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Handling uncertainty of resource division in multi
agent system using game against nature

KRZYSZTOF SKRZYPCZYK and MARTIN MELLADO

This paper addresses the problem of resource division for robotic agents in the framework
of Multi-Agent System. Knowledge of the environment represented in the system is uncertain,
incomplete and distributed among the individual agents that have both limited sensing and com-
munication abilities. The pick-up-and-collection problem is considered in order to illustrate the
idea presented. In this paper a framework for cooperative task assignment to individual agents
is discussed. The process of negotiating access to common resources by intercommunicating
agents is modeled and solved as a game against Nature. The working of the proposed system
was verified by multiple simulations. Selected, exemplary simulations are presented in the paper
to illustrate the approach discussed.
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1. Introduction

In Multi-Agent Systems (MAS), a primary task the system is intended to perform
is distributed between a number of entities (agents). It was recognized that there are a
number of tasks MAS can perform more efficiently than centralized, single-unit-based
systems. Thanks to the feature of MAS - modularity, even the domain of complex prob-
lems which are sometimes unpredictable can be solved by a number of simple entities,
specialized in solving a particular part of the primary problem [28, 32]. On the other
hand, there are a lot of challenges that must be met in order to design effective and ro-
bust systems that are able to solve problems or execute tasks. These challenges were
discussed in [28] and it is enough to point out the problems like coordination [6, 15, 33],
task division [11, 14, 30] etc. The potential advantages of MAS were quickly noticed
by researchers who deal with problems related to Robotics. They have discovered that
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some specific tasks whose execution requires building and operating complex, powerful
robotic units, can be performed more effectively by simpler, highly specialized robots.
There are a number of problems that have become benchmarks and test-beds for the qual-
ity assessment and analysis of Multi-Robot Systems (MRS) functioning. One of them is
the exploration problem. It is clear that exploring large areas by multiple mobile robots
can be done more effectively than with the use of one single unit. There is an exten-
sive literature on studies that have been done on this subject [1, 4, 22]. Another problem
often being implemented in the MAS framework is pick-up-and-collection which is sim-
ilar to the foraging problem and consists of the collective searching for and picking up of
objects distributed within a constrained or unconstrained workspace. [18]. Another prob-
lem that has often been reported in the literature is multi robot formation control. The
key issue in this problem is to provide a coordination mechanism for individual robots
that enables movement of all the robots along a given path to be obtained while keeping
the formation pattern [10, 19, 24, 25]. The successful solution for this problem is the
basis for another problem that has been the subject of much research - the transportation
of large and heavy objects by a number of tightly coupled and coordinated smaller trans-
porters [16, 27]. Different approaches to modeling MAS have been developed over the
years. Starting from the reactive agent based system [3] through to a purely deliberative
agent architecture [31] and hybrid systems [2]. Other approaches that are very promis-
ing are the Economics-based ones, particularly market mechanisms which are becoming
more and more attractive for MAS developers [8, 12].

The one which application is considered in this paper is Game Theory [21, 23]. This
seems to be a proper tool for dealing with problems such as coordination in MAS [17,
23]. Therefore, it has been a subject of numerous studies in this area [9, 10, 13, 20].

In contrast to many studies [17, 20, 24] that present the use of the game theoretical
framework in a centralized system that synchronously controls the agents’ actions, the
approach presented in this paper is different. The asynchronous negotiation process be-
tween agents is modeled as a game against a virtual, unreasonable player who is referred
to as Nature. This player is a personification of the uncertainty that appears during the
negotiation process in a distributed system. Since each agent has only limited knowledge
of the process, it must take the decision on the basis of its own data and the data it ex-
changes with other agents. While negotiating the resources division there is uncertainty
about the result of this process. In this case this uncertainty must be included in the
decision-making model. The process of modeling this approach is carried out on the ex-
ample of a pick-up-and-collection task. Moreover, the classical formulation of this task
is extended by introducing the uncertainty about the environment, which is related to the
limited sensing abilities of agents. In the approach presented, thanks to the possibility of
exchanging information, a certainty about the environment can be increased. The system
was modeled in MATLAB simulation environment. A few, relevant results were selected
in order to illustrate the properties of the approach presented.
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2. System description

