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Abstract

An unsteady flamelet / progress variable (UFPV) approach is used to model a lifted H,/N, flame in a RANS framework together
with presumed PDF. We solve the unsteady flamelets both in physical space and in mixture fraction space. We show that in the
former case, the scalar dissipation rate profile strongly varies in time (while it is assumed to be fixed in time in the latter). However,
this does not result in significant qualitative differences in the corresponding flamelet libraries. The progress variable is carefully
defined, including both the main combustion product (H,O) and a key radical species in ignition process (HO,). The presumed-
PDF model is proposed in terms of the non-normalised progress variable, without assuming its statistical independence with mixture
fraction. We introduce a modelled transport equation for the mean progress variable which is consistent with the basic underlying
UFPV assumption, derived from the Lagrangian flamelet model. The influence of different model parameters on the results for the
mean temperature and mean species mass fractions and their fluctuations is discussed. Good results are obtained for the conditions
of the considered lifted flame where detailed experimental data is available. However, at low coflow temperature the modelled

flame lift-off height is shorter than expected.
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1. Introduction

For the modelling of industrial combustion devices such as
diesel engines or gas turbines, the use of tabulated chemistry
together with presumed-PDF modelling is an attractive ap-
proach. In unsteady flamelet/progress variable (UFPV) models,
the strong underlying assumption is to suppose that the struc-
ture of the turbulent flame considered can be described by ignit-
ing and extinguishing laminar diffusion flamelets [1-3], where
the mixture fraction Z and its scalar dissipation rate y are key
parameters. This kind of approach has received attention lately
[4-15], resolving the unsteady flamelet equations in Z-space
with the assumption of fixed-in-time y-profile from the analytic
steady solution of laminar counterflow diffusion flames.

This paper is a contribution to UFPV modelling with pre-
sumed PDF in a RANS framework. In order to deal with re-
alistic conditions while involving a small number of chemical
species, we consider a steady lifted H/N, turbulent jet flame
in a coflow of hot products at atmospheric pressure (the vitiated
co-flow burner developed by Dibble and co-workers), first mea-
sured at Berkeley university by Cabra et al. [16, 17] and later
at Sydney university at different operating conditions [18, 19].
This flame has mainly been modelled in a RANS framework
using transported PDF methods with different mixing models
[16, 20-28]. A first CMC calculation of this flame was reported
in [29]. First LES calculations were based on stochastic fields
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[30], and on perfectly stirred reactors [31], and more recently
LES-CMC calculations were presented [32, 33]. In all these dif-
ferent modelling studies, different reduced or complete chem-
ical mechanisms were directly applied. Two main conclusions
from the experimental and numerical studies can be drawn: the
main stabilisation mechanism of this flame is autoignition (with
the key role of HO; radical on the ignition process), and the lift-
off height is strongly sensitive to the coflow temperature.
These modelling approaches are based on a mean scalar dis-
sipation rate (transported PDF) or possibly a conditional mean
scalar dissipation rate (CMC). Even if some fluctuations of the
scalar dissipation rate are considered in LES models (due to the
large scale fluctuations of the gradient of the filtered mixture
fraction), none of the above models applied to this flame in-
clude the small scale fluctuations of the scalar dissipation rate.
These fluctuations are expected to follow some log-normal dis-
tribution [34]. We can expect that including such fluctuations
would decrease the flame lift-off height, by including contri-
butions of low scalar dissipation rates and therefore decreas-
ing the ignition delay time. However, the general trend of the
above-mentioned numerical results is a rather too short flame
lift-off height, and the correct flame is obtained at coflow tem-
peratures lower than the nominal experimental one (within the
experimental error range). On the other hand, one example of
modelling of this lifted H,/N, flame using unsteady flamelets
is reported by Vicquelin [15]. In this case where y fluctua-
tions are accounted for through a log-normal PDF, the correct
flame lift-off is obtained by prescribing a slightly higher coflow
temperature than the experimental one. This different trend be-
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tween modelling based on direct chemistry integration or based
on unsteady flamelets is probably related to the fact that the lat-
ter relies on an underlying assumption on the local flame struc-
ture, including molecular diffusion effects.

The modelling approach proposed here in a RANS frame-
work is similar to [15] and follows the idea of the unsteady
flamelet/progress variable (UFPV) model proposed for LES by
Pitsch and Thme [4], and refined in [6]. The thermochemi-
cal properties are parametrised by mixture fraction Z, reaction
progress parameter A and stoichiometric scalar dissipation rate
Xst- In [4, 6], a presumed PDF model is introduced to represent
the filtered density function (FDF) fz, ., supposing statistical
independence between Z and A, and between Z and y, such
that: fza,., = fz-fru-falva- A B-PDF is used for f7 and a 5-PDF
for f,,. In [4], a 6-PDF is also used for fy,, while a statisti-
cally most likely distribution (SMLD) [5] is employed in [6].
The final look-up table of mean thermochemical properties is
expressed directly in terms of the mean mixture fraction Z and

its variance Z'2, the mean scalar dissipation rate y (substituting
the stoichiometric yy) and a mean progress variable Y, and pos-
sibly its variance (substituting the reaction progress parameter
A). A simpler presumed-PDF model was used in LES with only
a 3-distribution for mixture fraction in [7, 8] and was applied to
different methane turbulent flames. The modelling presented in
[4] was recently applied to auto-ignition in diesel engine condi-
tions using an unsteady RANS approach in [9] and in [10]. In
our case, the presumed-PDF assumptions are rather following
the work of Michel et al. [11, 12], also developped in a RANS
framework. Using their terminology we use a similiar approach
as the “DF-PCMy” approach used in [15]. We assume a (-
PDF for f7 and a log-normal distribution for f, . However, we
use a 0-PDF for fy, , with A the unsteady flamelet Lagrangian
time 7, allowing us to consider a non-normalised progress vari-
able dependent on Z. This is different from the PCM approach
where a 5-PDF is used for the normalised progress variable (in
this case a normalised progress variable has to be considered
since the S-distribution requires fixed minimum and maximum
values for the considered variable, independent of Z). We sim-

ply express the final look-up table in terms of 7,7,y and Y,
as Pitsch and Thme [4].

In the modelled transport equation for the mean progress
variable, Pitsch and Ihme use the mean of the chemical reac-
tion rate w, as usually done in steady flamelet/progress variable
(SFPV) models. On the other hand, when using approximated
diffusion flamelets, Michel et al. use a mean source term in-
cluding both chemical reaction and molecular diffusion: we
will denote this term Y, (which is zero for steady flamelets
where diffusion and reaction counterbalance). The principle
of SFPV models is clearly detailed in [35], and such models
have been introduced and used by different authors with differ-
ent names: for instance FGM [36], FPI [37, 38] or REDIM [39].
In SFPV models [35], the progress variable Y. — correspond-
ing to the value of mass fractions of combustion products either
in steady laminar flames or in the inert mixture (extinguished
flames) — is a way to substitute the scalar dissipation rate y in
the parametrisation of the steady-flamelet models, previously

expressed in terms of (Z, y). In the SFPV framework, the mod-
elled transport equation of the mean of this ‘steady flame com-
bustion product mass fraction’, Y., is simply written formally
as the mean transport equation for a reactive species mass frac-
tion. This modelled equation includes the mean of the reaction
term @, obtained from the steady flamelets, and clipping is ap-
plied if necessary. This choice actually implies a shape for the
PDF of y (which is not formally derived) in such a way that
the modelled mean y of the numerical solution and the mod-
elling of the PDF of the progress variable Y, are consistent [35].
When considering UFPV models, a progress variable Y, based
on species mass fractions from unsteady flamelets is of different
nature of Y.. While formally the same, the transport equation
used in [4] is different from the one introduced in [35]. We will
discuss here the choice of the modelled transport equation for
the mean progress variable, including a formulation in terms of
@, and a formulation in terms of ¥,.

