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Abstract. Context: Model-Driven Development (MDD) is a paradigm that prescribes building conceptual models that 

abstractly represent the system and generating code from these models through transformation rules. The literature is rife 

with claims about the benefits of MDD, but they are hardly supported by evidences. Objective: This experimental inves-

tigation aims to verify some of the most cited benefits of MDD. Method: We run an experiment on a small set of classes 

using student subjects to compare the quality, effort, productivity and satisfaction of traditional development and MDD. 

The experiment participants built two web applications from scratch, one where the developers implement the code by 

hand and another using an industrial MDD tool that automatically generates the code from a conceptual model. Results: 

Outcomes show that there are no significant differences between both methods with regard to effort, productivity and sat-

isfaction, although quality in MDD is more robust to small variations in problem complexity. We discuss possible expla-

nations for these results. Conclusions: For small systems and less programming-experienced subjects, MDD does not 

always yield better results than a traditional method, even regarding effort and productivity. This contradicts some previ-

ous statements about MDD advantages. The benefits of developing a system with MDD appear to depend on certain 

characteristics of the development context.  

Keywords: Automatic programming, Methodologies, Programming paradigms, Quality analysis and evaluation,  

1 Introduction 

Model-Driven Development (MDD) [15] [33] is a paradigm advocating the use of models as the primary software devel-

opment artefact and model transformations as the main operation. The idea is that all that is needed to develop a system is 

to build its conceptual model [37]. The conceptual model is the input to a model compiler that automatically generates 

software code to implement the system, or to a model interpreter that directly executes the model. MDD is the natural con-

tinuation of the evolution that gradually raised the abstraction level from assembly languages to third-generation program-

ming languages [40].  

Although MDD recommends automating as much code generation as possible, nowadays there is a wide range of ap-

proaches to apply the paradigm. Some of the proposals, such as OO-Method [40] WebRatio [6], Genexus [1] and OOHDM 

[41], generate fully functional systems through automatic transformations. Others generate part of the system. For example, 

NDT [24] can generate all of the code that supports behaviour and persistency, but most of the user interface needs to be 

manually implemented.  

MDD advocates often claim that it has advantages over traditional software development. For example, Mellor [33] 

states that the use of models increases productivity, and Selic [42] states that MDD helps to improve productivity and reli-

ability. However, few of these claims have been empirically evaluated. Existent empirical studies focus on measuring time, 

overlooking other characteristics that MDD is claimed to have, such as quality. There is a lack of empirical evaluations of 

MDD, probably due to the inherent complexity of comparative evaluations of software development methods and the chal-

lenges of adopting MDD in industrial contexts. Staron has reported the following difficulties suffered when applying MDD 

under conditions of practice [46]: (i) MDD methodological and technological learning curves are high, (ii) there is no de-

velopment standard, (iii) relations among the multiple views within the conceptual model are unclear, and (iv) the trans-

formations needed to generate code from models are difficult to design.  

In this work, we have designed and conducted an experiment to verify some of the claimed advantages of MDD. We 

aim to contribute to corroborating or refuting some of the claims that have been historically attributed to MDD and widely 

published in the literature. We have compared an MDD with a traditional method where developers implement the code 

manually. The experimental tasks are to develop small but fully-functional web applications from scratch. We focus on 
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evaluating software quality and developer effort, productivity and satisfaction since these are the most popular claims about 

MDD in the literature. The experimental subjects are last-year master students who have competence in traditional devel-

opment and no significant previous experience with MDD. As operationalisation of MDD, we have used an industrial tool 

that can generate fully-functional systems from conceptual models: INTEGRANOVA [2]. MDD is applicable to the devel-

opment of any system, such as information [40], embedded [47] or cyber-physical systems [27], among others. Our ex-

periment focuses on information systems.  

For inexperienced developers, we have observed that there are no significant differences between MDD and a traditional 

method regarding effort, productivity and satisfaction. However, we have observed that quality in MDD is more stable than 

a traditional method to variations in problem complexity. These preliminary results clearly contradict the claims that have 

been accepted as facts (i.e. quality, effort, productivity and satisfaction in MDD are always better) and call for a thorough 

study and deeper understanding of the conditions under which MDD might be better than other development paradigms. 

We have analysed some reasons why MDD claims are not satisfied in our experiment. We have identified some variables 

that appear to influence the suitability of the development paradigm (MDD or traditional) to a project situation, such as 

problem complexity and developers’ background experience with MDD. Results must be interpreted within the context in 

which the experiment has been run: (i) the subjects are students, (ii) they have previous experience with traditional devel-

opment and they are learning to develop information systems with MDD, (iii) the systems are developed from scratch and 

(iv) their size is small. We conclude that further experimental research is required to gain insight and to better understand 

the conditions under which MDD might be an alternative to traditional software development.  

The paper is organised as follows. Section 2 discusses related work. Section 3 describes the experiment definition and 

planning. Section 4 presents the outcomes of the study. Section 5 shows the threats to validity identified after running the 

experiment. Section 6 discusses the interpretation of the results. Finally, Section 7 shows the conclusions. 

2 Related Work 

We have reviewed the literature in search of statements claiming benefits of MDD. We have generalised similar statements 

from different works and grouped those statements that refer to the same topic, as seen below: 

S1 Improvements in coding and in the resulting code:  

S1.1  Improvement of software code quality [44] [10] [34]. 

S1.2  Reduction of flaws in software architecture [4]. 

S1.3  Improvement of code consistency [4] [10]. 

S1.4  Rapid code generation when the application needs to be deployed on distinct platforms [31] [4] or migrated from 

one platform to another as technology changes [44]. 

S1.5  Automatic application of tested software blueprints and industry-standard patterns [10]. 

S1.6  Elimination of repetitive coding for the application [44]. 

S2 Improvements related to models: 

S2.1  Models are always updated with the code [19]. 

S2.2  The model becomes the focus of development effort; it is no longer discarded at the outset of coding [44]. 

S3 Improvements in maintenance: 

S3.1  Improvement in reuse, development of new versions and maintainability [19]. 

S3.2  Reduction of intellectual effort required for understanding the system [42] [34]. 

S3.3  Mappings provide interoperability among two or more different platforms [44] [17]. 

S4 Improvements for developers: 

S4.1  Reduction in developer effort [44] [4] [10] [19] [43] [42]. 

S4.2  Improvement of productivity [42] [11] [34]. 

S4.3  Enhancement of developer satisfaction [30]. 

Some of these advantages are embedded in the very definition of MDD and have no need of experimental validation. For 

example: 

 Code generation for distinct platforms: the same model can be used to derive code for different programming languages 

or platforms [44] [31] [4]. 

 Improvement of code quality: developers do not need special skills to build a good architecture [4]. 

 Maintainability: if a programming language evolves, the model compiler can be updated with a new version of the code 

and the developer can effortlessly update the code from the same model automatically [19].  

However, most of the claims listed above can be subject to experimental investigation. There exist some works that have 

gathered empirical evidences about MDD. Some authors have defined specific frameworks to guide the evaluation of non-

trivial MDD advantages. For instance, Vanderose and Habra  [48] define a framework that explicitly includes the various 

models used during software development as well as their relationships in terms of quality. Since generic frameworks ([50], 

[9]) have been widely validated and are frequently used in software engineering to evaluate different types of technology, 

the benefits of using specific frameworks to evaluate MDD are unclear. 
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MDD has been adopted by some companies. Some authors have described their experience of applying MDD in indus-

trial settings. Baker et al. [8] report on 15 years of applying MDD at Motorola and analyse effort, quality and productivity 

in automatic code generation and automatic test generation. According to their results, effort is 2.3 times less, defects are 

between 1.2 and 4 times less, and productivity is between 2 and 8 times greater using co-simulation, automatic code gen-

eration and model testing. 

Some authors aim to extract the existent experience with MDD at companies. For example, Hutchinson et al. [21] focus 

on understanding which factors lead to a successful adoption of MDD. They interviewed 20 professionals by telephone. 

The participants were from three different companies: a printer company, a car company, and a telecom company. They 

found that: MDD requires a progressive and iterative approach; successful MDD adoption depends on organisational com-

mitment; MDD users must be motivated to use the new approach; an organisation using MDD needs to adapt its own proc-

esses along the way; MDD must have a business focus, where MDD is adopted as a solution to new commercial and organ-

isational challenges.  

Notice that both self-experience and surveys elicit opinions, so their findings are empirical but, by definition, subjective.  

Other researchers have conducted case studies to identify MDD benefits. Mellegard and Staron [32] performed a case 

study to compare whether developers expend more effort on modelling in MDD than in a traditional method. They inter-

viewed three project managers and measured effort expended on the development of artefacts. Results show that effort 

expended on modelling is similar using MDD than using a traditional method. Since MDD automatically generates code, 

the authors deduce that MDD-compliant methods should always be more efficient than traditional methods. Heijstek and 

Chaudron [20] conducted a case study to evaluate the effort saved by using MDD in industry. One developer, one lead 

developer, two project leaders and one estimation and measurement officer were interviewed. The authors studied a project 

to develop a system for a large financial institution. The study focuses on model size, model complexity, model quality and 

effort to build the models. Results show that, for the project under study: large and complex models built with MDD 

change more often but do not necessarily contain more defects than smaller models; MDD achieves better results with 

regard to effort, quality and development complexity. The research also report on the subjective opinions of development 

team members about benefits of MDD: increase in productivity, consistent implementation, and improvement of the overall 

quality. Kapteijns et al. [26] performed a case study to analyse the productivity of MDD applied to small middleware appli-

cations. The research focuses on the development of a middle-sized system for managing satellite data. The study observes 

one developer and analyses productivity. They found that productivity was 2.6 times greater when MDD was applied for 

this specific system.  

In summary, MDD case studies mainly focus on measuring effort and find that MDD always scores higher than a tradi-

tional method. Notice that the strength of case studies is that they investigate a phenomenon in its real context. The weak-

nesses are a low level of control (which means that there is no way of knowing what caused the observed results) and low 

level of generalisation (since the findings are true only for the case under study).  

Some researchers have conducted experimental investigations of MDD. Anda and Hansen [7] conducted an experiment 

to analyse the advantages of MDD in legacy systems. The research focused on a project at a large company to develop a 

safety-critical system. There were 28 experimental subjects, where 14 developed parts of the system from scratch and 14 

enhanced existing components. The variables measure the ease of constructing diagrams, use of diagrams and utility of 

diagrams. Results show that the use of diagrams is beneficial in testing and documentation, and there is a need for more 

methodological support on the use of diagrams. Krogmann and Becker [28] performed an experiment computing two pro-

jects with students. One project used a traditional method where a team of 11 subjects developed a system. While in the 

other project one subject developed another system using MDD. The studied variable is effort. They found that develop-

ment effort for a system with MDD is lower than for a traditional method. According to the outcomes, MDD reduces effort 

by 11%. Notice that time is not measured, it is estimated by developers. Martínez et al. [30] compare three different devel-

opment paradigms in a controlled laboratory experiment: code-centric development (developers focus only on the code, 

models are rarely used), model-based development (developers build models that are used to produce small chunks of code) 

and MDD (developers build models that are used to automatically generate code for part or all of the system). The 26 sub-

jects are divided into five teams. Each team used the three development paradigm but in different order. Each team devel-

oped a different web application but all of them shared the same complexity and context (social media applications). The 

subjects do not build a fully functional web application; they build chunks of code (modules). The studied variables are: 

perceived usefulness, perceived ease of use, compatibility of each paradigm, and intention to adopt. Results show that the 

MDD method has the highest perceived usefulness, perceived ease of use and intention to adopt. MDD was the least com-

patible with developers’ current practices but the most useful in the long run. Some of the cons of MDD highlighted by 

users based on their subjective perceptions are: greater learning curve, lower compatibility of MDD with the other two 

paradigms and lower reliability of the results. Papotti et al. [38] conducted a controlled laboratory experiment developing 

part of a medium-sized academic system used at the University of Sao Carlos. The analysis is only focused on the time to 

develop CRUD (Create, Retrieve, Update, Delete) operations. MDD is compared with a traditional method applied by 29 

undergraduate computer engineering students. The variable measured is effort. Results show that MDD reduces develop-

ment time by 90%, and reduces developers’ difficulties by 57% of the subjects.  
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Table 1.  Empirical studies on MDD in the literature 

Author Type of 

Study 

Site Size Data    

Collection 

Variables Results Limitations 

Baker et al. 