The approach to negotiating a division of resources is presented on the example of
pick-up-and-collection task. This task consists of collecting a number of objects scat-
tered inside a workspace of limited area. The task is supposed to be performed in the
framework of the distributed system that is described in this section. The system con-
sists of a number of agents. Each robotic-agent has apriori-defined the mission target
as well as collaborative strategy embedded. The final behavior of the system emerges
from mutual interaction between the agents. Fig. 1 illustrates the principal idea of the
system. There is an unknown number of objects to collect scattered over an area being
the workspace of the system. The system consists of a specified number of robotic-units
also called agents. Each agent can be defined by the following features [32]:

• limited sensing abilities,

• possibility of communication with limited number of other agents,

• a set of actions that an agent is able to take,

• reasoning about those actions based on its own knowledge,

• limited payload.

Figure 1. Diagram that illustrates organization of the MAS designed for performing the pick-up-and-
collection task.

Since agents can communicate with each other they can exchange information about
objects that are detected by their sensing devices and this way increase their knowledge.
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The agents that establish communication form the coalition. Inside the coalition it is
possible negotiating division of resources which are represented by the objects to collect.
Some objects that are in range of one agent can be left for the others in order to improve
the effectiveness of the mission performance.

2.1. Agent description

The system consists of N robotic agents that are equipped with devices which allow
them to detect and determine location of objects. Let us define the robots’ team as the
set of indices:

R = {i} , i = 1,2, ...,N. (1)

A state of each robot is determined by (xr,i,yr,i,θr,i,cr,i) i ∈ R, where xr,i, yr,i denote
coordinates of the center of the robot and θr,i is a heading defined in the workspace coor-
dinate frame. The fourth element cr,i ∈ [0,ci,max] denotes the current load of the ith agent.

Sensing

Each agent is provided with perception devices that allow it to detect objects in its
vicinity. Therefore, let us define a set of objects detected by the ith agent as a set of
indices:

Oi = { j}, i ∈ R, j ∈ O ∧ Oi ⊆ O. (2)

The perception of each agent is limited by the range of its sensors. The range of the
sensors is constrained by sr,i, which implies that only those objects can be can be detected
that satisfies the following:

k ∈ Oi ⇔ do
i,k ¬ sr,i (3)

where do
i,k denotes the Euclidean distance between the ith agent and the kth object.

Sensing uncertainty

In order to increase the realism of the process modeled it is assumed that the fact
of detection of the particular object bears some uncertainty. This uncertainty is partially
related to the distance defined by (3). The closer the agent is to the object the greater
certainty of detection there is. This uncertainty may be influenced by the accuracy and
characteristic of the sensor, the method of detection etc. In this study the model of the
uncertainty is not considered. It is assumed that the detection certainty of the jth object
by the ith agent is denoted by:

pi,k ∈ [0,1]. (4)

Since the same object can be detected by multiple agents, the global certainty about
detection event derives from the fusion of information exchanged by interconnecting
agents. Let us define a set of certainty factors that determines the events of detection of
the kth object by multiple agents:

Pk = {p j,k}, j ∈ R. (5)
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The global certainty of the kth object detection determined using information (5)
collected by individual agents is equal to p̂k. The value depends on a method applied
to merging information (5). The method itself in not a subject of this study. For
implementing the negotiation schema the fusion method based on reliability criterion,
described in [34] was adapted.

Communication

Agents are provided with communication devices that allow them exchanging in-
formation. Communication abilities of agents are limited. In the case of this study the
limitations are narrowed down to the range of the communication devices. Let us define
the set of gents that ith agent is able to communicate with:

Φi = { j}, j ∈ R ∧ j ̸= i. (6)

Two agents are in communication only when the transmission of data can be made in
both directions:

j ∈ Φi ⇔ dr
i, j < bi ∧ dr

i, j < b j (7)

where bi/ j denotes the range of communication devices of the ith and jth agent, while
dr

i, j in (7) is the distance between the ith and jth agent.