As a final remark, we know that LES potentially allows
to model scalar mixing, intermittency, transient effects in a
much finer way than RANS. This is especially relevant when
considering practical devices which are usually characterised
by complex flow patterns and complex geometries. On the
other hand, under the high Damkohler number assumption of
flamelet-like combustion models, the LES filtered chemical
source term needs to be modelled entirely, as in RANS [40].
In the simple steady axisymmetric jet configuration considered,
we can expect that our well calibrated RANS simulation can
provide enough information in terms of scalar mixing (mean
mixture fraction, variance and mean scalar dissipation rate) to-
gether with the presumed-PDF assumptions considered (3-PDF
for mixture fraction and log-normal PDF for the stoichiometric
scalar dissipation rate). In particular, we expect the assump-
tion of a log-normal PDF for y to allow to obtain a modelling
framework where intermittent ignition events are considered in
a good way and where minor species can be as well predicted
as compared to LES modelling like [4—6] where a 6-PDF is as-
sumed for yy, or compared to LES-CMC like [32, 33]. The pro-
posed combustion model for RANS modelling of simple steady
flames could be extended in a straightforward way to LES mod-
elling (with some possible modifications of the presumed-PDF
assumptions).

In the next section, the resolution of unsteady flamelets in
physical space (where the scalar dissipation rate is not fixed)
or in Z-space (with a prescribed fixed-in-time y-profile) is dis-
cussed, together with the adequate definition of the progress
variable Y,.. In Section 3 the presumed-PDF assumptions are
detailed, considering a non-normalised progress variable. In
Section 4, together with the turbulence model, two equations
for the mean progress variable are presented: either including
the mean of the reaction term w, or of the flamelet transient
source term Y.. Finally, results are presented together with
the influence of different parameters, and some limits of the
model are discussed for low coflow temperature where the lift-
off height is underpredicted.



2. Unsteady flamelet manifolds

For completeness, we will repeat here the basic flamelet
equations and notations. We do not recall here the range of ap-
plication of flamelet models in turbulent combustion modelling,
but we first clearly state what can be a physical interpretation of
the model (including the choice of the progress variable for ig-
niting flamelets), which will later have some implications con-
cerning the way to express the presumed-PDF model and the
way to write the modelled transport equation for the progress
variable.

We then show that the manifold obtained from the transient
solutions of unsteady flamelets solved in Z-space using the con-
stant steady y-profile proposed by Peeters is in correspondence
with the manifold obtained from unsteady flamelets resolved in
physical space, despite the strong unsteadiness of the y-profile
in the later case. Note that, so far, the correspondence derived
by Peeters for steady flamelets has been used in the context of
unsteady flamelets (solved in Z-space) without considering the
possible impact of the time-variation of y.

2.1. Modelling assumption and 3D parametrization

The strong underlying assumption in our modelling is to sup-
pose that the structure of the stationary lifted flame consid-
ered can be described by igniting and extinguishing laminar
flamelets (in the opposed-jet configuration, with the fuel and
hot coflow conditions of the considered flame). In this way,
at a given point in the turbulent lifted flame, the value of any
property Q(x,t) is assumed to correspond to the solution of
a given unsteady flamelet defined by the strain rate a, after a
given time A7y, at a given mixture fraction Z. Therefore, we
consider all possible solutions of igniting and extinguishing un-
steady flamelets in a 3D space parametrised by Z, a and Atyy.
We refer to the values of any property Q corresponding to the
unsteady flamelet solutions as: Q"™(Z, a, ATyps).

The underlying assumption of our modelling is then that at
any point in the turbulent lifted flame, there exists a given value
of (Z, a, Atyys) (corresponding to the actual local values of the
turbulent reacting flow), such that: Q(x, ) = Q"™(Z, a, ATyys).

Re-parametrization in terms of local properties. We can in-
deed measure local values of Z(x, f) in our turbulent flow, using
for instance Bilger’s formula [41]:

7= (Y = Yaeot) 2Wn = (Yo = Yo cot) /Wo
(Yiu — Yiieor) 12Wa — (Yoru = Yocof) /Wo

ey

where Yy and Y, are the elementary mass fractions of H and
O atoms (and Wy and W their respective atomic weight), and
where the subscripts ‘fu’ and ‘cof’ refer to the fuel and coflow
streams as in Table 1.

However, rather than the strain rate a (which defines the
boundary conditions of the laminar unsteady flamelet calcula-
tion), we rather consider the scalar dissipation rate y:

X = 2D——. @)

which can be measured as a local value in the turbulent flow
(in the above equation D is the diffusion coefficient of mixture
fraction).

On the other hand, the definition of the local value of the
unsteady flamelet time parameter A = Ay, is not straightfor-
ward. We actually need a parameter giving a physical sense of
the time advancement of the unsteady flamelet solution. A good
candidate may be a progress variable defined as a linear com-
bination of species mass fractions of combustion products as it
has been proposed many times for the construction of tabulated
chemistry manifolds based on steady flamelets [36—39]. In the
present case, an immediate choice would be to define Y, as the
mass fraction of water vapour: Y, = Yu,o. However, while Yy,0
should be enough to represent the advancement of reaction after
ignition, another species needs to be added in order to represent
the first stage of the unsteady flamelet before ignition. Different
transported PDF and CMC numerical modelling studies of the
flame considered have identified HO, radical as a key interme-
diate species [22, 27-30, 32, 33]. We propose to include the
mass fraction of HO, radical in the definition of Y, multiplied
by a factor 10: Y. = Y,0 + 10Yno,. This factor 10 was chosen
by considering the maximum values of Yy,0 and Yyo, around
ignition in unsteady igniting flamelets. In this way, Yyo, is the
main contribution to Y, before ignition, it is of the same order
as Yn,o around ignition and it becomes negligible after ignition
where Yy,0 is the main contribution to Y.