[8] 

Self-

Experience 

Industry 15 years Interviews - Effort 

- Quality 

- Productivity 

- MDD reduces effort in coding and testing 

- MDD increases quality (1.2-4 times) 

- MDD improves productivity (2-8 times) 

Results are based on subjective 

opinions of authors. 

Hutchinson 

et al. [21] 

Survey Industry 20 subjects  

3 compa-

nies 

Interviews Factors for a success-

ful adoption of MDD 

Successful MDD use depends on: 

-Progressive adoption 

-Integration with existing processes 

-Organisational commitment 

Conclusions extracted from inter-

views are subjective. 

Mellegard 

and Staron 

[32] 

Case Study Industry 3 subjects 

1 project 

Interviews Effort invested to 

build models 

Model building efforts are similar in MDD and 

the traditional method 

Empirical evaluation is confined to 

model building effort and omits 

code generation. 

Heijstek and 

Chaudron 

[20] 

Industry 4 subjects 

1 project 

Interviews 

 

-Model size 

-Model complexity 

-Model quality 

-Effort to build mod-

els 

MDD increases: 

- Model size 

- Model quality 

MDD reduces: 

-  Development complexity 

-  Effort 

Results extracted from non-

quantitative analysis of interviews. 

Kapteijns et 

al. [26] 

Industry 1 subject 

1 project 

Measures Productivity MDD improves productivity (function 

point/hour) 

Results only valid for middleware 

applications. 

Anda and 

Hansen [7] 

Experiment Industry 28 subjects 

1 project 

Measures -Ease of constructing 

diagrams 

-Use of diagrams 

-Utility of diagrams 

Diagrams improve testing and documentation 

but there are few diagramming methods 

Experiment focuses on diagrams. 

Benefits of generating code from 

these diagrams have not been 

evaluated empirically. 

Krogmann 

and Becker 

[28] 

Academia 11 subjects 

2 projects 

Measures Effort MDD reduces the effort by 11% -Results focus on development 

time. 

-Time logging is not used; ana-

lysed times are rough estimates. 

Martínez et 

al. [30] 

Academia 26 subjects 

5 projects 

Measures -Perceived usefulness 

-Perceived ease of use 

-Compatibility 

-Intention to adopt 

MDD has: 

-The highest perceived usefulness  

-The highest perceived ease of use 

-The highest intention to adopt 

-The least compatibility and reliability 

Experiment does not study the 

development of fully functional 

systems from scratch. The final 

product is small chunks of code. 

Papotti et al. 

[38] 

Academia 29 subjects 

1 project 

Measures Effort MDD reduces: 

-Development time 

-Developer difficulties 

-Results focus on development 

time. 

-Experiment is limited to CRUD 

operations. 

Bunse et al. 

[12] 

Academia 45 subjects  

1 project 

Measures -Reuse 

-Effort 

-Quality 

MDD reduces effort 

MDD improves: 

- Reuse 

- Quality  

Results are only valid for compo-

nents, not full applications devel-

oped from scratch. 
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Bunse et al. [12] performed an experiment on a component-oriented approach using MDD in embedded software sys-

tems. A total of 45 subjects divided into three-member teams develop a car-mirror control system. The experiment focuses 

on comparing MDD with the Unified Process and an agile approach. The studied variables are: reuse, effort, and quality. 

The results show that using MDD in a component-oriented approach has a positive impact on reuse, effort, and quality.  

The results of most experiments show that it takes less effort (measured as time) to develop a system with MDD than us-

ing a traditional method. Notice that only two experiments [28] [38] investigate development of a fully functional system 

from scratch. Generalisation of results from [28] is troublesome since: the response variable is not measured but it works 

with participants estimation; each treatment is applied on a different problem/project and compares the development per-

formed by one person with the one performance by a team of 11. [38] is a full randomised laboratory experiment but it 

develops only CRUD operations. 

Other variables such as quality, productivity or developer satisfaction have not been studied in experiments yet. If the 

focus is on effort only (measured as time), there is no guarantee that the code generated with MDD fulfils end-user expecta-

tions nor the MDD is satisfactory for developers. Moreover, most existing experiments focus on one project, which is an 

obstacle to generalisation to other projects. Only Martínez et al. [30] included the study of different projects (problems) as a 

factor in the experiment. 

Table 1 shows a summary of existent empirical works that have studied the benefits provided by MDD. Most studies 

compare MDD with a traditional method for developing small chunks of code rather than a full system from scratch. The 

studies [26] [28] [38] [12] that do deal with a full system use subjective metrics for the comparison [12] or compare pro-

ductivity [26] and development time [28] [38]. 

We aim to conduct an experimental investigation to test the most cited benefits (quality, productivity, effort, satisfac-

tion) of MDD. The experimental subjects need to develop a fully functional system from scratch using MDD or a tradi-

tional software development method, where code is written manually. 

3 Experiment Definition and Planning 

The following is a description of the experiment setting according to Juristo and Moreno [25]. 

3.1 Goal 

The goal of this experiment is to compare the MDD paradigm with traditional software development methods for the pur-

pose of filling the existing gap in empirical evidence about MDD. The focus is placed on the differences that appear when 

building a system from scratch. Of all the existing differences, we focus on product attributes, as well as on developer com-

fort and workload. The experiment is conducted from the perspective of researchers and practitioners interested in investi-

gating how much better MDD is than traditional software development methods.  

3.2 Experimental Subjects 

The study participants are master students with some professional experience. The subjects participating in the experiment 

are master students from the Universitat Politècnica de València (UPV, Spain) who have previously taken two software 

engineering courses. The experiment was performed as part of a MDD course. We recruited 26 students. They all had pre-

vious knowledge of the object-oriented paradigm, but few knew anything about MDD before the course. In order to charac-

terise the population, the subjects filled in a demographic questionnaire before running the experiment. Table 2, Table 3 

and Table 4 summarise the main characteristics of participants and their background. 

Table 2. Job experience at software companies 

None 1 month 1-3 months 3-12 months 1-3 year More 3 years 

15 1 0 4 4 2 

 

Table 3. Types of jobs performed by the students and time in the job 

  

Junior         

programmer 

Senior         

programmer 

Developer Tester Manager 

Number of students with role  15 1 4 4 4 

Time spent in the job (months) Avg.  

Min. 

Max. 

11.5 

4 

24 

12 

12 

12 

24 

12 

36 

9 

6 

12 

34 

6 

72 
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Table 4. Experience with MDD and models 

Experience with None I have heard 

about it 

I took lessons I have worked 

with it 

I have used it 

regularly at work 

MDD 4 11 8 2 1 

Entity-Relationship Diagram 1 3 11 7 4 

Class Diagram 0 1 14 7 4 

State-Chart Diagram 3 2 11 9 1 

Activity Diagram 2 7 10 7 0 

Sequence Diagram 2 3 13 7 1 

Web Applications Development 6 8 9 0 3 

 
Table 2 focuses on development experience measured by the number of months or years that subjects have worked in 

industry. Table 3 shows the type of role and the (average, minimum and maximum) time spent in the respective role. Note 

that some participants have played more than one role. Table 4 shows the previous experience in MDD and several other 

types of models. Most experiment participants had no work experience, and a few had worked with models. So, our ex-

periment sample can be considered to be representative of a population of novice developers. In the experimental investiga-

tion, subjects worked in pairs (mainly for logistic reasons); therefore, when we use the term "pair" in this paper, we mean a 

couple of participants working together.  

3.3 Research Questions and Hypothesis Formulation 

There are so many claims about the pros and cons of MDD that it is impossible to evaluate them all in a single experiment. 

Next, we analyse claims made about MDD in the literature (according to the list we show in Section 2) to select which ones 

can be studied in this experiment.  

Statements focused on code and coding improvements (see S1 in Section 2) depend on the tool that implements the 

model to code transformation rules, such as statements that refer to reduction of architecture flaws, code consistency, code 

generation for different platforms, interoperability among platforms, application of automatic tests, and lack of repetitive 

code. Since our experiment aims to be as independent as possible of any code generation process, we have avoided to ana-

lyse the architecture of the generated code, which is generally tool-dependent.  

There are model-related statements (S2), such as models are always updated and models are not discarded. These state-

ments have no need of an empirical evaluation because a method that does not guarantee both statements is not MDD com-

pliant. 

There has to be an existing system in order to evaluate statements about improved maintenance (S3). This is the case of 

statements about MDD benefits regarding reuse, development of new versions of a system, maintainability, ease of under-

standing of the system and portability among different platforms. Since we aim to compare MDD with a traditional method 

for building a system from scratch, these statements were not considered in our experiment. 

The statements that best tie in with our goal deal with product attributes and developers’ viewpoints, do not deal with the 

architecture of the generated code (since architecture is tool-dependent), are not trivial and can be analysed on a system 

developed from scratch. Of all the MDD advantages stated in the literature, the statements that share these characteristics 

are statements S1.1 and those of S4: improvement of software code quality, reduction in developer effort, improvement of 

productivity and enhancement of developer satisfaction. The research questions that we have formulated to study these 

statements are: 

 RQ1: Is software quality affected by MDD? We refer to quality in a broad sense and we adopt the definition by IEEE 

[22],  i.e. the degree to which a system, component or process meets specified requirements. We measure quality as 

the percentage of end-user requirements satisfied by the developed system. The null hypothesis tested to address this 

research question is: H01: The software quality of a system built using MDD is similar to software quality using a tra-

ditional method. 

 RQ2: Is developer effort affected by MDD? Effort is defined as the number of labour units required to complete a sched-

ule activity or work breakdown structure component, usually expressed as person-hours, person-days or person-weeks 

[22]. We measure effort as the time taken per pair to build a system. The null hypothesis tested to address this re-

search question is: H02: The developer effort to build a system using MDD is similar to effort using a traditional 

method.  

 RQ3: Is developer productivity affected by MDD? Productivity is defined as the ratio of work product to work effort 

[22]. We operationalise productivity as the amount of quality work done per effort. The null hypothesis tested to ad-

dress this research question is: H03: The developer productivity using MDD to build a system is similar to productivity 

using a traditional method. 

 RQ4: Is developer satisfaction affected by MDD? Satisfaction is defined as the contentedness with and positive attitudes 

towards product use [22]. We operationalise satisfaction as how at ease developers are as they develop a system. The 

null hypotheses being tested to address this research question is: H04: The developer satisfaction using MDD to build a 
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system is similar to satisfaction using a traditional method.  