Agent’s load

Each agent is designed to transport a certain number of objects. The current load of
the agent is defined by:

ci ∈ [0,ci,max] (8)

where ci,max is the maximum payload of the ith agent which is the number of objects it
can accommodate on board.

2.2. The system operation states

The control process of individual agents in a distributed system is decentralized and
there is no central coordination. Therefore each agent must be provided with operational
management mechanism. In this study it is organized as a finite state automaton (Fig. 2).

After detecting objects the agent tries to establish communication with other agents
in order to share information. If it succeeds it sends appropriate data and then it waits for
a response. If it is not able to communicate, it builds its own process representation and
skip to the state of execution of the task. If the response is received the agent determines
these object detected by others agents that it wants to collect and sends this information
to those agents. Simultaneously the same can be requested of the agent - to leave some
objects for other agents. After completing the negotiations it sends its response that con-
tains information about the negotiations results. Completing the negotiations determine
the sub-task which is the set of objects the agent decides to collect. Next it skips to the
state of execution of the task.
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Figure 2. Finite state automaton defining the possible activities of the agent control system.

3. Modeling the collection process

Let us assume that the ith agent has detected objects defined by (2) with appropriate
certainty factors defined by (4). After establishing communication with nearby agents it
receive information (location, certainty factors, current load and the agent’ state) about
object detected:

Ôi = {Ok} , k ∈ Φi ,k ̸= i. (9)

Simultaneously it sends the same data related to its own detection results and its current
state to all agents specified in Φi. Since the goal of each agent is to collect as many
objects as possible but simultaneously it is required to distribute the load among other
agents uniformly. Assuming the objects are very heavy, the cost of exploration, picking
up and transportation of the objects by the agent that is already carrying a large number
of objects is not effective. For this reason the agent estimates if it is able to collect some
objects from (10) more effectively. This estimation is made on the basis of agents’ loads.
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Let us define the value of the predicted load of the ith agent:

ĉi =

{
ci +Oi for ĉi < ci,max

ci,max otherwise
(10)

where Oi determines the number of objects detected by the ith agent. The value (10)
is just an estimation of the possible loads of the agents intercommunicated with the ith
agent. So agents that carry to many objects on board and simultaneously detect relatively
large object’ number are considered as those that need help from the ith agent. Let us
define a set of these agents as:

ΦP,i = {k}, k ̸= i, k ∈ Φi ∧ ĉi − ĉk  2. (11)

The assumption ĉi − ĉk  2 ensures that after taking one object from the other agent’s
resources, the loads of these two agents will be equal. It is assumed that the ith agent is
allowed to take only one, the nearest object from the agent defined in (11). Hence the set
of objects that the ith agent will probably be permitted to take is equal to:

ÔP,i = { j}, j ∈ Ok, k ∈ ΦP,i ∧ do
i, j = min

m∈Ok

(
do

i,m
)
. (12)

The message sent to other agents for leaving requested objects contains information
defined in (12). On the other hand, at the same time the ith agent can also be requested
by other agents to leave some objects from its own resources. Let us similarly denote the
set containing those agents that ask the agent ith to leave some objects:

ΦR,i = {k}, k ̸= i, k ∈ Φi ∧ ĉk − ĉi  2 (13)

and the objects that the ith agent is supposed to share with other agents:

ÔR,i = { j}, j ∈ Oi ∧ do
k, j = min

m∈Oi

(
do

k,m
)
, k ∈ ΦP,i (14)