We denote by z the sample space of possible values of
Z(x, 1), Y the sample space of possible values of y(x, ) and y.
the sample-space of possible values of Y.(x,#). The unsteady
flamelet properties can be represented in the sample space as
0*(z,¥,y.). Note that we want to define Y, such that there ex-
ists a function 7*(z, ¥, y.) relating Y, and Atyy:

Aty = T5[Z(x, 1), x(x, 1), Y(x,0)], 3)

where the function 7*(z, ¥, y.) is monotonic in y,. for fixed val-
ues of (z, ¥), such that we can write the one-to-one correspon-
dence:

0*ex"™(z @ @ v y0) ] = 0™z a T @y yo) |, @)

and the unsteady flamelet properties can indeed be represented
in an unequivocal way in the sample space as Q*(z,¥,y.).
When solving the unsteady flamelet equations in physical
space, both y and Y, are function of (Z, a, Aty,). In the case
of the lifted flame considered, in order to ensure the one-to-one
correspondence (4), we add some contribution of H, mass frac-
tion in the definition of Y,:

YCZYH20+10YH02+3YH2. (5)

2.2. Numerical resolution of 1D flamelets

The 1D steady and unsteady solutions on the symmetry axis
of the planar opposed-jet configuration problem are obtained
by resolving the system of equations expressed either in physi-
cal space, Eq. (6)-(10), or in Z-space, Eq. (11), using the same
computer code LFLAM, developed at Ciemat. The fuel and



Table 1: Conditions of temperature and species mole fractions of fuel (fu) and
hot coflow (cof), corresponding to the atmospheric lifted H, turbulent jet flame
of [16]. The stoichiometric mixture fraction is Zg = 0.4789.

Fuel (Z =1) | Hot coflow (Z = 0)
Temperature Tr = 305K Teof = 1045K
Mole fractions | Xy, = 0.25 | Xo,.cof = 0.14744
XNyu = 0.75 | XN, cof = 0.75363
X1,0.c0f = 0.09893

hot coflow conditions used in this paper are summarised in Ta-
ble 1. In this case, the stoichiometric mixture fraction is equal
to Zy = 0.4789. The chemical mechanism of [42] is used, in-
volving 9 species (H, H, O,, OH, O, H,0, HO,, H,O, and N;)
and 21 reactions.

In physical space, we solve the continuity, momentum,
species and temperature equations as described in [43, 44] for
the planar geometry, here written in their unsteady form (in this
formulation F' = pu and G = —pv/y with u the axial and v the
normal velocity components and y the perpendicular direction):

I T

pc—,,aa_f == [GF + ). cp ¥V ‘;—Z ®
+% [ﬂg—i} - Z hiao,

p% - —F% + % [-pYiVie] + paoy. ©

where the transport and thermodynamic coeflicients, p, A, ¢y,
hy (resp. dynamic molecular viscosity, thermal conductivity,
specific heat capacity of species k and enthalpy of species k)
are obtained from temperature-dependent polynomial fits in
Chemkin format. Here, the assumption of unity Lewis number
reads:

Wi 0Xi A

kaVk = —pD:— and D= (10)
W O0x

Py
where W is the molar mass and X; the mole fraction of species
k, and where W is the molar mass and ¢, the specific heat ca-
pacity of the mixture. The mixture density p is obtained from
the ideal gas law at atmospheric pressure. A fixed stagnation
point is specified at the middle of the domain in order to dis-
cretise the equations, and the boundary conditions are speci-
fied according to the potential flow assumption on both sides of
the 1D space (G = dF/dx =constant), with: Geof = —a.Ocof,
H= —Ggof/ Peof and Gy = Geof-(Ou/Ocot)- By solving the above
equations, we obtain the composition and temperature in phys-
ical space, Y;(x) and T'(x) [at discrete times when solving the
unsteady equations]. From the composition, we can retrieve

the mixture fraction Z(x) and the scalar dissipation y(x), using
(1) and (2). We can then express our results in Z-space: T(Z),
Yi(Z), x(2).

When solving the equations in Z-space, we simply solve the
following equations for the mass fraction of each species k:

2
% = %‘% + i, (11)
where the scalar dissipation rate profile is prescribed (and fixed
in time) in Z-space as the steady-state profile from the analytic
solution of laminar planar counterflow diffusion flames [1, 2].
This profile, derived by Peters, corresponds to y""(Z, a, ATyxs)
for the steady flamelet solution obtained after a long enough
time (ATyys = 00):

Y@, Z) = ;exp[—2 (erfc_l(ZZ))z] , (12)

with erfe(x) = 1 - erf(x) = (2/ Vx) [ exp(—y?) dy. With the
assumption of unity Lewis number, we approximate the total
enthalpy of the mixture as h = Z.hg, + (1 — Z).heor. The temper-
ature is simply obtained as function of composition Y} and total
enthalpy .

The reaction rate of species k — last term in (9) and (11) —
is obtained from the chemical mechanism of [42] in Chemkin
format, as function of composition Y; and temperature 7. In
this section, the system of equations (6)-(10) and the system
of equations (11)-(12) are solved in their steady or unsteady
forms using the algorithm “Twopnt program for boundary value
problems” presented in [45]. The final unsteady resolution of
(11)-(12) is performed using the DDASSL solver [46], using
the exact block tridiagonal Jacobian matrix.

Note that Equation (12) can be written in a different way by
introducing the stoichiometric mixture fraction Z, and the sto-
ichiometric scalar dissipation rate yg = x> (a, Zy):

X s 2) = xuF ¢ (2), (13)

where F.°(2) = x*(a,Z)/ x*(a, Zy) is independent of the strain
rate a.

2.3. Flamelets solved in physical space or in Z-space

Steady solutions: S-curve. Before considering filling in the
3D-space (Z, x, Y.) with all possible igniting and extinguishing
unsteady flamelets, we first need to obtain the steady solutions
which define the physical limits of ignition and extinction. Fig-
ures 1 and 2 show the results for the two types of flamelet so-
lutions. The so-called S-curve is represented in the 3D-space.
The zone below the stable branches (red surface and black sur-
face) and above the unstable branch (blue surface) corresponds
to the zone of autoignition. Elsewhere (above the black surface
and below the blue surface) extinction occurs.

Unsteady solutions: filling in the (Z, x, Y.)-space. We can now
consider the full 3D manifolds obtained from unsteady igniting
and extinguishing flamelets. At low strain rates, we start from
the inert solution and let the solution ignite. At higher strain
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Figure 1: Steady flamelets solved in physical space from Eq. (6)-(10). Left:
representation in (Z, y, Y.)-space, in red the upper stable branch, in blue the
middle unstable branch and in black the lower stable branch. Top right: cut at
Z = 0.479, including inert solution (dashed black line). Bottom right: steady
(red) and inert (dashed black) flamelets at strain rates a = 1s~! and a = 50s7.
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Figure 2: Steady flamelets solved in Z-space from Eq. (11) and (12). See legend
in Fig. 1.

rates where different steady solutions exist (stable and unsta-
ble), starting from the solution on the unstable middle branch,
we slightly decrease the strain rate and let the solution ignite,
or we slightly increase the strain rate and let the solution extin-
guish.

A major difference between unsteady flamelet solutions re-
solved in physical space or in Z-space is that in the first case
the scalar dissipation rate varies in time. As an example, Fig-
ures 3 and 4 show the time evolution of y(Z) for the unsteady
igniting flamelet at strain rate a = 50s~!. We see that, when
resolving in physical space, the initial inert y-profile is lower
than the final steady flame y-profile, and that the fixed-in-time
Xx-profile used to resolve in Z-space lies in between. The main
observation here is the strong variation in time of y(Z) when re-
solving in physical space: a strong increase is observed where
the mixture ignites, reaching a maximum and then decreasing
to the steady flame value. As a consequence, in Figure 5, we
observe the wider profiles of Y.(Z) when resolving in physical
space due to local higher y values (implying larger molecular
diffusion effects).