3.4 Factors and Treatments 

We now define factors and their levels to operationalise the cause of our experiment construct. Factors are variables whose 

effect on the response variables we want to understand [25]. The experiment studies one factor: development method. The 

control in this experiment is a traditional method while the treatment is MDD.  

Regarding the control treatment, there are different approaches for operationalising a traditional development method 

where developers implement the code manually. Following [30], we have chosen two main approaches that experimental 

subjects might want to use: code-centric and model-based development. In code-centric development, developers focus 

mainly on producing the code and seldom use conceptual models. In model-based development, developers build some 

conceptual models to abstractly represent the system prior to implementation. We aim to compare MDD with each sub-

ject’s preferred traditional method. This way, MDD is compared under conditions more closely resembling reality (where 

practitioners have experience using certain paradigms). Since we cannot guarantee that all subjects prefer the model-based 

paradigm (despite having received training in previous courses), we allowed participants to use their preferred, code-centric 

or model-based, method. Subjects choose the paradigm they are more familiar with and towards which they have better 

expectations. Pairs that used the model-based paradigm were free to choose whichever conceptual models they thought 

best. 

Regarding the treatment level, there are several sound MDD methods such as NDT [24], WebRatio [6], OOHDM [41], 

and so on. Of all the existing methods, we chose OO-Method [40] and its associated tool INTEGRANOVA [2]. OO-

Method was chosen for three reasons. First, INTEGRANOVA is one of the few tools being used successfully in industry 

[2]. Other tools have been exercised in an academic context but not used in industry. Second, INTEGRANOVA is one of 

the few tools that can generate fully functional systems without writing a single line of code. Other MDD tools require 

some code to implement part of the functionality or system interfaces that are not supported by models. This makes INTE-

GRANOVA fully compliant with the MDD paradigm, which advocates focusing the entire developer effort on building 

conceptual models and relegates code generation to automatic transformations. Third, INTEGRANOVA can generate code 

in different languages using the same conceptual model as input, such as C# and Java. The tool can generate code for desk-

top and web systems from the same model too. All these features make OO-Method and its tool the perfect choice for em-

bodying the treatment level to be used by participants to generate a fully operational system from scratch. Appendix A 

contains a brief description of the models used by INTEGRANOVA. 

3.5 Response Variables and Metrics 

Response variables are the effects studied in the experiment caused by the manipulation of factors [25]. RQ1 requires a 

variable to measure quality. According to ISO 9126-1 [3], quality is composed of several characteristics: functionality, 

reliability, usability, efficiency, maintainability, portability. We have chosen functionality since it is more focused on satis-

fying end-user expectations. More specifically, we study the sub-characteristic Accuracy, which is defined in ISO 9126-1 

as "the capability of the software product to provide the right or agreed results or effects". We measure accuracy as the 

percentage of acceptance test cases that are successfully passed.  

We have defined a set of acceptance test cases that cover each web application. Each requirement has one associated test 

case. Once the development process was complete, we executed the set of acceptance test cases in the presence of the pairs. 

This way, the developer pairs could help us setup the system (the setup process is outside the scope of our experimental 

investigation). Each test case is defined as a sequence of steps; we consider each one of these steps as an item that needs to 

be satisfied. We used four aggregation metrics to decide whether a test case passes or not: 

 All or nothing: we consider that a test case is satisfied only if every item is passed (100% items passed). If one item 

failed the whole test case failed. The test case is seen as a black box with two possible values: success or failure (1 or 

0). To aggregate the results of all test cases in a test suite, we calculate the percentage of test cases run successfully.  

 Relaxed all or nothing: we consider that a test case is satisfied when at least 75% of items are passed. The test case is 

again seen as a black box with two values: success (1) or failure (0). To aggregate the results of all test cases in a test 

suite, we aggregate the percentage of test cases run successfully.  

 Weighted items: we assign a weight to each test item depending on the complexity of its functionality. The complexity 

of functionalities is decided by the problem designer. Weights are directly proportional to the complexity of the func-

tionality. Weights are assigned in such a way that the addition of all weights is 1 for each test case. When test cases 

are run, we add the weights of passed items. The test case returns a value between 0 (no item has passed the test) and 

1 (every item has passed the test), including decimals. This is the percentage of passed items in a test case. To aggre-

gate the percentages of all the test cases, we calculate the average.  

 Same weight for all items: we assign the same weight to each item within a test case (independently of complexity) in 

such a way that the addition of all the weights of the items is 1 per test case. This avoids the subjectivity of the 

weighting item metric. When test cases are run, we add the weights of passed items.  The test case returns a value be-
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tween 0 (no item has passed the test) and 1 (all items have passed the test), including decimals. This shows the per-

centage of passed items in a test case. The aggregation of all test cases is calculated in the same way as for the weight-

ing item aggregation metric, that is, to aggregate the percentages of all the test cases, we calculate the average.  

Table 5 shows how many test cases were used to evaluate each problem and how many items there are in each test case. 

Test cases for both Problem 1 and Problem 2 are shown in Appendix B and Appendix C respectively. Some items appear in 

more than one test case. In an invoicing system, for example, if we aim to evaluate whether or not the system automatically 

calculates the amount of the invoice using the product price, we need to add more than one product to the invoice, repeating 

items to insert products. Table 5 also shows how many items appeared more than once throughout all the test cases. Prob-

lem 1 has more repeated items since the “Create invoice” test case needs a lot of information to have been previously saved 

in the system. Repeated evaluation items are considered only once (first time they are tested). This results in 21 items for 

Problem 1 and 22 items for Problem 2. Since problem complexities are similar, the number of items is also similar. 

Table 5. Test items of each problem 

Problem 1  Problem 2 

Test case Items Repeated Items  Test case Items Repeated items 

1. Create customer 8 0  1. Create application 12 0 

2. Create repair card 28 22  2. Create application for 

the same photographer 

6 4 

3. Create invoice 7 0  3. Approve application 3 0 

 4. Promote photographer 5 0 

 
RQ2 needs a dependent variable that measures effort. Since effort is the ratio of time to develop a system per developer 

[22], we measure effort as the time taken by each pair to develop the web applications from scratch. 

RQ3 requires a dependent variable that measures developer productivity. Since productivity is the ratio of quality work 

to effort [22], we measure productivity as the accuracy to effort ratio (accuracy/effort).  

RQ4 requires a dependent variable that measures developer satisfaction. Since satisfaction is the positive attitude to-

wards the use of the development method [22], we measure satisfaction using a 5-point Likert scale questionnaire. The 

instrument used to measure this variable is a satisfaction questionnaire built using the framework developed by Moody 

[36]. Moody defined a framework (based on the work by Lindland [29]) in order to evaluate model quality in terms of 

perceived usefulness (PU), perceived ease of use (PEOU), and intention to use (ITU). This framework has been previously 

validated and is widely used [36]. According to [36], we defined eight questions to measure PU, six questions to measure 

PEOU and two questions to measure ITU. We defined a questionnaire for each treatment (MDD and traditional method). 

Even though the meaning of each question was the same for both levels, each questionnaire includes terms specific to the 

level that we aim to measure. For example, the statement "I will definitely use MDD to develop web applications" is used to 

measure the satisfaction with MDD, whereas the statement "I will definitely use a traditional method to develop web appli-

cations" is used to measure the satisfaction with the traditional method.  

Note that all four response variables are to be measured after developing an executable web application from scratch. By 

executable we mean a system that can be used by an end user. This is independent of the percentage of functionality that 

the system provides with regard to its specification. Table 6 shows a summary of the research questions, hypotheses and 

response variables used to test these hypotheses. 

Table 6. Summary of RQs, hypotheses and response variables 

RQs Hypotheses Response Variables Metric 

RQ1 H01 Accuracy Test cases passed 

RQ2 H02 Effort Time 

RQ3 H03 Productivity Accuracy/effort 

RQ4 H04 Satisfaction PU, PEOU, ITU 

3.6 Experiment Design 

This section discusses the design alternatives that we considered to limit the threats to validity brought about in this do-

main. Design names used here follow Juristo and Moreno [25]. Notice that design names depend on the discipline; designs 

with different names in different disciplines may actually be equivalent.  

Before selecting a specific design for the experiment, we considered several alternatives, which were ruled out based on 

a trade-off between threats to validity and context characteristics. We share this information hoping to provide insights to 

researchers undertaking similar experiments in the future and to clarify the rationale for our experimental design. The de-

signs we analysed and discarded due to their threats are the following:  
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 One factor, two treatments: This design divides units into two groups: one group (G1) develops the system with MDD 

and the other group (G2) develops the system with a traditional software development method. Each group solves the 

same problem (P1) (Table 7.a). The pros of this design are that the conditions for both treatments are identical (same 

session, same problem). The main threat of this design is that the number of experimental units is divided by two. We 

do not have a large enough number of experimental units (in this case, pairs of subjects) to get powerful results using 

this design. Besides, from the training perspective, pairs would only practice one software development method 

(MDD or traditional method), which is not a viable alternative in a MDD course. 

 Paired design: In this design, pairs are not divided into groups so as not to reduce sample size. The experiment is per-

formed during two sessions. In the first session, all pairs solve a problem with a traditional software development 

method. In a second session, all pairs solve the same problem with MDD (Table 7.b). The pros of this design are that 

the comparison conditions are still much the same (a single problem), we use the largest possible sample size with the 

available number of experimental units and pair variability does not affect levels since the same units are used in both 

levels (subjects act as their own control, eliminating variability due to differences in subject behaviour). This design 

has two main threats: pairs may learn the problem in the first session and the results of the second session may be in-

fluenced or biased by a problem learning effect; treatment and order are confounded since one level is always exer-

cised first and the other second.  

Table 7 Discarded designs  
 

(a) One factor, two treatments design (b) Paired design 

 P1 

Session 1 MDD G1 

Traditional G2 
 

 P1 

Session 1 Traditional G1 

Session 2 MDD G1 
 

 

 Paired with two experimental objects: This design aims to avoid the possibility of the learning effect in the paired de-

sign. One problem is used with a traditional software development process and a different problem with MDD (Table 

8.a). The pros of this design are that it uses the largest possible sample size, the between-session learning effect prob-

lem is removed and variability among pairs does not affect levels. This design has one main threat: the problem (P1 

and P2) to be solved and the treatment (MDD and a traditional method) are confounded.  

 Cross-over with two experimental objects: To avoid the threat of confounding treatment and order, we considered a 

cross-over design where experimental units are divided into two groups (G1 and G2). In the first session, G1 solves 

problem P1 with MDD, while the other group (G2) solves the same problem with a traditional software development 

method. In a second session, both groups solve another problem (P2) using the other development method (Table 8.b). 

The pros of this design are that both treatments are applied in each session (avoiding the confusion between session or 

order and treatment), it uses the largest possible sample size, there is no problem learning effect, the problem is not 

confounded with levels, and there is no variability due to differences in average subject responsiveness. This design 

has one main threat: it is not easy in the context of a MDD course to justify the use of the traditional method as a 

treatment in session 2 once subjects have used MDD in session 1.  

Table 8. Discarded designs  

(a) Paired design with two experimental objects (b) Cross-over design with two experimental objects 

  P1 P2 

Session 1 Traditional G1 - 

Session 2 MDD - G1 
 

  P1 P2 

Session 1 MDD G1 - 

Traditional G2 - 

Session 2 MDD - G2 

Traditional - G1 
 

After discarding all the above designs for our experimental investigation, we finally chose a paired design blocked by 

experimental objects [25] shown in Table 9. We divided the pairs into two groups (G1 and G2). Both groups used a tradi-

tional software development method in the first session and MDD in the second session. We blocked by problem to avoid 

the learning effect of using the same problem in both sessions.  