The sets defined by (12) and (14) are the subject of negotiations between intercommu-
nicated agents. The information flow in this system is assumed to be defined by peer-
to-peer architecture. The agent that sends a request for information or objects will be
called consumer hereafter. Therefore the ith agent must decide if it will leave some of its
objects and sends a response to the consumers. The agent asked for sharing its resources
will be called producer hereafter. The decision in this case must be taken without the
knowledge of a decision taken by producers that were sent requests by the consumers.
Such organization of information flow in the system reduces its complexity and makes
it easy to implement. But on the other hand it implies the uncertainty that influences
the decision making process by the consumer and must be resolved by an appropriate
negotiation scheme. In the next section the negotiation model will be presented, as well
as the arbitration schema that held the aforementioned uncertainty.
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4. Resource division

Let us assume that the ith agent determined the negotiation’ subject defined by (11)-
(14). The arbitration goal is determining the response and send it to agents that requested
it. The response contains indices of objects that the ith agent decides to share with con-
sumers. Simultaneously, it must take into account uncertainty related to the responses of
the producers that were requested by itself. After it takes a decision about leaving ob-
jects and receives a response from producers, the ith agent determines the set of objects
it must collect. The process of collecting objects defined by the aforementioned set is the
final result of the arbitration process and is a partial task the given agent carries out.

4.1. Case without uncertainty

First, let us consider a relatively simple case without uncertainty, when the set de-
fined by (11) is empty, which means the ith agent does not request any objects that
"belong" to other agents. The role of arbitration is to give a response to the consumer-
agents that sent their requests. This response contains information about objects the ith
agent is ready to share with others. In this case arbitration consists of selecting a group
of agents that satisfy the following:

• the predicted load of the ith agent after leaving objects is not smaller than the
maximum, predicted load among the group of agents,

• the group has to minimize the costs of collection of objects.

Let us first formulate the condition related to the demand for the uniform distribution of
agents’ loads and denote the subset of the set (13), which determines the group of agents
for which the ith agent decide to leave objects:

Φ∗
R,i ⊆ ΦR,i ⇔ ĉi −Φ

∗
R,i  max

k∈Φ∗
R,i

(ĉk +1). (15)

If the inequality (15) is satisfied by , this agent whose costs of collecting the object from
the set (14) is the highest is removed. The cost of collecting the jth object by the kth
agent is defined as follows:

ek, j = δ
1
p̂ j

do
k, jck. (16)

The cost is related to the work that the moving agent must do in order to reach the jth
object. The cost is then proportional to the way do

k, j must travel, and to its mass. The
mass is proportional to the current load ĉk of the kth agent. The last variable in (16) is
the certainty factor p̂ j that reflects conviction of the fact the jth object is on its place.
It is assumed that this certainty inversely affects the estimated cost of collection of the
object. Therefore the selection of agents defined by (15) has the property that minimizes
the cost the group of agents incur for collecting objects:

min ∑
k∈Φ∗

R,i

ek, j, j ∈ ÔR,i. (17)



HANDLING UNCERTAINTY OF RESOURCE DIVISION IN MULTI AGENT SYSTEM
USING GAME AGAINST NATURE 265

4.2. Case with uncertainty

Let us focus on the case when due to the possibility of collection of some objects
by the ith agent, an uncertainty in the negotiation process arises. In a further part of this
section the process of modeling the decision-making in a game theory framework will
be presented. One of the branches of a general Game Theory are problems in which one
player (decision maker) does not collaborate or even more its potential behavior cannot
be predicted or it cannot even be classified as rational. This class of problems are referred
to as games against nature. In this case the nature reflects the uncertainty related to the
producers’ reply to the consumer ask. Let us define the game between the ith agent and
nature:

G = {A,J} (18)

where A is the game’s action space defined as:

A = Ai ×AN (19)

where Ai is the set of possible actions that the ith agent can take, and AN is a set of
actions that virtual opponent called Nature can take. The element J in (18) is a function
that reflects the costs of applying a combination of decisions:

J : A → ℜ. (20)

This function will be called the cost function hereafter.