In Figure 6, we plot the unsteady igniting and extinguish-
ing flamelet solutions in given Z-slices of the (Z, y, Y.) domain
represented in Figure 1 and 2. Obviously for the solutions re-
solved in Z-space, the trajectories of all unsteady flamelets are
vertical lines since y(Z) is constant in time. However, when re-
solved in physical space, we observe that for igniting flamelets
(upwards trajectories between the middle branch and the upper
branch), the scalar dissipation rate first increases and then de-

0.12

0.1~

0.08

0.06~

Figure 3: Time evolution (every 107*s) of the unsteady igniting flamelet at
strain rate ¢ = 50s~'. Dark grey: flamelet resolved in Z-space (fixed-in-time
x(Z) profile). Green: flamelet resolved in physical space.

X
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Figure 4: Projection of Fig. 3 on (Z, y). Dashed grey line: y(Z) profile from
Eq. (12). Green lines: time evolution of the igniting flamelet resolved in physi-
cal space (10’43 between the solid lines, 10~3s between the dashed lines, 10~2s
between the dotted-dashed lines). The thick lines show the solutions at indi-
cated discrete times.
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Figure 5: Projection of Fig. 3 on (Z, Y,) at the discrete times indicated in Fig. 4.
Dashed grey lines: solutions of Eq. (11). Green lines: solutions of Eq. (6)-(10).

creases (as observed in Figure 3 and 4), and for extinguishing
flamelets (downwards trajectories below the middle branch), y
first decreases and then increases. As a consequence, we also
observe that the 3D (Z, y, Y.) domains are not filled in in the
same way when resolving in physical space or in Z-space: the
latter allowing to fill in more of the 3D domain.

Flamelet manifolds in (Z, x, Yc)-space. We make a qualitative
comparison of the final manifolds in (Z, y, Y. )-space by colour-
ing the trajectories by @,, the reaction rate of the progress vari-
able Y,. Since this property is evaluated from the full compo-
sition and temperature, it gives a cumulative information of all



the properties to be possibly stored in the manifold. Moreover,
in a later use of the manifold, this property would give impor-
tant information on how to move within the 3D (Z, v, Y,)-space.
The general qualitative observation from Figure 6 is that both
manifolds are very similar. Although a more detailed quantita-
tive study could be made in the future (in particular also con-
sidering the contours of Atyy), at this stage we can guess that
for turbulent combustion modelling, using manifolds based on
flamelets resolved in physical space or in Z-space would not
imply large differences in the results. In the following we will
only consider flamelets solved in Z-space, with all the simplifi-
cations implied by the use of fixed-in-time y-profiles.
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Figure 6: Igniting and extinguishing flamelets coloured by Y, reaction rate, ..
Left: resolved in physical space. Right: resolved in Z-space.

2.4. A priori test of the UFPV model

At this point, it is interesting to consider the a priori study
done by Ihme and See in [6], by considering a Lagrangian
Flamelet Model (LFM) [3]. From a RANS calculation of
the considered lifted flame, we extract the stoichiometric iso-
surface from the mean mixture fraction field, where we evalu-
ate y 5 from the mean scalar dissipation rate. Based on the axial
distance from the injector and the mean axial velocity on the
stoichiometric iso-surface, we can define a Lagrangian time 7.
As shown in Figure 7(a), we then have a time dependent y(7.)
which can also be represented in function of an adimensional
axial distance to the injector exit. We can then solve the LFM
equation for the species mass fractions, i.e. Equation (11) with
X(Z,11) = xu(tr) F(Z) given by Equation (13). The corre-
sponding time evolution of Y, at Z is represented in Figure
7(b). We can also directly solve the UFPV approximation for

Figure 7: (a) Stoichiometric scalar dissipation rate y and Lagrangian time 7z,
extracted for a RANS calculation of the lifted Hy/N, flame as functions of an
adimensional axial distance. (b) Comparison of the time evolution of Y, at Z
resolved with LFM (black line) or with the UFPV approximation (dotted grey
line).

Y.(Z,1,) instead of (11):

_ Y. x(Z1) Y,
c aTL B 2 6Z2

+@c|Zx(Z,71), Y (Z, 7], (14)

where the reaction term is obtained from the UFPV manifold
resolved in Z-space, as represented on the right hand side of
Figure 6. We see in Figure 7(b) that the UFPV approximation
is in very good correspondence with the LFM results. These
a priori results for the considered H,/N, lifted flame are con-
sistent with the a priori results of Thme and See for the litfed
methane flame [6].

3. Presumed PDF modelling

In order to keep the modelling as simple as possible, we want
to tabulate the mean properties from the flamelets (mean com-
position, mean temperature, mean density) as functions of only
four parameters: the mean mixture fraction Z its variance Z"’2,
the mean scalar dissipation rate y and the mean progress vari-
able Y,. Using the simplifications implied by the resolution of
the flamelets in Z-space (as usually done in other UFPV ap-
proaches), we choose to consider a log-normal distribution for
fy. (different from [4-6]) while a non-normalised progress vari-
able is used (different from [11-13, 15]). We do not assume
statistical independence between the progress variable and mix-
ture fraction as often considered in presumed PDF modelling
(unless their correlation is included as done in [47, 48] using
a copula). Instead, we make an assumption of statistical in-
dependence using the time evolution of the unsteady flamelet,
allowing us to keep a physical dependence between Y. and Z.

3.1. Joint PDF considered

We have two possible parametrizations of the properties, as
expressed in (4). The mean properties can be obtained in two
ways:

é(x, H= ff Q*(Z’ v, yc) 'fZ,)(,YC(Z, U, ye; X, 1) dZdlydem

= ffo“ns(z,a,‘r) Jza (@, T;x,1) dz.de.dr, (15)

where the joint PDFs are introduced in the sense of Favre
PDFs. The first representation is not a good starting point for



presumed-PDF modelling since Z, y and Y, are all interdepen-
dent [4~9]. In order to obtain a tabulation in terms of Z ALR
Y and Y., we rather start from the second representation where
we can reasonably assume statistical independence of the vari-
ables Z and a on the one hand, and Z and v* on the other
hand. Still, in principle 7* is dependent on a since the time
evolution of the unsteady flamelet is obviously strongly related
to the strain rate. We can then write the joint PDF f7, .+ as
the product of the marginal Z-PDF and the joint (a, 7*)-PDF:
fZ,u,‘r* = fZ‘f;l,T* = fZ'fT*Iu‘f;z'

We solve the flamelets in Z-space, so the y-profile given in
Eq. (12) as a function of a can also be expressed as a function of
Xst> (13), since yg and a are simply related by a constant multi-
plying factor. As usually done in the literature, in the following
we rather consider y instead of a, and we consider the joint
PDF:

fZ,X,[,T* (z, st T) = fZ(Z) -fr* Lm(lybstv 7) ~f)‘m(wst) s

and the flamelet properties Q"™ (z, Yy, 7).