Note that the design that we use (Table 9) avoids most of the threats: experiment findings are not fully problem depend-

ent (since we use two problems); it provides the largest possible sample size with the number of available units; there is no 

between-session problem learning effect; pairs cannot share their solutions with members of other groups since all units 

work at the same time and they cannot talk each other during the session; all units are used in both levels avoiding variabil-

ity among units; from an educational viewpoint, it makes sense to begin the course with a hands-on reminder of the tradi-

tional development method and finish with the hands-on exercise using MDD.  

The design applied in our experiment also has some intrinsic threats: the context of the experiment in session 1 might 

not be the same as in session 2 (boredom, noise in the room, tiredness, etc.); since MDD is always applied in the second 

session, subjects might carry over something from the traditional development to MDD. However, since the traditional-
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MDD order is the regular order practitioners will use (they know a traditional paradigm and move to MDD), we think this 

experiment design matches the reality under study.  

Table 9. Design used in the experiment: paired design blocked by experimental objects 

  P1 P2 

Session 1 Traditional G1 G2 

Session 2 MDD G2 G1 

3.7 Experimental Objects 

The objects used in the experimental investigation are two requirements specifications created for this experiment. They 

both are information systems required to be implemented as web applications. According to the lessons schedule during 

which the experiment was run, we had four hours (two sessions) to apply each treatment. Using a real web application to 

obtain outcomes applicable to real systems would be the best case. However, if we had defined a complex real problem for 

each treatment, participants would have not been able to finish the implementation of the problem due to time constraints. 

It would then have been impossible to execute and run test cases on the web applications created by subjects, which we set 

out to do in order to evaluate MDD in full system operating conditions. To ensure that every pair produces an executable 

system, we defined simple problems that could be tackled in four hours. The domain and complexity of both problems is 

analogous to remove or mitigate the effect of problems on the results.   

Both requirements are specified according to IEEE standard 830-1998 [45]. One problem is to manage a company of 

electrical appliance repair and the other is a photographer agency management system. Even though the problems are 

small, they exploit the most significant modelling primitives of MDD: several classes with attributes, methods and relation-

ships; conditions to be satisfied before triggering methods; transactions (methods composed of several methods following 

the principle of atomicity); and formulas to calculate derived attributes (attributes that depend on other attributes). 

The system to manage a company of electrical appliance (Problem 1) stores the customer information. Every time a cus-

tomer's appliance breaks down, he asks for a repair. Once the problem has been fixed by a repairman, a repair record is 

stored in the system. Later on, when the customer is ready to pay, the system creates an invoice that includes all the unpaid 

repair records. The invoice must calculate the total amount to be paid depending on the amount of each outstanding repair. 

The most common actions within this system are: create customers, create repair cards, create invoices (which can include 

several repair cards for the same customer), and payment of all the repairs included in an invoice. This system has 40 func-

tion points considering classes, attributes and operations shown in Fig 1.a . Note that INTEGRANOVA generates auto-

matically CRUD operations for each class, apart from operations specific of the problem1. If we measure the size of Prob-

lem 1 including CRUD operations, we obtain 100 function points. Since CRUD operations were not within the problem 

description, we consider Problem 1 in the experiment with a size of 40 function points. 
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(a) Class Diagram of Problem 1 (b) Class Diagram of Problem 2 

Fig 1. Reference solutions to the problems solved during the experimental tasks  

The photographer agency management system (Problem 2) stores the information on photographers that are working at 

an agency. New photographers fill in a job application. Later on, the agency manager decides which applicants are accepted 

and stores the accepted applicants as new photographers. Applicants whose application has been rejected can reapply at the 

earliest one month later. In this case, only the applicant’s short bio and photography equipment must be updated. Photogra-
 

1 CRUD operations are generated by default with INTEGRANOVA, however, the analyst can hide them.   
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phers may be promoted when the quality of their photographs improve. Photographers cannot be demoted. The most com-

mon actions within this system are: create application, accept or reject applicants and promote photographers. Fig 1.b 

shows the class diagram for Problem 2. This system has 35 function points considering classes, attributes and operations 

shown in Fig 1.b. If we consider CRUD operations included by INTEGRANOVA, we obtain 94 function points. Since 

CRUD operations were not in the problem description, we consider Problem 2 in the experiment with a size of 35 function 

points.  

3.9 Experiment Procedure 

The procedure for running the experimental investigation matches the chosen design. The investigation was carried out 

over four months with two-hour sessions once a week, that is, a total of 16 training sessions. The diagram in Fig 2 summa-

rises the procedure. The numbers mean steps in the experimental procedure, not sessions. 

 

Fig 2. Summary of how the experiment was performed 

The first step in the first session was to fill in the demographic questionnaire to identify the students’ background. The 

results of this questionnaire are shown in Table 2, Table 3 and Table 4. In the second step (sessions 1 to 3), the pairs par-

ticipating in the experiment develop a web application from scratch using a traditional method. However, training in a 

traditional development method is outside the scope of the course. In order to ensure that all the pairs were able to apply a 

traditional method, we defined a problem (Problem 0) to be solved as homework over a two-week period. The problem was 

designed as a refresher for pairs to practise a familiar development paradigm and programming language. During the first 

session, pairs were given the requirements specification of Problem 0 (using the IEEE standard 830-1998 notation [45]) to 

be developed using a traditional method. Problem 0 was a public transport bus management system. System users can per-

form actions such as: create buses, define routes, identify passengers getting on a bus, identify passengers getting off a bus, 

and provide historical information of bus journeys per passenger. The class diagram of this system can be viewed in Ap-

pendix Da. 

Table 10. Programming languages used by the pairs for traditional treatment 

Language Number of pairs 

PHP 2 

.NET 7 

JAVA 3 

RUBY 1 

 

For this refresher exercise, we advised the pairs to choose the language that they had used most in the past. Table 10 

shows the distribution of the programming languages among the pairs. Pairs were allowed to use any diagrams they liked 

(such as UML diagrams or entity-relationship diagrams) before programming the web application. Of 13 pairs, 10 used a 

UML class diagram to represent the database structure. The other two pairs started to program the system directly. At the 

end of the third session, the trainer evaluated Problem 0 to verify that the pairs were eligible for the experimental investiga-

tion. All the systems passed most of the test cases designed for evaluation purposes; therefore, we can ensure that all the 
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pairs have sound knowledge of a traditional (either model-based or code-centric) software development method. While the 

pairs were developing Problem 0 as homework, MDD was introduced in two lessons (four hours).  

In the third step (sessions 4 and 5), we divided the pairs into two groups of six pairs per group. Each group developed a 

system to solve a problem (Problem 1 or Problem 2) with a traditional method using the same programming language they 

had used in the refresher exercise. The distribution of problems by pair was random, ensuring that it was balanced. Pairs 

2,4,5,7,8,11,12 solved Problem 1 and pairs 1,3,6,9,10,13 solved Problem 2. Developments with the control treatment were 

performed in two classroom sessions (four hours) so that we could control time. Pairs could use any diagram that they 

needed prior to implementation. Out of 13 pairs, seven used a UML class diagram to represent the database structure. The 

other six pairs did not use any diagram and went on to code directly. In order to ensure that the pairs did not develop the 

system at home (using up extra time), we checked that the development starting-point of fifth session matched the end-

point of the fourth session. At the end of the fifth session, we evaluated the developed system with the test cases, and the 

pairs filled in a satisfaction questionnaire regarding their experience with the traditional method. 

In the fourth step (sessions 6 to 11), the trainer spent 12 hours explaining the INTEGRANOVA tool. At the end of the 

learning period, in the fifth step (sessions 12 to 14), the pairs developed a web application using MDD and INTE-

GRANOVA on their own as hands-on training. We set a new problem (Problem 00) quite similar in complexity and func-

tionality to Problem 0. This way we ensured that both treatments were applied under similar training conditions. Problem 

00 is a video club management system. System users can perform actions such as: create movies, create members, rent a 

film, return a film, and provide statistical information per member. The class diagram of Problem 00 is in Appendix Db. 

Problem 00 was developed in the classroom and the students were also allowed to work at home. At the end of session 

14, we evaluated the developed systems through test cases. Since all the web applications passed most of the test cases, we 

concluded that students had enough knowledge to participate in the experimental investigation. 

In the sixth step (sessions 15 and 16), the pairs swap problems (Problem 1 and Problem 2) and developed them using 

INTEGRANOVA. Again, we ensured that the system was developed exclusively in the classroom, and we timed the devel-

opment. At the end of session 16 we evaluated the developed system with the same test cases that we had used in the man-

ual implementation, since these are the same applications. The pairs also filled in the satisfaction questionnaire with regard 

to their experience with MDD. 

3.10 Evaluation of Validity 

Table 11 discusses (following [23]) the threats addressed (or not) by the experiment setting (as opposed to the threats aris-

ing during execution or analysis). We have classified the threats according to the classification provided by Wohlin [49] 

following Campbell [13]. We organised the threats of each type according to three groups: avoided, suffered and not appli-

cable. The threats and how they were dealt with are shown in Table 11. 

3.11 Data Analysis 

We used the repeated measures (or within subjects) general linear model (GLM) to analyse the collected data since both 

levels of the Development Method factor are applied to each pair (within subjects). The blocking variable, Problem, is 

introduced as a covariate in the GLM test. There are two requirements for applying a GLM test: homogeneity of the covari-

ance matrices and sphericity. Box’s M test is used to check the condition of homogeneity of covariance matrices using as 

null hypothesis that the observed covariance matrices of the dependent variables are equal across groups [35]. For our sam-

ple, M = 37.6, F = 1.298, df1 = 21, df2 = 2118.527, sig. = 0.164, that is, the results verify the null hypothesis, meaning that 

the data are homogeneous. Mauchly’s test is used to check the sphericity condition. In our case, however, there are only 

two levels of repeated measures (with MDD and with a traditional method), which precludes a sphericity violation [35]  

and the test is unnecessary. 

The power of any statistical test is defined as the probability of rejecting a false null hypothesis. Statistical power is in-

versely related to beta or the probability of making a Type II error. In short, power = 1 – β. Power in software engineering 

experiments tends to be low, e.g. Dyba et al. [14] reports values of 0.39 for medium effect sizes and 0.63 for large effect 

sizes. Low values of power mean that non-significant results may involve accepting null hypotheses when they are false.  

The p-value of GLM test shows whether or not there is a significant difference between treatments of each factor. Since 

the test does not indicate the magnitude of that difference, we use the non-parametric statistic called Cliff’s delta as the 

effect size measure [18]. We use this technique since accuracy, productivity and effort do not follow a normal distribution. 

Cliff’s delta ranges in the interval [−1, 1] and is considered small for 0.148  ≤d < 0.33, medium for 0.33 ≤d< 0.474, and 

large for  d≥0.474. A positive sign means that values of the first treatment are greater than the values of the second one 

(inversely for a negative sign). The results, grouped by accuracy, productivity, effort and satisfaction, of applying GLM, 

statistical power and Cliff’s delta follow. 

http://effectsizefaq.com/2010/05/31/what-do-alpha-and-beta-refer-to-in-statistics/
http://effectsizefaq.com/2010/05/31/i-always-get-confused-about-type-i-and-ii-errors-can-you-show-me-something-to-help-me-remember-the-difference/
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Table 11. Evaluation of Validity 

Type of threat Status Threat Due to How we have dealt with it 

Conclusion 

validity 

Avoided Low statistical 

power 

Sample size is not big enough. We avoided this threat using the repeated measures GLM test and calcu-

lating the statistical power for each null hypothesis that we were unable 

to reject. 