Action sets

The ith agent that must take the best possible decision and simultaneously take into
account the uncertainty of behavior of the producers. Let us assume that the decision that
the ith agent can take is an answer sent to the consumers. The reply sent to the individual
agent can be twofold. It can permit the agent that made the request to take one object or
refuse to do it. Hence, let us define the action set of the ith agent:

Ai = {ak}, k ∈ ΦR,i, ak ∈ {0,1}. (21)

The number of possible actions of the ith agent is equal to Ai = 2Rno where Rno = ΦR,i
is the number of agents that request for resources sharing. On the other hand a space of
possible actions of nature must be defined. These actions have to reflect the uncertainty
of the fact that the ith agent is not sure about the decisions of the producers. Thus the
action set of a second player is defined as:

AN = {a j}, j ∈ OP,i, a j ∈ {0,1}. (22)

The number of possible actions of Nature is equal to AN = 2Ono , where Ono = OP,i is
the number of objects the ith agent is requesting. The decision a j = 1 taken by nature
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means that the ith agent is allowed to collect the jth object from the set OP,i. Otherwise
(a j = 0) it is not allowed to do it.

Cost function

The cost function is the core of the process model. It maps a particular combination
of a player’s actions into the cost space. The cost reflects an accuracy of decisions taken
with respect to assumed criteria. Let us distinguish factors that affect the costs. The first
one is called reward and is related to the aim of the ith agent, which is to collect as many
objects as possible. This factor stimulates the agent to collect more and more objects.
For each object picked up from the workspace the agent obtains an assumed premium
which in this case is an abstract value that must be scaled to the general cost amount:

qi = q = const. i = 1,2, ...N, q ∈ ℜ (23)

The amount of premium can be varied with respect to a particular agent; nevertheless in
this study, it is equal for each agent (agents are homogenous entities). Since the agents
are not assumed to be egocentric entities, they tend to improve the efficiency of the
mission they carry out in common. It was also said that one of the quality factors that
evaluate mission performance is a uniform distribution of loads for agents. In this case
the utility of the reward for each agent depends on its current and predicted load. Let us
define the linear function that maps the reward into the space of the agent’s utility, which
depends on its load:

fu(qi) =

{
qi

(
1− ci

ci,max

)
for ci < ci,max

0 otherwise
(24)

Moreover, the agent should take into account the possible loads of other agents. It is
clear that if one agent reaches its maximum payload and simultaneously detects a large
number of objects, its aim should not be to collect all those objects. It perceives different
utility (real value) of the reward than the agent whose load is low. The ith agent must
also evaluate if leaving objects for other agents is profitable with respect to the energy
spent for the collection of objects that were left. Let us formulate the cost related to a
given combination of decisions as a function that consists of two components

J(ai,aN) = Qi +E. (25)

The first one is related to the real value of the reward the ith agent obtains after decision ai
and in the case when the decisions of the producers are defined by aN . As was discussed
before, the real utility of the reward is a function of the load of the ith agent as well as
the predicted loads of other agents after taking decisions (ai, aN). So the first component
of (25) is defined as:

Qi = fu (qi(ai,aN ,q)) (26)
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where qi(ai,aN ,q) is the reward value that reflects mutual dependencies between agents’
loads. Hence it is defined as a function that consists of three components:

qi(ai,aN ,q) = q(−ĉA
i + s+g) (27)

where ĉA
i denotes the predicted load of the ith agent after taking its decision ai in the

case that the response of the producers is defined by the set aN :

ĉA
i (ai,aN) = ĉi − ∑

k∈ΦR,i

ai(k)− ∑
j∈ΦP,i

ai( j). (28)

The second component in (27) is related to the distribution of payloads between the ith
agent and the consumers that request objects. It is an implementation of a simple strat-
egy. If in the worst case, the predicted load of the ith agent is greater than or equal to
the summary of the predicted loads of the consumers that are considered for permission
to take objects, then the reward is decreased. The decrease is proportional to the afore-
mentioned difference. Also, if this difference is smaller than zero the reward has to be
decreased, in which this case the decrease in the reward is even greater. The strategy is
formulated using the following:

s =

 ĉi − ∑
k∈ΦR,i

ai

(
Ok +1

)
for s > 0

s2 otherwise
(29)

where ĉi is the worst-case load of the ith agent given as:

