7 9(%), but the infinite terms are not actually obtained but aapyproximatedas sequences
of appropriate finite terms which apeefixesof the infinite valu

3. Inequational programmingnd rewriting-based theorem provers, computiogmal formsis en-
visaged formalizationsemantics), i.eJs C NF 4.

In functional programming (both in theagerandlazy case), computations can be understood as decom-
posed into the computation of a head-normal fafrti.e., s —* t’) which is then rewritten (below the
root!) intot. When a head-normal forthis obtained, the root symbdl= root(t’) is checked. Iff is a
constructor symbol, then the evaluation continues on amnaegt oft’. Otherwise, the evaluatioiails
and an error is reported (this correspond3dempty). Thus, a head-normalization process is involved
in the computation of the semantic s&ts

The notion ofproductivityin term rewriting has to do with the ability of TRSs to compptessibly
infinite values Most presentations of productivity analysis use sortgdatures and termsl[8, 30]. The

2such finite approximations to infinite terms are describepaaial valuesusing a special symbal to denote undefined-
ness. An infinite valud € 7 (%) is the limit of an infinite sequenc&, ..., dy, ... of such partial values where, for alp> 1,
di+1 € 7 (€U{L})is obtained from € 7 (¥ U{L}) by replacing occurrences dfin & by partial values different from..
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set of sorts? is partitioned inta = AUT, whereA is the set of data sorts, intended to model inductive
data types (booleans, natural numbers, finite lists, e@n)the other hand, is the set ofcodatasorts,
intended to model coinductive datatypes such as streamifinite trees. Terms of sotk are called
data termsand terms of sort§ are calledcodataterms. Given a symbal : 13 x --- x Ty — T, ara(f)
(resp.arr (f)) is the number of arguments éfof sortA (resp.l). Endrullis et al. (and als [30]) assume
all data arguments to be in the first argument positions o$ynebols.

Definition 3 [8| Definition 3.1]A tree specificatioiis a (AU )-sorted, orthogonal, exhaustive construc-
tor TRSZ whereANT = @.

Here,Z is calledexhaustivef for all f € .7, every termf(ty,... t) is a redex whenevdr € 7 %(%)
are (possiby infinite) closed constructor terms fori @l < i < k [8], Definition 2.9]. As in[[8, Definition
2.4], we assume here a generalized notion of substitutian &-sorted mapping : 2" — 7 %(%#,2")
which is also extended to a mappiog .7 (%, 2") —» T (F,Z).

Example 5 Consider the tree specificatiaf in Exampld_B, where, according tol[8, Example 6 8}
{Ord} with Ord a data sort for ordinals andl = {Str} with Str a codata sort for streams of ordinals. The
types for the constructor symbols a@:: Ord, S :: Ord — Ord, L :: Str — Ord and (:) :: Ord x Str — Str.
Thus,%x = {O,S, L}, 6r = {Z}, Dp = {—I—, X,(A)}, and9r = {—I—L, XL, nats}.

Definition 4 [8, Definition 3.5]A tree specificationZ is constructor normalizingf all finite ground
terms te .7 (%) rewrite to a possibly infinite constructor normal fordne .7 “(%).
Being exhaustive is a necessary condition for productivity

Theorem 3 If Z is constructor normalizing, then it is exhaustive.

PrRoOOF If not, then there is a finite ground normal fotraontaining a defined symbol. This contradicts
Z being constructor normalizing. O

Theorem 4 Let % be an exhaustive, left-linear TRS apds CMy,. If # is y-terminating, thenZ is
constructor normalizing.

PROOF. SinceZ is u-terminating, every ground tersthas a (finite)u-normal formt. By Theoreni 1L,

t is a head-normal form. We prove by inductiontatiatt rewrites into a (possibly infinite) constructor
termd € J%(%). If t is a constant, then singds a y-normal form, it must be a normal form. Since
Z is exhaustivet = 6 € 7(%). If t = f(ty,...,t) for ground termg;,... t, then by the induction
hypothesis, for all, 1 <i <k, tj has a (possibly infinite) constructor normal fodre .7 (%¢). We have
two cases:

1. If f € €, thent has a (possibly infinite) constructor normal fofrfYy, .. ., &).

2. If f ¢ €, then, sincé is a head-normal formf(d,,..., &) is a ground (possibly infinite) normal
form which contradicts tha¥# is exhaustive.