Subjects of random 

heterogeneity 

Subjects are randomly selected and their 

background is too heterogeneous. 

We avoided this threat by training the pairs with Problem 0 and Problem 

00.  

Fishing Experimenters search for a specific re-

sult. 

We avoided this threat by using all the collected data, none of which was 

removed for any reason whatsoever. 

Reliability of meas-

ures 

There is no guarantee that the outcomes 

will be the same if a phenomenon is 

measured twice. 

We avoided this threat by measuring accuracy, effort and productivity 

with objective metrics. 

Suffered Satisfaction suffers from this threat since it is subjective.  

Random irrelevan-

cies in experimental 

settings 

There are elements outside the experi-

mental setting that may interfere with the 

results. 

The experiment suffers from this threat since, we cannot guarantee that 

none of the subjects spent a little time on activities different from the 

experiment, such as chatting with their partner or reading e-mail. 

Construct valid-

ity 

Avoided Interaction of test-

ing and treatment 

Subjects apply the metrics to the treat-

ments. 

We avoided this threat since experimenters (the researchers) were re-

sponsible for measuring the treatments. 

Mono-method bias Experiments with a single type of meas-

ure can result in measurement bias. 

We avoided this threat to satisfaction, since the satisfaction questionnaire 

includes redundant questions expressed in different ways. We have 

avoided this threat to accuracy by using test cases aggregated through 

three aggregation metrics. 

Suffered Effort and productivity suffer from this threat since they cannot be cross-

checked against each other. To minimise its effect, we mechanised the 

measurement as much as possible by means of automatic timing. 

Hypothesis guess-

ing 

Subjects guess the aim of the experiment 

and act conditionally upon it. 

The experiment suffers from this threat, which we minimised by not 

talking about the research questions. 

Evaluation appre-

hension 

Subjects are afraid of being evaluated. The experiment suffers from this threat, which we minimised by includ-

ing the experimental tasks as exercises that students had to complete to 

pass the course without mentioning the term “experiment” or “test”. 

Interaction of dif-

ferent treatments 

There is no way of concluding whether 

the effect is due to either of the treat-

ments or to a combination of several 

treatments. 

The experiment suffers from this threat since the control treatment is 

always applied first. We cannot assure that the order of applying treat-

ments does not affect the results. 

Mono-operation 

bias 

A single operationalisation of treatments 

can lead to bias. 

The experiment suffers from this threat since the development with the 

MDD paradigm is based on the use of INTEGRANOVA only. It would 

be risky to generalise the results of the experiment to any other MDD 

tool than INTEGRANOVA. 

Internal validity Avoided History Different treatments are applied to the 

same object at different times. 

We avoided this threat by doing the second session as soon as possible 

(seven days later). We avoided copies between students by forcing the 

pairs to start the second session with the last version of the assignment 
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that they uploaded at the end of the first session.  

Learning of objects Pairs can acquire knowledge with the 

first treatment and apply it to the second 

one. 

We avoided this threat by using two different problems in our design, so 

subjects do not get the chance to learn objects. 

Subject motivation Less motivated pairs may achieve worse 

results than highly motivated pairs. 

We avoided this threat by choosing a design that fits the goal of the 

course to avoid demotivation. Since the topic of the subject was MDD, 

pairs might find it a little frustrating if they had to develop the case study 

using a traditional method after several lessons on MDD. 

Maturation The pairs react differently as time passes. 

This might happen in the second treat-

ment, when pairs could have learned 

from the first one. 

We avoided this threat in our design by applying a traditional method 

first and MDD second, since this is the regular order in reality for the 

learning process. 

Suffered Selection The outcomes can be affected by how the 

subjects are selected. 

The experiment suffers from this threat since we recruited students from 

a master’s course, and they had to participate in the experiment to pass it.  

Not appli-

cable 

Resentful demorali-

sation 

Subjects are divided into groups and only 

one treatment is applied to each group. 

This threat does not apply to the experiment according to our design 

where all subjects work with both treatments.  

Mortality Some subjects leave the experiment 

before completion. 

This threat does not apply to the experiment since students had to par-

ticipate in order to pass the course. There were no drop-outs. 

Compensatory 

rivalry 

Pairs receiving less desirable treatments 

may be motivated to reduce the expected 

outcomes. 

This threat does not apply to the experiment since we allocated both 

treatments to all pairs. 

External valid-

ity 

Suffered Interaction of selec-

tion and treatment 

The subject population is not representa-

tive of the population that we want to 

generalise. 

The experiment suffers from this threat since, according to demographic 

questionnaire, our subjects have a similar background. Results are valid 

for people with profiles similar to our subjects. 

Object dependency The results may depend on the objects 

used in the experiment and they cannot 

be generalised. 

The experiment suffers from this threat, which we mitigated somewhat 

by using two objects for each treatment.  

Interaction of his-

tory and treatment 

Treatments are applied on different days 

and the circumstances on that day affect 

the results. 

The experiment suffers from this threat since the two treatments are 

separated by several sessions in our design because pairs needed MDD 

lessons and training before solving the problem using MDD. We mini-

mised this threat applying both treatments in the same room and the 

same schedule. 

Not appli-

cable 

Interaction of set-

ting and treatment 

The elements used in the experiment are 

obsolete. 

This threat does not apply to the experiment since we used recently pub-

lished and validated questionnaires, and INTERANOVA is now in use. 
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4 Results 

In this section, we report the quantitative results of our experiment in order to address the research questions. All analyses 

have been performed using SPSS V20. Row data is included in Appendix E for disclosure and re-analysis purposes. 

4.1 Accuracy 

Accuracy was measured as the percentage of test cases passed (the higher percentage, the best accuracy). As discussed in 

Section 3.8, we aggregated the items within a test case using three aggregation metrics: all or nothing, relaxed all or noth-

ing, weighted items and same weight for all items. First, we focus our analysis on the most conservative metric (all or noth-

ing). Fig 3.a shows the box-and-whisker plot with the percentage of test cased passed using the all or nothing aggregation 

metric. This plot compares accuracy between the traditional method and MDD, differentiating between the two problems. 

We find that the difference between the medians of Problem 1 and Problem 2 is more obvious for the traditional develop-

ment method. All the subjects that used a traditional method to solve Problem 1 achieved a 100% success rate, except for 

one subject with 66%. The variability of Problem 2 is higher, to the point one pair did not pass any test case. This does not 

apply when pairs use MDD (even though they have less experience with MDD). Problem 1 and Problem 2 overlap almost 

completely; all subjects show accuracies roughly between 60% and 100%. MDD appears to be more robust than the tradi-

tional method being less affected by developers’ abilities. The box-and-whisker plots for the other aggregation metrics are 

similar to Fig 3.a and they are not reproduced for reasons of space, but the data analysis results for such metrics are dis-

cussed later in this section.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig 3.(a) Box-and-whisker plot for Accuracy with the all or nothing aggregation metric. (b) Output of the GLM test for accuracy with all or 
nothing aggregation metric 

  

Fig 4.(a) Profile plot of the Development Method*Problem interaction. (b) Profile Plot of both methods 
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In order to analyse in more detail the robustness of MDD regarding problem complexity observed with the box-and-

whiskers plot (Fig 3.a), we have drawn the profile plot in Fig 4.a. This shows an apparent Development Method*Problem 

interaction, more acute in the case of the traditional method, although MDD is also affected. Differences between Devel-

opment Methods are not observed, as shown in Fig 4.b.  

We applied the GLM test to analyse the percentage of satisfied test cases for each aggregation metric to learn whether or 

not accuracy is independent of using MDD or traditional methods (H01), shown in Fig 3.b. The p-value of the Development 

Method factor using the all or nothing metric is 0.42. Therefore, we cannot reject the null hypothesis, that is there is a not a 

significant difference regarding accuracy between developers using a traditional method and developers using MDD. Sta-

tistical power scores 0.12 (a low power), meaning a larger sample size is needed in order to increase experiment power and 

be able to identify differences (if they exist). Larger sample sizes could reveal if our results is a false negative case. Cliff’s 

delta has the value -0.05, which means that the effect of Development Method is tiny.  

As indicated above, the GLM confirms there is a significant Development Method*Problem interaction with a p-value 

of 0.02. Comparing the means of the possible combination between Development Method and Problem (Fig 4.a), we con-

clude that when pairs use a traditional method, the accuracy is worse for Problem 2 than for Problem 1. However, this dif-

ference between problems does not appear when subjects use the MDD method. The statistical analysis confirms the results 

of the visual inspection, which suggest that MDD seems to be a less sensitive development method to problem characteris-

tics. The value of Cliff’s delta is 0.57 when we compare Problem 1 with Problem 2 for pairs that used a traditional method. 

This is a large effect and reflects huge differences between both problems2 that are affecting developers. Cliff’s delta is 0 

when we compare Problem 1 with Problem 2 for pairs working with MDD. This means that accuracy for Problem 1 is 

better than for Problem 2 for pairs using a traditional method only. Even though both problems had similar number of func-

tion points, we believe that an issue of inheritance present in Problem 2 but not in Problem 1 (see Fig 1.a and Fig 1.b) 

might be a reason for the different performance observed between the two problems. 

From all these results we deduce that H01 can be accepted. However, accuracy in MDD is significantly more robust to 

small variations in problem complexity.  

When we use weighted items and same weight for all items as aggregation metrics, the results for the GLM test, 

Cliff’s delta and statistical power are similar to all or nothing aggregation metric. A summary of the key statistical parame-

ters is shown in Table 12. There are no significant differences for the Development Method factor but there are significant 

differences between the Development Method*Problem interaction. Note that statistical power is not a problem when the 

GLM test rejects the null hypotheses because a Type-II error cannot exist in this case (only a Type-I error). In such cases, 

power has been specified as “N/A” in Table 12.  

When we use the relaxed all or nothing aggregation metric, there are no significant differences between a traditional 

method and MDD either, as can be seen in the summary of Table 12. The difference regarding the above aggregation met-

rics is that relaxed all or nothing does not make a significant difference to the Development Method*Problem interaction. 

This means that problem complexity does not affect the results if the concept of quality is relaxed. This result makes sense 

since the differences in quality between Problem 1 and Problem 2 are due to a small set of items in the test case (around 

11% of items) that exercise the inheritance.  If we consider that a system has good quality when it passes 75% of the items 

in each test case, we overlook the small difference between the two problems in the omitted 25% of items. 

Table 12. Analysis of other aggregation metrics for Accuracy 

Aggregation 

Metric 

P-value Power Cliff’s Delta 

DM DM*P  DM DM*P Trad. vs 

MDD 

P1 vs P2 

with Trad. 

P1 vs P2 

with MDD  

Weighted 

items 

0.22 0.05 0.21 N/A 0.00 0.4 0 

Same weight 

for all items 

0.24 0.05 0.20 N/A 0.00 0.4 0 

Relaxed all or 

nothing 

0.16 0.18 0.25 0.25 -0.15 0.28 0 

 
 
Then results for accuracy do not change using different metrics and we can conclude, as the analysis of problem com-

plexity shows, that MDD seems to be less sensitive to problem complexity than traditional methods. 