We now detail how to obtain the mean properties as functions
of Z 7",y and 17:., by assuming a S-PDF for f7, a 6-PDF for
Sy, and a log-normal for f, .

(16)

3.2. Conditional mean properties { Q| x«,» T*)
We make the usual assumption that the PDF of Z can be mod-
elled as a B-distribution based on the unconditional mean value

Z(x, t) and its variance ?’z(x, 1: f2(zx,1) = fgﬁ(z; x,1). By

integration in Z-space we obtain the conditional means:
(Ot YZZPbr) = [ O™t 0z ()
2] 2z

3.3. Conditional mean properties { Q| xst)

At this point, we want to model the conditional PDF
frrva Wi, T) and integrate over T* in order to obtain the con-
ditional means { Q| ys). The simplest assumption is to suppose
a 0-PDF for f;+,. In other terms, we assume that there are no
fluctuations of 7* for a given value of yy, and the conditional
expected value <T*| )(st> has to be specified. With this assump-
tion, in the final model all the fluctuations are due to fluctuations
of mixture fraction and its scalar dissipation rate.

This assumption is made in order to simplify the modelling
and in order to lead to an easier reparametrization in terms of
the mean progress variable Y,, while keeping the physical sense
of the dependence of Y, on Z in igniting flamelets. It can be
better understood by looking at Figure 5: given the value of y
or a (which fluctuates in the turbulent flame) we consider the
profiles as function of Z for given values of 7*, without con-
sidering fluctuations of 7* conditional on a. By definition of
the progress variable, for given values of z and ¥, Y™ is a
monotonic function of 7 in order to ensure the one-to-one cor-
respondence (4). We can then easily see that (Y| ys) also has
a bijective relation with <T*| Xst> for given values of Z,Z" and
s Assuming a 6-PDF for f+|, , the conditional averages can
be represented as functions

<Q|Xst>(z,?as¢st,fc) = <QlelsT*>(Z,ﬁawst,<T*|Xst>), (18)

where Y, is the sample space of possible values of { Y.| ys). The
value of < T*| Xst> is specified indirectly, by making the assump-
tion that (Y, | y satisfies the relation:
R AP VAZZR AR AR (19)
In the practical implementation of the model, the 5-PDF in-
tegration is performed “on-the-fly” for all unsteady flamelets at
different y, and intermediate tables of conditional properties
(Qlyst) are simply stored for every computed yy in a discre-
tised (Z 7", y}.)-space. This can also be better understood by
looking at Figure 5. In other terms, the dependence of Y, on Z
is included in the model in the form of the profiles of Y.(Z) at
given times of advancement of the unsteady ingniting flamelet
solution for a given strain rate a (for instance a = 505! in Fig-
ure 5).

3.4. Non-normalised progress variable

Before considering the final y-PDF integration, we want to
point out that our modelling is based on the non-normalised
progress variable. This is different from what has been pro-
posed by others [11-13, 15] where a normalised variable was
introduced. This was imposed by their presumed-PDF mod-
elling where they considered a S-distribution for the progress
variable, which required a variable with constant minimum and
maximum values.

Yemax Yemaxt

<Yc|xﬂ>
<Yc|xu>

Yo - Yo =

T
Tasiy Xg Towax G In(x,) I p1a0

Figure 8: Sketch of the domain of possible values (s, Ye) of yst and ( Y| xst)
for given values of Zand 272 (represented in logarithmic scale on the right hand
side). The bottom grey line represents the inert solution Y, yn. The top black
line represents the steady state solution < YC‘.““"| Xst)(wst)s and together with the
dashed black line on the right hand side it represents the limit y§** ().

In Figure 8, we make a sketch of the domain of possible
values (g, Vo) of ys and (Y| ys) for given values of Z and

Z'2. This figure is useful in order to make the following ob-
servations. At the different strain rates considered (i.e. different
given yy), the values of (Y| y) are in between the inert solu-
tion value <Y§"i"| )(st> and the steady solution value <Y;‘“‘X| )(S[>:
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(ymnl NZ. 22 ) = f[z ] YIRS (@) dz, (20)
(Ym v )Z. 272, ) = [Z PN f] @) e 2D

The minimum value is the same inert value for all strain rates:

Yo (Z,272) = (YI xu)(Z. 22 0s)  forall g, (22)



and there is a maximum YC,MAX(Z Z”z) at the lowest strain rate
considered (at Y = YseMIN):

YC,MAX(ZsETZ) = <Y21ax|Xst>(ZsZ;§’Xst,MlN)~ (23)

The other way around, for any possible value y. of (Y.|xs)
between Y. yn and Y. max, there is a maximum value ¢y =
max

Xt (Z 7", y}), corresponding to the steady flamelet solution
together with the extinction limit ys max-

3.5. Unconditional mean properties

The unconditional mean properties are finally obtained from
the y-PDF integration. As considered by many authors, like in
[11-13, 15], we assume a log-normal distribution for f, () =
f;g(zpst): we suppose that the PDF of the natural logarithm of

)(S: is a Gaussian distribution with mean u and a given fixed
variance o2, with i = In(ys) — 02 /2. For given values of Z, Z""2
and y,. (with Yomin < ¥ < Yemax), the unconditional mean
properties can be obtained as:

max

st = oo lo
(QIXHZ 272, i, Ye) S B W) Qg

st

Q(Z’ 272,/?5& yAt) =
o [ 0BT w1

We had to introduce the notation Q),  for g > )(Qt‘a"(z z", y})
where the conditional averages ( Q| y) are not defined (above
and on the right hand side of the solid and dashed black lines
in Figure 8). We choose to give the steady flamelet property

max

values when g > ™ and ¥ < xsmax:

04 (Z. 27, 91) = (QIx(Z. 272, 0, (Y™ 1)) (25)

and the inert mixing property values above the extinction limit
when l!/st > Xst MAX -

Qb(sl(zaﬁ’wst) = <Q|Xst>(zﬁ,)(st,MAx, Yc,MIN)- (26)

Considering the modelling of the unconditional mean prop-
erties in (24), we want to stress once more the fact that the
conditional mean properties { Q| ) are expressed in terms of
the non-normalised progress variable ( Y| ys) (in the y.-sample
space). This tells us how the mean property values include the
xst-fluctuations in this model: by averaging over a given value
ve of (Y| xs). We believe that it is necessary to consider a
non-normalised progress variable in the present case where the
definition of the progress variable in Eq. (5) takes into account
the different stages of autoignition by including Yyo,. In other
terms, the final unconditional means include the contributions
of different conditional flamelets (after 8-PDF integration) at
the same level of progress of reaction described by the choice
of Y.. The physical interpretation of a presumed-PDF model
based on a normalised progress variable would of course be
quite different, since in that case the “same level of progress of
reaction” would correspond to the same adimensional distance
between the inert mixture and the steady flamelet solution (and
therefore possibly quite different values for the non-normalised

(Yelxs))-

3.6. Final parametrisation

We store the unconditional mean properties as functions of
Z,7"?, ¥« and Y.. We have a straightforward relation between
Y and Yy

MZ.27.5) = 0T (Z.27), 7

where the mean value 7’;5’ is obtained from the 8-PDF integra-
tion of (13) in z-space, and is stored in the lookup table. The
replacement of (Y| ys) by 17; is done through a re-interpolation
of the final table, since (25) and (26) are also applied to Y.