Thus,shas a (possibly infinite) constructor normal form as well &gk constructor normalizing. O
Since tree specifications are left-linear and exhaustitiepiieni 4 holds for tree specifications.
Example 6 The following tree specificatia® (cf. [30, Example 4.6])
p — zip(alt,p)

alt — 0:1:alt
zip(x: 0,1) — X:zip(T,0)
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(where no constant for empty lists is included!) is easilpved 2 -terminating (usevu-TERM). By
Theoren(#4, it is constructor normalizing. Note that is exhaustivedue to the sort discipline (for
instance, zif0,0) is not allowed) and to the fact that no constructor for ligprovided (i.e., there is no
finite list and all lists are of the form cofst) for terms s, t where t is always infinite).

As remarked in[[8, Section 3.2], several authors defifieo be productive if it is constructor nor-
malizing (e.qg.,[[¥, 29, 30]). Endrullis and Hendriks give amnelaborated (and restrictive) definition of
productivity. Givert € 7(.%, 2") and.#' C .7, a.#'-path int is a (finite or infinite) sequenc@, ¢y ),
(P2,C2),... such that; = root(t|p ) € .#’ andpi;1 = pi.j with 1 < j <ar(c;) [8, Definition 3.7].
Definition 5 [8] Definition 3.8] A tree specification is saidata-finiteif for all finite ground terms
se J (%) and (possibly infinite) constructor normal forms t of s, @v/&k-path in t (containing data
constructors only) is finite.

Definition 6 [8, Definition 3.11]A tree specificationZ is productiveif & is constructor normalizing
and data-finite.

In the following resultu, is given by (c) ={1,...,ara(c)} for all c € €, andua(f) = @ for all other
symbolsf.

Theorem 5 Let % be a left-linear, exhaustive TRS apde My be such thauZ"Lipuy C p. If Z is
U-terminating, thenZ is productive.

PrROOF.  Sinceud" C u, constructor normalization of follows by Theoreni 4. Thus, i#Z is not
productive, there must be a ground normal fdrof a terms with an infinite €a-path. Without loss of
generality, we can assume tsat>* s, = cy(S], ..., §, ) for somec; € %), and therst —* ca(sf,..., %)
for someiq, 1 <i; < ara(cy) andcp € %, etc., in such a way that this reduction sequences follow the
computation of and produce th&x-path(A,c;), (i1,C2), (i1.i2,C3),...

By Theorem2,s —* 3 = ¢1(3],...,5, ) for some termssj,..., 5 such thatsf —* s} for all j,
1< j < k. Thus, by Theoreril2 we also hage —* cz(‘%,...,‘%) and§J2 —* sf forall j, 1< j <ko.
Sinceiy € pa(cy), we haves —*H =1 (5},...,5, 1,0, ...,5,.. .. K,),. .., ) With &, —* 5, again.
Sincei;.i; € 209 (%,), we can continue with this construction to obtain an infipiteewriting sequence
which contradictqu-termination of%Z. O

Example 7 For the tree specificatio? in Example B (see also Examjle 5), we havg(&y = 1 and
ara(L) = 0. Then,ua(S) = {1} and ya(L) = @. Nowpu = uz2"Liua is as given in Examplel 3. The
u-termination of% can be proved wittvu-TERM. By Theoreri]5, productivity of follows.

Example 8 We also prove productivity o in Exampld 6. Hereh = {d} andl" = {s} with A = {0,1}
and 41 = {cons} where ap(cons) = 1. Thus,u = "L up yields u(zip) = p(cons) = {1}. The
u-termination of% can be proved wittvu-TERM and by Theorernl5 productivity & follows.

In general, Theoreiln 5 doe®t hold in the opposite direction, i.e., productivity @f does not imply its
U-termination.