 
4.2 Effort 

Effort is measured as the time that pairs take to solve a problem (the less time spent in the development, the best effort).  

Fig 5.a shows the box-and-whisker plot comparing effort (in seconds) expended using a traditional method versus MDD. 

The first and third quartiles are very similar, but there is a marked difference between medians. The median for effort using 

a traditional software development method is lower than for MDD since best performing subjects (i.e. those in the first and 
 

2 Please, remember both problems have a similar complexity measured in function points as well as be similar in the type of functionality. 

DM means Development Method, P means Problem and “*” means interaction 
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second quartile) using the traditional method tend to be faster than those using MDD. Although the worst performing ones 

(i.e. those in the third and fourth quartile) perform rather similar in the traditional development and MDD.   

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Fig 5. Box-and-whisker plot for Effort. (b) Output of the GLM test for effort 

The aim of our experimental investigation is to identify whether or not effort is independent of using a traditional 

method or MDD (H02). The p-value for Development Method is 0.24, indicating no significant differences between MDD 

and traditional methods. Statistical power scores 0.21, which implies that a Type-II error might be happening and therefore 

results could reverse with bigger sample size. Cliff’s delta is -0.21, denoting small effect in the direction that MDD takes a 

little more effort than traditional development.  

The Development Method*Problem interaction is not significant with a p-value of 0.73, which means that problem type 

does not influence effort. The statistical power of the interaction between Development Method and Problem is 0.06, which 

is also remarkably low. Cliff’s delta comparing Problem 1 with Problem 2 for pairs using a traditional method is -0.26, 

which is a small effect size. This result shows that subjects expended less effort on Problem 1. Cliff’s delta comparing 

Problem 1 with Problem 2 for pairs using MDD is 0.16, which is also small. This result shows that subjects using MDD 

solve Problem 2 more effortlessly than Problem 1. When the problem complexity increases (Problem 2 is more complex 

than Problem 1), MDD gets slightly better results for effort than a traditional method, even though this difference is not 

significant. 

We conclude that H02 is accepted: there is no significant difference between effort using a traditional method and effort 

using MDD, although MDD tends to require slightly more effort than a traditional method. 

 
4.3 Productivity 

Productivity is measured as the accuracy to effort ratio (the higher ration the best productivity). Fig 6.a shows the box-and-

whisker plot comparing productivity using a traditional method and MDD. The median matches for a traditional method 

and for MDD, but the third quartile has a higher value for a traditional method. This means that high productive pairs (the 

top 50% above the median) achieve better results with a traditional method than with MDD. 

The aim of the experiment is to identify differences between MDD and a traditional method with regard to productivity 

(H03). Fig 6.b shows the results of the GLM analysis. The p-value for Development Method is 0.42, indicating that there are 

no significant differences between MDD and a traditional method for productivity. Statistical power is 0.09, so results may 

be different with a bigger sample size. The value of Cliff’s delta is -0.12, which means that the effect size is small, and the 

MDD group results for productivity are poorer than for the control group.  

The Development Method*Problem interaction is not significant, with a p-value of 0.14; hence problem type does not 

affect productivity. The statistical power of the interaction is 0.12, which is also very low. Cliff’s delta comparing Problem 

1 with Problem 2 for pairs using a traditional method is 0.5, which is a large effect size. This result shows that productivity 

is better for Problem 1 using a traditional method. Cliff’s delta comparing Problem 1 with Problem 2 for pairs using MDD 

is -0.14, which is a small effect size. Results show that differences of productivity between Problem 1 and Problem 2 work-

ing with a traditional method are greater than when working with MDD, even though these differences are not significant.  

We conclude that H03 is accepted. There is not a significant difference between the productivity of MDD and the pro-

ductivity of a traditional method; even though productivity with a traditional method is slightly higher. 

 

EFFORT
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Fig 6. Box-and-whisker plot for productivity. (b) Output of the GLM test for productivity 

 
4.3 Satisfaction 

Satisfaction is measured in terms of PU, PEOU and ITU on a 5-point Likert scale (the higher mark in the scale the better 

satisfaction). Since each metric is measured through several questions of the Likert questionnaire (8 for PU, 6 for PEOU 

and 2 for ITU), we have aggregated questions adding the responses per metric. Fig 7.a, Fig 8.a and Fig 8.b shows the box-

and-whisker plot comparing PU, PEOU and ITU respectively. In all three plots, medians using a traditional method and 

using MDD match together almost exactly. If we focus on PU (Fig 7.b) and PEOU, MDD achieves slightly better results 

since the first and third quartiles are higher than the corresponding ones for the traditional method. For ITU, the traditional 

method achieves slightly better results since the first and third quartiles are higher than the ones in MDD. 

We aim to verify whether or not satisfaction is independent of using MDD or traditional methods (H04). Table 13 sum-

marises the main statistical parameters (p-value, the statistical power and the effect size).  

Table 13. P-values for satisfaction using GLM test  

Satisfaction 

metric 

P-value Power Cliff’s delta 

DM DM*P DM DM*P Trad. vs 

MDD 

P1 vs P2 

with Trad. 

P1 vs P2 

with MDD 

PU 0.42 0.92 0.12 0.5 -0.29 -0.3 0.42 

PEOU 0.63 0.41 0.07 0.11 -0.16 -0.4 -0.04 

ITU 0.72 0.45 0.06 0.11 0.08 -0.52 0.14 

 
 

Since the p-values for all three satisfaction metrics after applying the GLM test to Development Method are greater than 

0.05 (Fig 7.b shows the results of the GLM analysis), we can conclude that there are no significant differences for any satis-

faction metric. So there are no significant differences between MDD and traditional methods regarding satisfaction. The 

statistical power is low in all cases making false negatives possible. The effect size is small in all cases too. The MDD 

group scored better on PU and PEOU. For ITU, the traditional method performed somewhat better.  

Neither are there any significant differences in the Development Method*Problem interaction; it implies that problem 

type does not affect satisfaction. Statistical power is large for PU and small for PEOU and ITU. In the former case, the high 

power denotes that the non-significant result is rather trustable as false negatives are unlikely (β<0.08). In the later cases, 

PEOU and ITU are likely to change if larger sample sizes are used. Effect sizes comparing Problem 1 with Problem 2 for 

pairs that use a traditional method is large for all three satisfaction metrics, resulting in a higher satisfaction for Problem 2. 

When we compare Problem 1 with Problem 2 for pairs that use MDD, we find that only PU yields a large effect size. 

PEOU fares better for Problem 2, whereas PU and ITU achieve better results for Problem 1. It is remarkable that subject 

perception does not match productivity. Even though the productivity of subjects that solve Problem 2 is higher with MDD 

than with a traditional method, subjects that solved Problem 2 with MDD are less satisfied than subjects that solved Prob-

lem 1. 

 

 

 

PRODUCTIVITY

DM means Development Method, P means Problem and “*” means interaction 
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Fig 7.(a) Box-and-whisker plot for PU. (b) Output of the GLM test for PU, PEOU and ITU 

 
 
 
 
 
 
 

 

 
 

 

 

 
 

 

 

 
 

Fig 8. (a) Box-and-whisker plot for PEOU. (b) Box-and-whiskers plot for ITU 

We conclude that H04 is accepted and there is no significant difference between developer satisfaction using MDD or a 

traditional method, even though PU and PEOU are moderately better for MDD. 

 
4.4 Differences between Code-Centric and Model-Based Traditional Development Approaches 

Since the control treatment is the traditional development paradigm preferred by subjects, we wondered whether there are 

differences between the pairs using a code-centric paradigm and pairs using a model-based paradigm as a tradi-

tional development method. As already mentioned, a code-centric paradigm is when developers focus only on the code, 

whereas, in a model-based paradigm, models are built before implementing the code. 

We allowed pairs to choose their preferred paradigm since we wanted subjects to feel comfortable when carrying out the 

control task. Six pairs used code-centric and seven pairs used model-based approaches. Although a priori MDD is expected 

to be independent of both approaches, we cannot rule out that some relationships exist between the paradigm used as con-

trol by the subjects and MDD. For instance, it is conceivable that pairs applying a model-based approach might be more 

acquainted with modelling solutions, so they may be more effective when using MDD. Table 14 shows the accuracy of the 

pairs depending on the approach used as a control group and the accuracy of the same pairs using MDD.  

Table 14. Accuracy by paradigm used as traditional development 

 Pairs 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 

Code-

Centric 

Control Task - 100 - - 50 100 - 0 - - 75 - 100 

Treatment Task - 100 - - 66.67 75 - 66.67 - - 100 - 75 

Model-

Based 

Control Task 100 - 100 100 - - 50 - 100 66.67 - 75 - 

Treatment Task 100 - 100 100 - - 100 - 100 50 - 66.67 - 

PERCEIVED USEFULNESS

PERCEIVED EASE OF USE

INTENTION TO USE
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For the analysis, we divided pairs into two groups depending on the approach they used for the control group: model-

based and code-centric. This way we analysed using the same procedure used before (a repeated measures GLM), model-

based versus MDD and code-centric versus MDD across all the response variables.  

Fig 9.a shows the box-and-whisker plot that represents the accuracy of both model-based and code-centric approaches. 

Looking at the plot we find that the pairs that used a model-based approach in the control group achieve better accuracies in 

both traditional method and MDD. Pairs that use code-centric approach in the control group achieve better results in a tradi-

tional method than in MDD. Accordingly, if we compare the accuracy for the control groups using the model-based and 

code-centric approaches, accuracy is better for users of the model-based approach. This result ties in with the importance of 

models in software development.  

Fig 9.b shows the box-and-whisker plot that represents the effort expended by both model-based and code-centric 

groups. It shows that the effort between the control group and the treatment group is almost identical for pairs working with 

code-centric methods in the control group. However, the effort of pairs working with the model-based approach in the con-

trol group is better (less effort is better) when they were working on the control task than on the treatment task. This indi-

cates that subjects know how to use models in a traditional development, but this expertise could not be effectively trans-

ferred to MDD as to reach the same (low) effort level.  

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 9.(a) Box-and-whisker plot for Accuracy in code-centric and model-based methods. (b) Box-and-whisker plot for Effort in code-
centric and model-based methods 

The box-and-whisker plot for productivity reveals that, as for effort, results are better for model-based traditional devel-

opment. Plots for satisfaction do not show any difference between model-based versus MDD and code-centric versus 

MDD, so they are not reproduced for reasons of space.  

We complemented the visual inspection with a GLM test to study whether there are significant differences between both 

paradigms. The results (Table 15) show that there are no differences between model-based versus MDD and code-centric 

versus MDD with regard to accuracy, effort, productivity, PEOU and ITU. 

Table 15. P-values for the GLM test differentiating model-based and code-centric paradigms 

Variable Model-based Methods vs MDD Code-centric Methods vs MDD 

 p-values Power Cliff’s delta P-values Power Cliff’s delta 

Accuracy 0.57 0.08 -0.1 0.93 0.05 0 

Effort 0.28 0.16 -0.3 0.39 0.12 -0.05 

Productivity 0.35 0.14 0.24 0.29 0.07 -0.05 

PU 0.5 0.09 0.24 0.03* - -0.97 

PEOU 0.52 0.09 0.16 0.35 0.13 -0.58 

ITU 0.5 0.09 0.22 0.88 0.05 -0.3 

* significance level = 0.05 

 
There is only one significant result for PU for the pairs that use the code-centric approach. In this case, PU is greater for 

MDD than for a traditional method. Cliff’s delta is close to -1, which means that the pairs that chose to directly code the 
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control task found MDD very useful. This perception of usefulness is not shared by the pairs that applied a model-based 

approach for the control task.  