4. Turbulence model and progress variable equation

4.1. Second-moment closure

We solve the RANS equations using the LRR-IPM second-
moment closure [50] using the formulation described in [51]
for the modelling of the scalar fluxes. Standard equations
are solved for mean continuity, mean momentum, Reynolds
stresses u/;’\u? , turbulent dissipation €, mean mixture fraction
Z its variance Z”’2 and the scalar fluxes L?Z/” , as detailed in
[51]. We recall here the transport equations for the mean mix-
ture fraction and its variance, since they directly enter the turbu-
lent combustion model. Under the assumption of high Reynolds
number, the mean laminar diffusion terms are neglected:

pZ . opU,Z _ OpujZ”

: 28

ot Ox_,- 6)61‘ ( )
opz7  pUZR o7  OpIZ7

+ U7 = —— L 5y (29

ot ax; PN oy o, X&)

On the right hand side of the modelled variance transport equa-
tion, the triple correlation term is modelled using the Daly-
Harlow generalised gradient diffusion model, and the mean
scalar dissipation rate is modelled in a standard way as:

¥ =CwZ? with w=e/k, (30)

where w is the turbulent frequency and k = W /2 is the turbu-
lent kinetic energy. The choice of the value of the constant Cy
will be discussed in Section 6.1. We recall that together with
this model for )y, the shape of the scalar dissipation rate PDF is
also determined by the choice of the value of the fixed variance
o introduced in Section 3.5. The influence of this parameter
will also be discussed in the following.

Two constant values are adjusted: in the turbulent dissipa-
tion equation the usual modification for round jets is applied
by setting C.; = 1.6, and in the scalar flux model the standard
value of the Monin’s constant C4; = 3 is increased to Cy4; = 5.
The latter leads to better agreement of mean mixture fraction
with experimental results. A similar modification was applied
in [15], where a gradient diffusion closure was used, by increas-
ing the turbulent Schmidt number value.



4.2. Mean progress variable

In order to have a complete model, we need to solve mod-
elled equations for the mean progress variable Y, and its scalar

fluxes m . A first model can be derived in the same way
as the other RANS equations: starting from the exact Navier-
Stokes transport equations and from the exact scalar transport
equations and averaging (and neglecting the mean laminar dif-
fusion terms under the assumption of high-Reynolds number
flow). In this case, by combining the transport equations of the
three mass fractions Yp,o, Yno, and Yy, according to (5) we
obtain:
Y. opUY.  OpuiY!
ot * Oxj - 6xj e, S

where for the terms on the right hand side the same scalar-flux
model as for mixture fraction can be used and where the mean
reaction term @, can be retrieved from the pre-integrated un-
steady flamelet manifold.

Exact species equations with UFPV assumption. However, the
fundamental assumption of the turbulent combustion model is
to consider that the underlying structure of the turbulent flame
corresponds to unsteady flamelets. In this sense, the exact equa-
tions for species mass fractions under the unsteady flamelet
model assumption is given by Equation (11) (with given fixed-
in-time y-profile), and not by the exact scalar equations used
to derive (31). In other terms, we should consider the La-
grangian flamelet equations as a starting point, as introduced
in [3]. As shown in the a priori study at the end of Section
2, instead of considering all species mass fraction, we could
simply solve (14) for the progress variable on the Lagrangian
flamelet lines. As shown by Pitsch and Steiner [3], invoking the
flamelet assumption of thin reaction zones, the corresponding
exact flamelet equation in a Eulerian system reads:

opY, OpU;Y, B

Y., 32
a  ox; F 32)

where we introduced the notation Y, from (14). We can now
propose the following modelled equation for Y,:

dpY. opUY.  OpuY! _~
+ = - + pY,, 33
o ox; ox; 33)

where the last term can be retrieved from the pre-integrated
UFPV manifold. This is the kind of modelled equation used
by Michel et al. [12] for the mean progress variable when using
approximated diffusion flamelets.

Figure 9 illustrates how different the source terms @, and
Y. are around stoichiometry. The source term Y. goes to zero
on the steady flamelet lines and is negative below the unstable
branch, while @, is positive everywhere. As recalled in the in-
troduction, an equation including @, is usually used in steady
flamelet approaches — formally the same as (31). However,
in such SFPV models the progress variable Y, corresponds to
the ‘steady flame combustion product mass fraction’ and is a
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Figure 9: Contours of the source terms @, (left) and Y. (right) at stoichiometric
mixture fraction, represented in (y, Y. )-space.

way to parametrise the steady flamelet properties in composi-
tion space instead of considering the scalar dissipation rate y.
In this case, the mean transport equation of the form of (31) is
somehow arbitrary and its resolution (including clipping if nec-
essary) together with the presumed PDF model implies a shape
for the PDF of y.

In the case of unsteady flamelets, the progress variable Y, is
of different nature of Y. and both equations (31) and (33) can
be given a physical interpretation. We discussed how (33) is
consistent with the basic UFPV model assumptions exposed in
Section 2.

5. Test case and numerical set-up

The numerical set-up is very similar to the carefully cho-
sen one considered by Cao et al. [21], also in a RANS frame-
work (with transported PDF modelling in that case). Starting at
the fuel injector exit, the computational domain — 50D-long
(in axial direction) and 20D-wide (in radial direction), with
D = 4.57mm the injector diameter — is a half-plane of the
2D axisymmetric geometry considered. A 108x108 cell non-
uniform grid is used, stretched in both axial and radial direc-
tions (with 13 uniform grid cells in radial direction above the
fuel injector: between r = 0 and r = R = D/2).

Symmetry conditions are imposed on the symmerty axis, a
free-slip boundary is specified on the outer boundary and a con-
vective outlet condition is used. The inlet profiles are specified
in such a way that the fluctuating axial and radial velocity pro-
files, #’ and v, are similar to the experimental profiles used in
[21], where the influence of the inlet boundary conditions was
carefully studied. In this RANS framework, the influence of
the wall flows on the inner and outer sides of the fuel nozzle are
simply accounted for at the injector exit by specifying the turbu-
lent profiles for mean velocity components, Reynolds stresses
and turbulent dissipation. The axial mean velocity profile at
the injector exit is specified as U= Unorm (1.01 — r/R)1/6, the
coflow mean velocity U = 3.5m/s is imposed at r > 1.88R. For
R < r < 1.88R, both profiles are connected with an exponential
decay U=a+p. exp(—yrz), with y = 480000, leading to a sim-
ilar profile as used in [21]. This axial mean velocity profile is
normalised with Upom, such that the correct experimental bulk
velocity of 107m/s is imposed at the injector exit (i.e. correct
fuel mass flow rate). The radial mean velocity is set to zero.