Example 9 LetZ be (cf. [8, Example 5.3]):

Note thatuZ2"(:) = {2} due to the third rule. This make# non-uZl"-terminating due to the first rule.
We cannot use Theordrh 5 to praxeproductive, but it is (see Examplel10 below).
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Regarding constructor normalization, we have:

Theorem 6 LetZ be a orthogonal strongly compatible TRS such that either
1. u3"(c)=woforallce ¥, or

2. # contains no collapsing rule ang?"(c) = @ for all constructor symbols € ¢ such that
c=root(r) for somel —r € Z.

If % is constructor normalizing, then it g5"-terminating.

PROOF SinceZ is constructor normalizingZ is head-normalizing, i.e., every tersihas a (construc-
tor) head-normal forn, i.e.,root(t) € €. By [18, Theorem 4.6], every"-replacing redex in a term
which is not a head-normal form is root-needed (5eé [23]usTkveryuZ2"-reduction sequence wit?

is head-normalizing. Furthermore, since every teisihead-normalizing, everyZ"-rewrite sequence
starting froms yields a head-normal forrhwhich, by confluence ofZ, is a constructor head-normal
form, i.e.,t =c(ty,...,t) for somec € €. We have two cases:

1. If uS"(c) = @ for all constructor symbols, thent is a u-normal form.

2. Otherwise, we can assume tla$ not a head-normal form and then, since there is no cotigpsi
rule, the root symbot of t must be introduced by the last rule applied to the root in thadh
normalizing sequence. Hence, by our assumptige) = & as well.

Thus, everyuS"-rewrite sequence starting from any tesis finite and% is uZ"-terminating. O

5 Related work

In [30], Zantema and Raffelsieper develop a general tecieniq prove productivity of specifications
of infinite objects based on proving context-sensitive teation. In the following result, we use the
terminology in Sectiofl4, borrowed frorm|[8]. Consistensince the notion of ‘productivity’ in[[30],
corresponds to constructor normalization (see Settiowdhave the following.

Theorem 7 [30, Theorem 4.1) et # be apropertree specification angit € My given byu(f) =
{1,...;ar(H)} if f € 2 and u(c) ={1,...,ara(c)} if c € €. If #Z is pu-terminating, thenZ is con-
structor normalizing.

Remark 2 TheorenlF is a particular case of Theorémn 4: proper tree sjpations are TRSs with
rules ¢ — r whose left-hand sideé contain no nested constructor symbols, i.e., they are ofdaha
¢ = f(&,...,%), whered is either a variable or dlat constructor term €xy,...,Xn) for some con-
structor symbol cand variables x,...,xm. In this case, the replacement mapequired in Theorern]7
is canonicali.e.,u € CMg.

Exampl€e6 is given in [30, Example 4.6] to illustrate a treecification% where Theorer]7 camot be
used to prove constructor normalization. Indeétlis not y-terminating ifu is defined as required in
TheoreniV. In contrast, Theorém 4 was used in Exahiple 6 temronstructor normalization o and
Theoreni b was used in Example 8 to prove productivityzof

In [8] Endrullis and Hendriks have devised a sound and comptansformation of productivity to
context-sensitive termination. The transformation peatsein two steps. First, anductively sequential
(see [3]) tree specificatio® is transformed into ahallowtree specificationz’ by a productivity pre-
servingtransformation|[[8, Definition 5.1] and|[8, Theorem 5.5]. kle# is shallowif for eachk-ary
defined symbolf € 2 there is a sels C {1,...,k} such that for each rul&(ps,...,px) — r, everyp
satisfies([8, Definition 3.14]:
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1. Ifi€l¢, thenp; =ci(Xg,...,Xm) for somec € ¥ and variablex;, ..., xn € Z"; and
2. Ifi¢ls, thenp € 2.

Example 10 The (inductively sequential) TR8 in Exampld® isot shallow, but it is transformed by
the first transformation into the following TR® (adapted from([8, Example 5.3]):

s — b:s
f(a,0) — fa(0)
falo) — o
f(b,o) — fp(0)
fo(x:0) — fun(X,0)
fo(x,y:0) — b:f(byy:0)

Since#’ is productive if and only iZ is, we use now Theorelm 5 (with= uZ", sincepy = ) to
proveZ productive. This shows (see Exanigle 9) that Thegiem 5 daesxtemd to a characterization
of productivity as termination afsr

Proposition 1 Shallow tree specification®’ are strongly compatible constructor TRSs whefg'(c) =
gforallce¥.