In brief, values for PU of pairs using code-centric in the control group are significantly better in MDD. This difference 

does not hold when the control group uses the model-based approach. For accuracy, effort, productivity, PEOU and ITU, 

there are no significant differences between model-based and MDD, or between code-centric and MDD. We have also 

identified differences between model-based and code-centric approaches, even though these differences are not significant. 

Accuracy is better in both control and treatment groups for pairs using model-based in the control group. Effort and produc-

tivity are better in the control group using the model-based approach, which again highlights the importance of models 

during the software development process.  

Finally, we have to remark that the sample size is very small for the composition of code-centric and model-based ap-

proaches (six pairs for code-centric and seven pairs for model-based) and thus the tests have virtually no power. Statistical 

power for each variable is lower than 0.2, which means that results might change with larger sample sizes. More research is 

needed to clarify whether these results hold. Note that our experiment did not set out to study the differences between code-

centric and model-based approaches, but we perform this post-hoc analysis expecting that these results are instructive. 

5 Threats to Validity After Running the Experiment 

This section discusses new threats that we identified after we had run the experiment and analysed the data. These threats 

might help to explain why no significant differences were found between traditional methods and MDD regarding effort, 

productivity and satisfaction. One threat is the time taken to solve Problem 1 and Problem 2. We limited the time per 

problem to a maximum of four hours (two sessions) in order to control all the experimental variables inside the classroom. 

Accuracy might have been better for some pairs if they had been given more time. This time limitation may conceal differ-

ences between the effort expended on MDD and traditional methods. Before the experiment, we checked that four hours 

was long enough to solve the small problems used. We expected participants to take different times (as long as they 

needed) to complete the experimental tasks. It turned out that subjects used up all the allocated time. We hypothesize that 

rather than participants requiring all the allotted time, students tend to use up all the time they are given in a never-ending 

improvement iteration [39]. This transforms the effort metric into a constant for all subjects, since most subjects have the 

same value for effort (four hours). 

Undermotivation is another threat in some pairs. Subjects do not participate on a voluntary basis; they are students of 

the course of which the experiment is part. Due to undermotivation, we found that a few subjects arrived a few minutes late 

to the experiment sessions and had less than four whole hours to solve each problem. Undermotivation could also affect 

satisfaction results in such a way that the least motivated subjects would have scored satisfaction for both treatments low. 

In order to study this possibility, we have applied Pearson’s correlation test to look for significant correlations of satisfac-

tion between the control group and the treatment group. We got the following p-values: PU=0.415; PEOU=0.173; 

ITU=0.454. Since p-values are greater than 0.05, we must accept the null hypothesis, which means that there is no signifi-

cant correlation between the satisfaction with a traditional development method and MDD. Even though there are no sig-

nificant correlations, undermotivation in a few pairs could in any case affect their responses to satisfaction questionnaires.  

Time taken to run generated code is another threat. When using INTEGRANOVA, the model must be sent over the 

Internet, and the generated code is received in a computer folder about five minutes later. The received code includes two 

C# projects, one for the client side and the other for the server side. It also includes four scripts for building the database 

(creating tables, primary keys, foreign keys and indexes). Once the code has been received, the pairs must open and com-

pile both C# projects and run the scripts to create the database. The entire process (from sending the model until the appli-

cation is running) takes about 15 minutes. All these tasks must be repeated every time the pairs generate a new version of 

the code. Note that none of these tasks are related to MDD and they all depend exclusively on the MDD tool used in the 

experiment. Other tools might use a different system to generate and setup the system. In our experimental investigation we 

have timed the setup process and the modelling activities. This means that MDD includes an extra effort that is not required 

in a traditional method, where applications are deployed and run in a few seconds. Note that even though the subjects using 

MDD had to expend extra effort to generate the code and setup the system, accuracy, effort and productivity are similar for 

both MDD and a traditional development method.  

All MDD tools require a number of tasks to generate the code and setup the system. This experiment has allowed us to 

pinpoint these additional tasks that are often overlooked when MDD is theoretically compared with a traditional develop-

ment method. However, since these tasks are essential for producing fully functional software, they must be taken into 

account in any discussion on the improvements in productivity supposedly offered by MDD. 

Since there are subjects with more experience in MDD than others, we analysed subject background. According to the 

demographic questionnaire, three subjects had a sound knowledge of MDD before attending the course (Fig 10.a). If we 

compare these data with previous knowledge of any programming language (Fig 10.b), MDD was at a disadvantage before 

starting the course. This implies that most subjects have at most 30 hours’ experience of MDD (number of hours spent in 

the classroom as part of the course), whereas they all had previous knowledge of several programming languages. Note that 

the programming language used by each pair (Table 10) was one of the languages they have good knowledge of, but there 
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are pairs with knowledge in more than one programming language. Fig 11 shows the number of subjects that have worked 

at real companies and their role. Again, these data show that subjects have a sound background of programming languages, 

since 15 subjects have been working as junior programmers for some time. Therefore, subject background benefits the 

control treatment over MDD. 
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Fig 10. (a) Subjects’ previous experience with the MDD paradigm. (b) Students’ previous experience with programming languages 
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Fig 11. Students’ previous roles in companies 

6 Discussion 

This section reviews all the results and threats of the experiment in order to draw some conclusions regarding the compari-

son of the MDD paradigm and traditional development methods. For each response variable, we discuss the following 

information: interpretation of results, some recommendations regarding when to apply MDD or a traditional method, and 

whether results agree with previous claims on MDD. 

The results related to quality (operationalised as accuracy) show that accuracy using MDD is less sensitive to problem 

complexity than a traditional method. Problem 1 has 40 function points and Problem 2 has 35 function points. Even though 

the size of problems was similar, Problem 2 was slightly more complex than Problem 1 because of an inheritance between 

two classes. For small variations in the complexity of problems, mean accuracy remains stable at around 80%. However, 

when we increase problem complexity to a small degree, the accuracy of a traditional method decreases from 90% to 60%. 

Therefore, differences between MDD and a traditional development method might be considerable for larger and more 

complex problems. Note that as outlined in Section 5, most subjects had quite a lot of experience with traditional develop-

ment and hardly any experience with MDD. Even though most subjects’ experience with MDD is limited to a training of 18 

hours, MDD achieves higher quality when problem complexity increases, which is a promising result for MDD. 

The recommendation derived from the results of accuracy is that MDD could be better suited than a traditional method 

for solving highly complex problems. 

Findings of the experiment regarding accuracy tie in with previous research claiming that MDD helps to improve code 

quality [44] [10] [34]. This experiment contributes by better specifying this claim since when problem complexity increases 

slightly, MDD is significantly more stable and obtains better results than for a traditional method. As results show, MDD 

and traditional methods do not differ as regards to accuracy when problem complexity is low.  

The results related to effort show that the effort to develop a system with MDD is not significantly different from the ef-

fort with a traditional method. If we consider that most subjects did not have any other experience in MDD than the training 

received during the experiment, whereas they have a wide experience in a traditional method, the absence of significant 

differences between both treatments is a positive result for MDD. This leads to think that when the background experience 

of both treatments is the same, significant differences might appear.  
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A recommendation derived from the results of effort is that a traditional method is more suitable for developments where 

the team is not very experienced in applying MDD. Even though there are no significant differences in the results of the 

experiment, MDD takes slightly longer to apply and MDD requires a longer training time (in our case, 20 hours of lessons).  

Another recommendation is that a traditional development is more suitable whenever analysts need to run the system 

frequently during the development process, for instance, to carry out testing activities. Note that code generated with the 

MDD tool needs to be deployed in the execution environment. This action takes several minutes (around 15 minutes for 

INTEGRANOVA), because several set-up tasks need to be performed, i.e., compile the models, download the source code, 

compile the source code, create the database, create an ODBC connection, create a COM+ component, and register the web 

in the web application server. The installation process needs to be repeated every time subjects run the code. However, a 

traditional development method does not require to repeat these set-up actions every time and subjects can run the code 

immediately after making changes on it. In any case, this situation may change when MDD technologies evolve. 

Findings of the experiment regarding effort contradict previous research claims stating that MDD reduces developer ef-

fort [44] [4] [10] [19] [43] [42]. As commented in the threats to validity after running the experiment, we noticed that sub-

jects working with both paradigms used up all the available time (four hours). This renders the effort study inconclusive, 

since time taken with both paradigms is the same. This is consistent with previous studies [39] showing that there is a ten-

dency for work to expand to fill the available time. Therefore, we do not have enough evidence to confirm or refute the 

results of previous works that claim that MDD reduces developer effort. 

Results of productivity show that using MDD is the same as productivity for a traditional method, independently of 

problem complexity. Since productivity depends on time, this variable is affected by the same threats as effort. Subjects 

have more experience with a traditional method than with MDD.  

Recommendations derived from the results of productivity are the same as for effort. MDD is not recommended when 

there is not much time to train developers for MDD or when the system to develop needs to be tested frequently on a short 

time frame.  

Findings of the experiment regarding productivity are not useful to confirm or refute previous claims ensuring that 

MDD improves productivity [42] [11] [34] since subjects filled all the available time for both paradigms. 

Results of developer’s satisfaction show that satisfaction when applying MDD is not significantly different from satis-

faction when applying a traditional method. If we divide satisfaction into PU, PEOU and ITU, we find some differences 

between MDD and traditional methods, even though these differences are not significant. PU and PEOU are somewhat 

better for MDD, whereas ITU is slightly better for a traditional method. This means that subjects identify the MDD para-

digm as being more useful and easier to use but they prefer a traditional development for future projects. The benefits of 

MDD regarding usefulness and ease of use make sense since the experiment was run in the context of a course. Subjects 

perceive the usefulness of MDD when they automatically transform any model into code. Moreover, subjects had access to 

manuals and teachers during the course, which makes MDD easier to use. Low intention to use MDD in future develop-

ments might be the result of inertia. Most subjects have developed several software systems with a traditional method but 

only two systems with MDD (during the training and the experiment). 

The recommendation derived from the results of satisfaction is offering some reward to foster the adoption of MDD. 

Developers have the certain resistance to changes and feel more comfortable with the paradigms they master. The subjects 

in our experiment considered the MDD method as useful and easy to use but they still do not have much intention to use it. 

Therefore, if developers are already experienced with traditional development, then the adoption of MDD needs to be re-

warded. The type of reward could be the topic of future empirical studies. In any case, if computer science curricula evolve 

and MDD takes higher relevance, the perception of forthcoming software engineers may be different.  

Findings of the experiment regarding satisfaction match previous research claims that MDD enhances developer satis-

faction. Note that subjects were recruited among students of a course (i.e they were not volunteers) and might not be very 

motivated, as discussed under the threats. This undermotivation might be what stops there being significant differences 

between satisfaction in MDD and traditional methods. 

Comparing the results of pairs that worked with model-based and code-centric methods, we get interesting findings. 

First, PU of pairs that worked with code-centric methods is significantly higher for MDD than for pairs that worked with a 

traditional development method. This means that subjects who are not used to working with models regard the MDD para-

digm, whose key artefact are models, as being useful. This ties in with previous research claiming that MDD enhances 

developer satisfaction [30]. Second, we have identified several non-significant differences between model-based and code-

centric methods. Accuracy is better for both a traditional development method and MDD used by pairs that worked with 

model-based methods. Effort and productivity are better for pairs that worked with model-based traditional development 

methods, but they remain constant for pairs that worked with code-centric methods. Regarding satisfaction, there are no 

observable differences between model-based and code-centric methods. 