The Reynolds stress profiles are specified as w2 = u’u’ (axial),



V"2 = vV (radial) and w”? = v”2 (azimuthal). The turbulent
shear stress is specified in a similar way as in [21] such that
W' = puwit’V', with p,, = 0.4(r/R) for r < R and p,, = 0.4
for r > R. Finally, the turbulent dissipation profile is speci-
fied by supposing that the dissipation term is equal to the pro-
duction term in the turbulent kinetic energy transport equation:
e=—-u"". U] dr.

As already mentioned, the Reynolds-stress and Reynolds-
flux models corresponding to the variable Cy formulation of the
Generalised Langevin Model presented in [51] are used (here
in correspondence with the LRR-IPM Reynolds stress model),
with two modified constants: C¢; = 1.6 in the turbulent dissipa-
tion equation and Cy; = 5 in the scalar-flux equations. The 2D
axisymmetric calculations are performed with the same com-
puter code PDFD as in [51]. _

The lookup table is discretised in 100 uniform intervals in Z
between 0 and 1, 20 uniform intervals in § = Z’"2 / [Z( 1- Z)]

bﬁe‘tiween ,9, and 0.2 and Si uniform intervals in Y. between
Y;“i“<z, ”2) and ﬁ“z"(z "2). A logarithmic grid is used to
store the lookup table in yy, using 41 uniform intervals between
In(y s miv) and In(2y g max) (corresponding to approximately 10
intervals per order of magnitude).

6. Results

Different calculations are made both with @, and Y, as re-
action term in the modelled transport equation for the mean
progress variable, with different values of Cy and ¢ and for dif-
ferent coflow temperatures. When using ¥, we take as reference
calculation the one with coflow temperature 7.o¢ = 1062K, and
when using @, the one with T,y = 1053K. In both cases we
take Cy = 3 and o = 1 as reference values.

The reason for the 9K difference in coflow temperature in or-
der to match the correct lift-off height, whether Y. or @, is used,
will be seen in Figure 18. At these temperatures, the modelled
flames are stabilised around stoichiometry: the use of Y,, in-
cluding diffusion effects, leads to a “less reactive flame” than
when using @, (as can be seen in Figure 9) and requires a higher
coflow temperature in order to lead to the same lift-off height.

6.1. Influence of Cy and main model properties

We consider the calculation at T.,; = 1062K using ¥, and
o = 1 (the same observations are made for other cases). Fig-
ure 10 shows the influence of Cy on the results. First of all, we
stress the fact that very good results are obtained for mean mix-
ture fraction (comparable to the best results of the literature like
[21, 25]) due to the usual adjustment of the constant C.; = 1.6
for round jets, and in particular due to the adjustment of the con-
stant C4; = 5 in the scalar-flux model. We observe the impact
of the choice of the value of Cy on the results for mixture frac-
tion variance, where the value C4 = 3 gives the best agreement
with the experimental data. Note that, as in [15] or [25], the
small level of fluctuations in the coflow is not captured, while it
was in the transported PDF results of [21].

In Figure 11, we plot the value of the mean scalar dissipation
rate following the mean stoichiometric isoline as a function of
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Figure 10: Radial profiles of mean mixture fraction (left) and its rms fluctuation
(tight). Symbols: experimental data / Lines: results using ¥, and Teor = 1062K
(with o = 1). Dotted lines: Cy = 1.5. Dashed lines: Cy = 2. Dashed-dotted
lines: Cy = 3. Solid lines: Cy = 4.

Figure 11: Mean scalar dissipation rate following the mean stoiciometric isoline
in the calculation using ¥, and Teof = 1062K (with o = 1), for different values
of Cy. Legend: see Fig. 10.

the axial distance. We observe, that the value of C4 does not
have almost any influence on the mean scalar dissipation rate
anywhere in the flow (except very close to the injector exit).
This is simply explained by looking at equation (30) where two
effects counterbalance, since increasing Cy implies lower val-

ues of Z””2, as observed in Figure 10. This low dependency of
is in line with the observed low dependency of the results on the
value of Cy in previous transported PDF modelling for different
mixing models [21].

Figures 12 and 13 show the radial profiles of mean tempera-
ture and mean mass fraction of H,O and their fluctuations. The
results for these properties are similar and provide a good esti-
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Figure 12: Radial profiles of mean temperature (left) and its rms fluctuation
(right). Symbols: experimental data. Black lines: Y, and Teof = 1062K (with
Cy = 3). Grey lines: . and Tof = 1053K (with Cy = 3). Dotted lines: §-PDF
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mate of the quality of the prediction of the progress variable
Y.. We observe that the mean values are well predicted for
the two cases considered (¥, and T.o = 1062K, and @, and
Teof = 1053K), again with the same level of agreement as the
best transported PDF results [21, 25], and better than the LES-
CMC results of [33].

At this point, we could verify that we obtain results in good
correspondence with experimental data for three of the four
properties on which our turbulent combustion model is based:
Z, 7" and Y,. These results are obtained with C4 = 3, both
using @, or Y, as reaction term in the mean progress variable
transport equation, by adjusting the coflow temperature. Con-
cerning Yy, no data is available and we simply stick to the stan-
dard model (30). We can now consider the predictive capabil-
ities of the proposed turbulent combustion model for the other
properties and their fluctuations. As described in Section 3, the
results for all the other properties are a direct consequence of
the UFPV assumption, together with the model for presumed
shape of the joint PDF. In particular, the fluctuations of the
progress variable and of the tabulated properties are directly
related to the model for the fluctuations of Z and y.

6.2. Influence of o

The columns on the right hand side of Figures 12 and 13
give an idea of the fluctuations of the progress variable. The
variances are obtained from the tabulated mean properties and
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Figure 13: Radial profiles of mean mass fraction of HyO (left) and its rms
fluctuation (right). Legend: see Fig. 12.

mean of the square, for instance for the temperature: 72 =
T2 — T2, Close to the injector exit, both the centreline value
and the peak value of the radial profiles are correctly captured
when using Y,, while further downstream, they are correctly
captured using w.. We observe that the fluctuation predictions
are sensitive to the prescribed fixed variance o in the PDF of
the logarithm of y (especially when using ¥,), whereas mean
values are not sensitive to this model parameter.

The fuel and oxidiser mass fraction results are shown in Fig-
ures 14 and 15. Good agreement with experimental data is ob-
tained for the mean radial profiles. Concerning the fluctuations,
similar observations can be made as for temperature. However,
for these reactants which are consumed in the reaction zone,
we observe less sensitivity to o, or to the use of Y, or @, as
compared to the main combustion product and temperature.

As expected, the most sensitive property is the mass fraction
of OH radical as shown in Figure 16. The differences are espe-
cially important at the flame base, and the results become sim-
ilar further downstream. In this case, the differences are quite
large whether Y, or . is used as reaction term. The best agree-
ment with experimental data is obtained with Y., both for the
mean and the fluctuations, similar to the best results of the lit-
erature as for instance in [21, 25, 33]. The choice of ¢ also has
a strong impact on the results, even for the mean mass fraction.
Again, the values 0% = 1 and 0> = 2 seem reasonable, with
the best results obtained with o> = 2 just before the flame base.
However, the §-PDF assumption for y leads to poor results for
the fluctuations before the flame base.
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6.3. Influence of coflow temperature, use of Y. or @,
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Figure 17: Left plot: flame lift-off height as function of coflow temperature
(the light grey lines with diamonds and triangles represent experimental data).
Right plot: Corresponding mean mixture fraction (dashed lines) and mean tem-
perature (solid lines) at the flame base.