PROOF. Letu(f)=I¢forall f e 2 andu(f)=o forall f € ¢. Foralll e L(#Z), Pod ()=
Posz (L), i.e.,Z is strongly compatible. SinggZ?"is the only replacement map that makéstrongly
compatibleu = uF"andu$"(c) = @ forallcc 7. O

In Endrullis and Hendriks’ approach, a second transfommatibtains a CS-TR&%#”, i) from %’
(see [8, Definition 6.1]) in such a way thattermination of%#” is equivalentto productivity of%’ [8,
Theorem 6.6].

Remark 3 First Endrullis and Hendriks’ transformation preservesoguctivity. Thus, we can usg’
together with Theorefn 5 to prove productivityZdfwithout usingthe second transformation. We proceed
in this way in Example10, where we conclude productivitgbivithout using the second transformation
described in[[8, Definition 6.1].

By Theoreni 6 and Propositién 1, we have:
Corollary 1 Constructor normalizing shallow tree specificatio@sare p"-terminating.

With Theoreni#, we have the following characterization daflihw tree specifications (see al$o [8,
Theorem 6.5]).

Corollary 2 A shallow tree specificatio% is constructor normalizing if and only if it ig&"-terminating.
However, we also have

Corollary 3 A strongly compatible tree specificatiowithout collapsing rules and such thaf?"(c) =
@ for all constructor symbols € ¢ such that c=root(r) for somel — r € # is constructor normalizing
if and only if it is uZ2"-terminating.

Since productive tree specifications are constructor nlizimg, we have the following.

Corollary 4 Productive shallow tree specificatioss are uZ"-terminating.
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In [26], Raffelsieper investigates productivity of northargonal TRSs. However, he still requires
left-linearity and exhaustiveness &. Thus, our results in Sectidd 4 also apply to his framework.
Raffelsieper also introduces the notionstfong productivitymeaning that every maximal outermost-
fair Z-sequence starting from a term of sériis constructor head-normalizing_[26, Definition 6 and
Proposition 7]. He also uses terminationasfrRto prove strong productivity of higroper specifications
He defines a replacement map- (see [[26, Definition 11]) which is, howevdessrestrictive than our
replacement mapy, in Theoreni . Thus, his main result in this respect [26, Téwoi 2] is a particular
case of our Theorefd 5.

6 Conclusions and future work

We have identified Theoreni$ 1 2 (originally[in][20]) asrimepthe essentials of the use of termi-
nation of canonical csr to prove productivity of rewrite systems (see the proofs bédrems$ ¥4 and
[B). Although termination ot sr had been used before to prove (and even characterize) pixotic
we believe that our presentation sheds new light on thisection and also shows that the use of such
well-known results aboutsr also simplifies the proofs of the results that connect teation of CSR
and productivity. Furthermore, the use of the canonicdbnent map as one of the (bounding) com-
ponents of the replacement map at stake is new in the literaind improves on previous approaches
that systematically use less restrictive replacement nthps losing opportunities to prove termination
of csrand hence productivity. We improved Endrullis and Hendrédggproach because we avoid the
use of transformations, being able to directly prove prtiditg of a non-shallow TRSZ as termina-
tion of csrfor # itself. For instance, we directly prove productivity &f in Example[B without any
transformation, whereas Endrullis and Hendriks requieeatdition of new rules due to their second
transformation (see [8, Example 6.8]). In Examplé 10, weckhate productivity of#’ without using
their second transformation. As a matter of fact, we were &bfind automatic proofs of productivity
for all the examples in [8, 26, 30] by using Theorein 5 togethith AProVE or MU-TERM to obtain
the automatic proofs of termination afsrR Our results, though, doot provide a characterization of
productivity, as witnessed by Examplegs 9 10. In cont@{B, 30], which deal withorthogonal
(constructor-based) TRSs only, our results appletolinear TRSs and supersede [26] which applies to
non-orthogonal TRSs which are still left-linear.

In the future, we plan to apply other powerful results abampleteness of srin (infinitary) nor-
malization and computation of (possibly infinite) valueslevelop more general notions of productivity
and apply them to broader classes of programs.
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