ĉi = Oi −OR,i. (30)

The third component in (27) takes into account the possible responses of producers. It
also maps another intuitive social rule into the space of "rewards". Therefore behavior
that consists of the ith agent is taking additional objects from the producers’ resources.
In the case when the ith agent decides not to share its object with the consumers, it should
be "punished". Hence the value of third component in (27) is defined by the following
formula:

g =

 − ∑
j∈ΦP,i

aN( j) for s¬ 0

−g otherwise.
(31)

By defining these three components, the first factor of the cost function (25) was de-
signed. It is related to virtual rewards that are awarded for a uniform distribution of
loads and the "care" of the given agent for effective and collaborative behavior. The sec-
ond component of (25) is related to the real, energetic cost of the execution of a partial
task, related with hypothetical decisions of ith agent. This factor takes into account total,
estimated costs that incurs the group of agents performing the scenario that results from
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the decisions of the ith agent. Let us then define the energetic factor of the cost function
(25) as:

E(ai,aN) = ∑
k∈OR,i, j∈ΦR,i

ai(k)ek, j + ∑
l∈OP,i

aN(l)ek,i. (32)

The first component of (32) is a summary cost of the consumers collecting those objects
the ith agent permitted them to collect. On the other hand, the second component is the
cost of collecting those objects the ith agent is permitted to take from the set of the
producers.

4.3. Solution

The result of the game is defined by the set a0
i of the decision that the ith agent took

with respect to each agent defined by (13).The problem solving method should take into
account the response uncertainty received from the producers. This uncertainty is just
modeled as different scenarios represented by "actions" taken by Nature. Considering
the part of Game Theory related to modeling conflicts with irrational opponents – like
Nature, a number of solutions of such conflicts have been studied and proposed [15].
In order to present a functioning of the proposed methodology it was applied the most
common, Wald’s criterion, which corresponds to pessimistic behavior of the player. Ac-
cording to this criterion, the player is prepared for the worst situation. The behavior
of the player applying Wald’s criterion consists of minimizing the possible costs of its
decision. Therefore the ith agent takes the decision:

a0
i = min

ai∈Ai
max

aN∈AN
(J (ai,aN)) . (33)

Using strategy (33) the ith agent secures its possible costs at a level called the secu-
rity level. This solution does not give the best possible results but in the case of high
uncertainty allows critical results of the decision to be avoided. After carrying out the ar-
bitration, the given agent plans the execution of the partial task. The partial task consists
of collecting all the objects that belong to the set defined after the negotiation process.
This set can be defined as:

O∗
i = Oi ∪Oi,R(a

0
i )/O∗

i,P (34)

where Oi,R(a
0
i ) ⊆ Oi,R denotes the set of objects that the ith agent decided to leave for

other consumers. On the other hand, the set O∗
i,P is the result of negotiations carried

out by the producers and seen from the perspective of the ith agent. This set contains
information about objects the producers decided to leave for the ith agent. Thus the set
(32) contains the objects the ith agent is to collect. The task of the agent’s local planner
is to find optimal solution of the partial task. The partial task is a sub-problem of the
primary one which is to find the path that allows the collection of all objects by spending
minimal amount of energy. In this study a graph representation was used to model spatial
relations between objects and estimate collecting costs using Hamiltonian Path.
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5. Resource division summary

Let us consider the following scenario (Fig. 3): one agent (which will be referred
to as the ith hereafter) detects a number of objects defined by the set Oi. After that, it
looks for other agents in order to check if it is possible to improve the objects collecting
process by sharing or exchanging objects with other agents.

Figure 3. Diagram of information flow while executing the single stage of the mission.