We can conclude that some of the benefits of MDD claimed in the literature have not been observed in the context of 

our empirical evaluation. According to our results, differences between paradigms might be more evident when problem 

complexity increases. The limitation of the experiment to four hours and the use of two problems with low functional sizes 

might reduce the differences between paradigms. Our results are based on the use of one MDD tool, INTEGRANOVA. 

This tool is fully compliant with the MDD paradigm, where analysts focus on building conceptual models from which code 

is automatically generated. However, we cannot generalise these results to any other MDD tool, since each tool has specific 
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particularities. For example, INTEGRANOVA takes around 15 minutes to generate the code and run the system. This time 

may differ for other tools. Moreover, there are MDD tools where transformation rules do not generate fully functional sys-

tems and some chunks of code must be manually implemented. 

We also have to consider the context where the experiment was run, since these results cannot be generalised for any 

developer and any type of system. Subjects are students whose main goal is to pass the course. Other subjects in an indus-

trial setting with other goals might get different results. Also, our subjects were already acquainted with traditional devel-

opment, whereas most of them had to learn MDD. If subjects were experienced MDD practitioners the results might be 

different. Therefore, after running the experiment, we can state that our results are only valid for software built by novice 

developers with a good grounding in traditional developments but newcomers to MDD.  

Calculations using G*Power [16] show that the sample size used in the experiment can only identify effect sizes of 0.4 

with an actual power of 60%. The non-significant effects might be due to the effect size between MDD and traditional de-

velopment methods is medium at most. In order to detect these low to medium effect sizes, we need to conduct experiments 

on larger sample sizes or replicate the experiment multiple times and synthesize the individual results. 

7 Conclusions 

This paper compares traditional software development methods with MDD paradigm in terms of quality (focused on accu-

racy), effort, productivity and satisfaction through an experimental investigation. Previous experiments have been con-

ducted in the field of MDD, but only a few have developed a fully functional system from scratch comparing MDD and a 

traditional method. Most research deals with the implementation of small chunks of code. Moreover, existing research 

focuses on estimating developer effort, overlooking quality, productivity and satisfaction. Our experiment fills a gap in the 

empirical evidence by checking the benefits of MDD for developing a fully functional system from scratch.  

The results of our study conclude that when problem complexity increases slightly, the accuracy remains stable only 

with MDD, obtaining better results than with a traditional method. This result means that MDD accuracy is more robust to 

variations in the complexity of the problems to be solved. There are no significant differences for effort, productivity and 

satisfaction. This statement contradicts much of the existing literature, which claims that MDD should always outperform 

traditional methods on these variables. Results also show that subjects who usually work with a code-centric paradigm have 

a high degree of perceived usefulness for MDD.  

Note importantly that these results must be contextualised in the type of experiment that we have conducted. First, sam-

ple size is rather small. We have worked with 13 pairs (26 developers). Second, subjects were master’s students and did not 

have much experience of developing real web applications in industry. Third, in order to control extraneous variables, we 

had to use simple problems that could be solved in the classroom within four hours. Fourth, the MDD tool that we have 

used in the experiment is 100% MDD compliant. This means that pairs using the MDD paradigm did not write a single line 

of code. We cannot guarantee that another experiment would yield the same results if any of these four characteristics were 

changed.  

In the future we aim to replicate this experiment changing some elements of the design. First, we are planning to use 

more complex problems to be solved by the pairs. This will clarify whether or not the complexity of the problems is cur-

rently affecting our conclusions. Second, we will use another MDD tool different from INTEGRANOVA to verify whether 

or not our results are independent of the tool used.  
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APPENDIX A 

We describe the conceptual models needed to work with INTEGRANOVA (the tool used in the experiment): 
 An Object Model that specifies the system structure in terms of classes of objects and their relationships. It is modelled as 

an extended UML [5] class diagram.  

 A Dynamic Model that represents the valid life-cycle of events for an object, as a set of state-transition diagrams.  

 A Functional Model that specifies how events change object states, by means of rules associated to class methods.  

 A Presentation Model that represents the interaction between the system and the user, by means of an abstract interface 

model.  

INTEGRANOVA is capable of automatically creating a Presentation Model, so this model does not need to be created 

in order to develop a fully-functional software. Although interfaces generated automatically have lower quality than inter-

faces modelled with the Presentation Model, they allow running the software. Since interface quality is outside the scope of 

our experiment and the lessons where the experiment was performed did not address this model, we decided to use the 

automatically generated Presentation Model, in order to reduce development time. Therefore, the analysis of the MDD tool 

is focused on the Object, Dynamic and Functional Models.  

APPENDIX B 

Test Cases for Problem 1: An electrical appliance repair company management system 

Test 1: Create customer 

-Insert passport no.: 33472035L 

-Insert name: Ignacio 

-Insert surname: Panach Navarrete 

-Insert address: Colón 70 

-Insert city: Alboraya 

-Insert postal code: 46120 

-Insert telephone no.: 96 123 12 12 

-Check that all above data have been saved in the system 

Test 2: Create repair card 

-Insert identifier: 1 

-Insert customer passport no.: 33472035L 

-Insert repair date: 21/02/2013 

-Insert description: TV repair 

-Insert amount due: 100€ 

-Insert technician name: Paco Valverde 
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- Check that all above data have been saved in the system 

Test 3: Create invoice  

(create another customer) 

-Insert passport no.: 44444488L 

-Insert name: Paco 

-Insert surname: García López 

-Insert address: Ausias March, 32 

-Insert city: Valencia 

-Insert postal code: 46520 

-Insert telephone no.: 96 123 22 33 

- Check that all above data have been saved in the system 

(create another repair card) 

-Insert identifier: 2 

-Insert customer passport no.: 33472035L 

-Insert repair date: 22/02/2013 

-Insert description: antenna repair 

-Insert amount due: 200€ 

-Insert technician name: Vicente Pelechano 

- Check that all above data have been saved in the system 

(create another repair card) 

-Insert identifier: 3 

-Insert customer passport no.: 44444488L 

-Insert repair date: 23/02/2013 

-Insert description: fridge repair 

-Insert amount due: 50€ 

-Insert technician name: Vicente Pelechano 

- Check that all above data have been saved in the system 

(create the invoice) 

-Insert identifier: 1 

-Insert creation date: 01/03/2013 

-Insert customers passport no.: 33472035L 

- Check that invoice includes the repair cards with identifier 1 and 2 only 

-Check that total amount invoiced is 300€ 

APPENDIX C 

Test Cases for Problem 2: A photographer agency management system 

Test 1: Create application 

-Insert application identifier: 1 

-Insert application date: 03/01/2013 

-Insert description of the photography equipment: Canon camera with 10 Mx, tripod 

-Insert brief bio: 3 years working for a newspaper and 2 years working for a tabloid 

-Insert applicant passport no.: 12345678A 

-Insert applicant name: Sergio 

-Insert applicant surname: España Cubillo 

-Insert applicant address: Pio XII, 3, 4 

-Insert applicant city: Valencia 

-Insert applicant postal code: 46230 

-Insert applicant telephone no.: 96 123 45 67 

-Check that all above data have been saved in the system 

Test 2: Create new application for same photographer 

-Insert application identifier: 1 

-Insert application date: 31/01/2013 

-Insert description of the photography equipment: Canon camera with 10 Mx, tripod 

-Insert brief bio: 3 years working for a newspaper and 2 years working for a tabloid 

-Insert applicant passport: 12345678A (check that the photographer’s other personal details do not have to be re-

entered) 

-Check that the system does not allow more than one application to be created in the same month 

Test 3: Approve application 
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-Insert applicant passport no.: 12345678A 

-Insert level: 2 

-Check that the applicant appears in the list of accepted photographers 

Test 4: Promote photographer 

-Insert photographer passport no.: 12345678A 

-Insert level: 1 

-Check that the system does not allow the level to be decreased 

-Insert level: 3: 

-Check that this last promotion has been saved in the system 
 

APPENDIX D 

This appendix shows the class diagrams of Problem 0 and Problem 00 used as training for a traditional method and 
MDD respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig 12. (a) Class Diagram of Problem 0. (b) Class Diagram of Problem 00 

 

APPENDIX E 

Pair Type Accuracy 

Trad. all 

nothing 

Accuracy 

MDD all 

nothing 

Accuracy 

Trad. 

Weighted 

items 

Accuracy 

MDD 

Weighted 

items 

Accuracy 

Trad. Same 

weight 

Accuracy 

MDD Same 

weight 

Time 

Trad. 

Time 

MDD 

#1 1 100 100 100 100 100 100 258 252 

#2 2 100 100 100 100 100 100 250 268 

#3 1 100 100 100 100 100 100 123 216 

#4 2 100 100 100 100 100 100 132 125 

#5 2 50 66,67 68,75 91,67 70,75 94,33 128 117 

#6 1 100 75 100 96,25 100 95,75 124 112 

#7 2 50 100 88,25 100 89,75 100 267 187 

#8 2 0 66,67 75,75 95,33 77 95,33 232 260 

#9 1 100 100 100 100 100 100 122 237 

#10 1 66,67 50 83,33 77,5 89 83,5 232 263 

#11 2 75 100 96,25 100 95,75 100 240 254 

#12 2 75 66,67 100 95,33 100 95,33 96 252 

#13 1 100 75 100 98.25 100 98 168 126 
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SPECIFY_DESTINATION

IDENTIFIER

NAME

MAX_PASSENGERS
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DATE
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REVIEW
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GET_OFF_BUS

IDENTIFIER

NAME
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IDENTIFIER

NAME

CITY
0..10..*

0..* 0..*

0..10..*

SOURCE

DESTINATION

0..*

0..1

1..1

0..*

CREATE_VIDEOCLUB

IDENTIFIER

ADDRESS

CITY

POSTAL_CODE

MANAGER

VIDEOCLUB

CREATE_MEMBER

IDENTIFIER

NAME

AGE

MEMBER

CREATE_RENTING

INSERT_FILM

TAKE_OUT_FILM

IDENTIFIER

COLLECTING_DATE

RETURNING_DATE

SUM_TO_PAY

RENTING
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NAME

DATE

PRICE

FILM

0..*1

1..1

0..*

CREATE_STATISTIC

IDENTIFIER

DATE

TOTAL_SPENT

STATISTICS

0..*

0..*

0..*

1

0..1

0..*
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Pair Time 

Trad. 

Time 

MDD 

Satisfaction 

Trad. PEOU 

Satisfaction 

MDD PEOU 

Satisfaction 

Trad. PU 

Satisfaction 

MDD PU 

Satisfaction 

Trad. ITU 

Satisfaction 

MDD ITU 

#1 258 252 34 46 46 57 8 15 

#2 250 268 36 47 51 63 13 14 

#3 123 216 37 48 52 57 12 12 

#4 132 125 49 53 61 78 15 19 

#5 128 117 30 50 43 68 12 14 

#6 124 112 37 45 49 55 12 13 

#7 267 187 57 42 76 52 19 12 

#8 232 260 43 41 46 61 13 14 

#9 122 237 42 33 55 43 13 11 

#10 232 263 44 47 59 60 16 16 

#11 240 254 45 38 55 58 14 13 

#12 96 252 52 33 62 37 19 9 

#13 168 126 43 44 43 57 13 10 

 
 