Figure 17 shows the dependence of flame lift-off height H on
the coflow temperature T.or. As in [21], the distance H corre-
sponding to the base of the modelled lifted flame is evaluated as
the axial distance where Yoy = 2.107*. Results are shown both
using Y, or @, as reaction term, with o = 1 (similar trends are
obtained with the 6-PDF assumption for y or with o = \/5).
The differences between the experimental data sets illustrate the
high sensitivity of this flame to the coflow temperature. This
justifies the adjustment of the coflow temperature in the mod-
elling in order to match a given lift-off height. On the other
hand, the significant information given by these data sets is the
trend of the dependence of H on T.¢. The model should be able



to reproduce this dependence. The trend of both curves (using
Y. or w,) is in correspondence with the experimental data for
high coflow temperature. However, at low coflow temperatures
the calculations do not predict an increase in lift-off height as
high as expected.

The plot on the right hand side of Figure 17 shows that at
high coflow temperatures, the flame base corresponds to lean
mixture fraction values typical of autoignition. However, we
observe that at lower coflow temperatures, the flame base cor-
responds to mixtures close to stoichiometry and to tempera-
tures which are in principle too low for autoignition to oc-
cur: i.e. below the typical crossover temperature for hydrogen
chemistry at atmospheric pressures of the order of 7, =~ 950K
(the recent review of Sanchez and Williams [52] on hydrogen
chemistry provides details about the crossover temperature 7,
where the rates of branching and recombination reactions are
equal). Therefore, it appears that at lower coflow temperature
our model does not predict autoignition at the base of the flame.

The similar model presented in [15] using @, leads to re-
sults very similar to the one shown on the left hand side of Fig-
ure 17, but no further study of flame stabilisation is provided.
However, in the RANS-transported PDF of [22] or in the LES-
CMC of [33], the budget analysis leads to the conclusion that
autoignition is the main stabilisation mechanism for all coflow
temperatures considered.
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Figure 18: Contours for the lifted flame at two different coflow temperatures.
Left: using @ / Right: using Y.. Solid black line: mean temperature isoline at
T = 950K. Dashed black line: mean temperature isoline at 7 = 950K in the
inert flow. Dotted line: stoichiometric isoline. Light grey lines: isocontours of

mean reaction term (@, on the left and Y. on the right). Thick dark grey lines:
mean OH mass fraction isoline at Yo = 2.107%.

Figure 18 shows two qualitatively different flames obtained
with our model at low or high coflow temperature (as shown
in the figure, the same trend is observed when using @, or Y,).
At T.of = 1060K, we obtain a lifted flame stabilised at lean
mean mixture fraction values around the mean temperature iso-
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line T = T. = 950K. In this case, we see that the reaction zone
covers both lean and rich regions and that the high reaction rate
values are around stoichiometry.

At Teor = 1030K a very different mean flame is obtained. A
V-shape is observed instead of the W-shape observed at high
coflow temperature. Note that this steady flame is obtained by
starting the calculation from an inert solution at T.of = 1030K
(obtained by switching off the reaction term in the transport
equation for Y,). In this case, due to longer ignition delay
times, the reaction zone is now in a lean mean mixture, in a
downstream region with lower mean axial velocity. Those two
aspects are likely to be the most relevant to explain why our
model leads to a location of the flame base on the centreline at
a mean temperature lower than 7, = 950K. The resulting V-
shape of the modelled mean flame can explain why the lift-off
height is underestimated.

The reason for such a behaviour of the model at low coflow
temperature still needs to be better understood. However, these
configurations correspond to very sensitive conditions (which
are avoided in practical applications), due to the fact that the
coflow temperatures are close to the crossover temperature 7.

7. Conclusions

A complete turbulent combustion model based on igniting
and extinguishing laminar diffusion flamelets (at unity Lewis
number) has been presented and discussed.

Different time evolutions of igniting and extinguishing un-
steady flamelets are observed depending on whether they are
resolved in physical space or in mixture fraction space: while
the scalar dissipation rate is fixed in the latter case, it strongly
varies in time when resolving the problem in physical space.
A first qualitative comparison tends to show that these differ-
ent time evolutions do not lead to large differences between the
manifolds in (Z, y, Y. )-space.

In the considered UFPV approach proposed for autoignition
problems, the progress variable is defined including the main
combustion product (H,O) and a key radical species for au-
toignition (HO,). The transport equation to be used for this
progress variable is discussed. It appears that, in principle, a
transport equation consistent with the modelling assumptions
should not include the chemical reaction term @, as usually
done in steady flamelet approaches, but rather a source term
Y. including both chemical reaction and molecular diffusion in
mixture fraction space, as derived from the Lagrangian flamelet
equations.

The presumed-PDF model is presented in a detailed way and
leads to a formulation of the problem in a RANS framework in
terms of mean mixture fraction Z its variance Z’2 and mean
scalar dissipation rate y. The novelty of the model is that we
assume that there are no fluctuations of the unsteady flamelet
Lagrangian time at given strain rate. This ¢-distribution for the
conditional PDF allows to reparametrise the final table in terms
of the mean progress variable. The dependence of the progress
variable on mixture fraction is included, corresponding to the
time evolution of igniting flamelets at given strain rates. The



strain rate fluctuations are included for identical values of the
non-normalised progress variable. This formulation implies a
model for the fluctuations of the progress variable and of the
other flamelet properties which only depend on the fluctuations
in Z due to the S-PDF and the fluctuations in y due to the log-
normal distribution with fixed variance o. In this framework,
we may consider in a straightforward way in the future the use
of different presumed PDF shapes for Z or yy, in particular if
the model would be extended to LES.

The model is applied to a Hy/N, turbulent lifted flame, and
leads to very good results compared to the experimental data for
the flame stabilised around ten injector diameters, after adjust-
ing the coflow temperature. Both formulations using @, and Y,
lead to good agreement with experimental data (with different
adjustments of the coflow temperature). The very good pre-
diction of mean mixture fraction is obtained by adjusting the
constant C4; = 5 in the second-moment closure model for the
scalar-fluxes, and good results for mixture fraction variance are
obtained by setting the constant C4 = 3 in the model for mean
scalar dissipation rate. We show that the results for fluctuations
of temperature and H,O mass fraction are quite sensitive to the
choice of o, and that both the mean and the fluctuations of OH
mass fraction are sensitive to this parameter.

Finally, we show that our model predicts the correct trend for
the dependence of flame lift-off height at high coflow temper-
atures. However, at low coflow temperature, the model leads
to an underestimation of the flame lift-off height, correspond-
ing to V-shape flames stabilised on the centerline instead of the
W-shape flames obtained at higher coflow temperatures. It still
needs to be understood why such effects are predicted by the
model, keeping in mind that these limit conditions (very close
to the crossover temperature) are not desirable in practical de-
vices.
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