Let us suppose that it established a communication link with the following agents:
agent 1, agent k and agent M. It sends them information about detected objects, its load
and location. On the other hand it receives the status data from other interconnected
agents. Using received data, its knowledge of the state of the process has been enhanced.
It tries to define these agents that detected too many objects or are overloaded. These
agents are requested to leave some objects for the ith agent. They are defined by the
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set ΦP,i. This kind of reasoning is followed by other agents which send requests to the
ith agent. These requests are defined by the set ΦR,i. Now the agent must decide which
objects it is ready to share in order to improve the distribution of the load among an
interconnected group of agents. This decision must be taken under uncertainty about
responses from agents requested by the ith agent. The decision is taken as a result of
an arbitration process that was carried out and is defined by the set Φ∗

R,i. Information
about its decision is sent to agents specified by the set ΦR,i. Simultaneously this kind of
reasoning is followed by other interconnected agents. The result of this process is sent to
the ith agent and defines its set Φ∗

P,i. After closing negotiations the agent determines the
set of objects O∗

i that it finally decided to collect. The next step of the agent’s operation
is to plan a path a (sequence of "move and pick-up" actions) . This plan is an optimal
solution for the local, partial task. After completing the task, it starts to look for other
objects.

6. Simulation results

6.1. Single stage case study

In order to explain and clarify the proposed idea of distributing tasks among agents
(which is somewhat complicated), in the beginning let us consider just single stage of
the process. It should explain the information flow between agents and the idea of nego-
tiations. The exemplary scenario is presented in Fig. 4.

There are 20 objects scattered within the workspace and 4 robotic-agents indexed
from 1 to 4, with their initial configurations as shown in Fig. 4. The payloads of the
agents are equal to 5. The initial loads ci of the agents are correspondingly equal to
ci ∈ {0,2,1,1}, i = 1,2, . . . ,4. The range of sensors of particular agents is defined by
the set sr,i ∈ {30,50,40,30}, i = 1,2, . . . ,4. For each agent its communication range is
limited to bi = 80 [m], i = 1,2, . . . ,4. Thus particular agents can detect a number of
objects depending on the range of their sensors as well as on their current locations. The
sets of detected objects are defined by:

O1 = {17}
O2 = {1,3,6,18,19}
O3 = {2,10,16}
O4 = {5,7,9}



HANDLING UNCERTAINTY OF RESOURCE DIVISION IN MULTI AGENT SYSTEM
USING GAME AGAINST NATURE 271

Figure 4. Exemplary scenario for a single stage case study.

The next stage is to establish communication with other agents. The sets that define the
agents’ indices the given agent is able to communicate with are as follows:

Φ1 = {4}
Φ2 = {3,4}
Φ3 = {2}
Φ4 = {1,2}

After this, each agent starts negotiations with others. The input of the negotiation process
are sets defining objects that each agent can leave or take from others. In the case studied
here they are equal to:

ΦR,1 = Ø, ΦP,1 = {4}, ÔR,1 = Ø, ÔP,1 = {5}
ΦR,2 = {3,4}, ΦP,2 = Ø, ÔR,2 = {6,3}, ÔP,2 = Ø
ΦR,3 = Ø, ΦP,3 = {2}, ÔR,3 = Ø, ÔP,3 = {6}
ΦR,4 = {1}, ΦP,4 = {2}, ÔR,4 = {5}, ÔP,4 = {3}
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The results of negotiations are defined by sets that contain the indices of objects the
given agent is ready to share:

O∗
R,1 = Ø

O∗
R,2 = {6,3}

O∗
R,3 = Ø

O∗
R,4 = {5}

Thus the result of negotiations is that agent 1 gains additional objects from agent
4. Simultaneously, agent 4 gains object 3 from agent 2 and agent 3 gains object 6 from
agent 2. The final sets particular agents negotiated to collect are defined as follows:

O∗
1 = {5,17}

O∗
2 = {1,18,19}

O∗
3 = {2,6,10,16}

O∗
4 = {3,7,9}

Figure 5. Graphical interpretation of the solution for the single stage of the collection process.
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Finally, optimal solutions that are time-ordered sequences of objects the given agent
planned to collect are:

S∗1 = {17,5}
S∗2 = {19,18,1}
S∗3 = {2,16,6,10}
S∗4 = {7,9,3}

A graphical interpretation of the transitions of agents resulting from this solution is pre-
sented in Fig. 5. When a particular agent completes the task it tries to detect new objects
from the location it reached after completing its partial task. If it is not able to do so, it
moves in a random direction and tries to detect objects again. In both cases, whether it
did or did not detect new objects, it tries to establish a connection with other agents and
the overall process described is repeated again. The results of continuation of this exper-
iment are presented in Fig. 6. The paths of agents while collecting objects are marked
with different line styles. It can be seen that thanks to collaboration between agents the
task is completed more efficiently than in the case of using self-oriented agents. It is
worth stressing that the task was completed with a uniform distribution of loads between
agents.

Figure 6. Collection of 20 objects by 4 agents – illustration of paths of individual agents.
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6.2. Further experiments

In order to present the functioning of the method proposed two experiments were
selected. The experiments consists of collecting 30 and 40 objects distributed throughout
the workspace, by four agents. The agents start work in different initial configurations
which are shown in Figures 7 and 8. In the first experiment (Fig. 7), the agents are
placed close to each other in the given region of the workspace. It can be noticed that
the quality of the task execution depends strongly on the distribution of the objects and
the initial positions of agents. In such cases the key issue in effective task execution
is communication and collaboration between agents. For example, in the experiment
mentioned agent 1 after collecting object 3 went into the dead-zone where there were
no objects. Thanks to communication with agent 2 and its "will" to collaborate it was
informed and permitted to pick up the object 17. Finally the task was executed effectively
as can be seen in Fig. 7. Agents terminated the work with equal loads corresponding to
{7 8 8 7}, which shows a uniform distribution of loads and a correct task division while
carrying out the mission.

Figure 7. Experiment in collection of 30 objects by 4 agents.

The second experiment shows the work of the method with different initial con-
figurations of agents and a larger number of objects to collect. Once again it can be
observed (Fig. 8) that the task was executed in an effective way. Communication and
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the collaborative behavior by each agent brought improvements to their work when they
entered in dead-zones without any objects in their range. Also the distribution of loads
{10 10 10 10} proves efficiency of the method, of course when the overriding criterion
of an efficiency is a uniform distribution of loads of individual agents.

Figure 8. Experiment in the collection of 40 objects by 4 agents.

7. Conclusion

This paper addressed the task division and action coordination problem of robotic
agents in a framework of distributed, Multi-Robot System. The agents’ team was in-
tended to perform the pick-up and collection task. A limitation of the sensing abilities as
well as the communication range of each agent was assumed. That implied that knowl-
edge of the environment was uncertain, incomplete and distributed among the individual
agents. In this paper a framework for cooperative task assignment to individual agents
is proposed. The process of resource division was based on the arbitration that utilize
the basics of Game Theory. The process of negotiating access to common resources by
intercommunicating agents was modeled and solved as a game against Nature that in
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this case symbolizes the uncertainty. The system was assumed to be an asynchronous
one. Therefore each agent was provided with an embedded state machine based oper-
ational manager, which defined the communicational peer-to-peer protocol. The work
of the system was verified by numerous simulations that were carried out. The results
of simulation allowed evaluation of quality of the method. The results showed that the
method presented enables proper task execution. Due to the exchange of information
between agents it is possible to obtain a team behavior that tends to equalization of loads
between particular agents. Moreover the cost involved to the team for the collection of
objects is minimized by the collective behavior of the agents. The results are not guar-
anteed to be optimal but seem to be correct and feasible. The effectiveness of the task
division depends on the communication range and the distribution of the objects as well
as the algorithm of object search. In this paper a probabilistic approach to objects search
was applied and therefore the performance of the method is not deterministic. Future
research related to this subject will be focused on examining different search strategies
as well as modifying the negotiation scheme in the proposed fixed framework.
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