
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 This is a pre-copy-editing, author-produced PDF of an article accepted for publication in
Applied Mathematics & Information Sciences following peer review. The definitive publisher-
authenticated version  is available online at:
http://www.naturalspublishing.com/ContIss.asp?IssID=293

http://www.naturalspublishing.com/ContIss.asp?IssID=293

http://hdl.handle.net/10251/65153

Natural Sciences Publishing

Galán, VJ.; Martínez Jiménez, F.; Peris Manguillot, A.; PIOTR OPROCHA (2015). Product
Recurrence for Weighted Backward Shifts. Applied Mathematics & Information Sciences.
9(5):2361-2365. doi:10.12785/amis/090518.



Product Recurrence for Weighted Backward Shifts
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Abstract: We study product recurrence properties for weighted backward shifts on sequence spaces. The backward shifts that have
non-zero product recurrent points are characterized as Devaney chaotic shifts. We also give an example of weighted shift that admits
points which are recurrent and distal, but not product recurrent, in contrast with the dynamics on compact sets. An example of a product
recurrent point with unbounded orbit is also provided.
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1 Introduction

Our framework are unilateral weighted backward shifts
on sequence spaces, for which we plan to study product
recurrence. The dynamics of a linear operatorT : X → X
on a topological vector spaceX (in short, tvs) has been
intensively studied in recent years. We recall that an
operatorT on a tvsX is calledhypercyclicif there is a
vector x in X such that its orbit
Orb(x,T) = {x,T(x),T2(x), . . .} is dense inX. T is
topologically transitiveif for every pair of non-empty
open subsetsU and V of X there exists an
n∈ N := {1,2, . . .} such thatTn(U)∩V 6= /0. It was well
known that a continuous mapT on a separable and
complete metric space without isolated points admits
dense orbits if and only if it is topologically transitive (see
for instance [20]). According to [8] an operator is
Devaney chaoticif it is topologically transitive, the set of
periodic points Per(T) is dense inX and is sensitive, that
is there existsε > 0 such that for eachx and eachδ > 0
there are y with d(x,y) < δ and n ∈ N such that
d( f n(x), f n(y)) > ε. We remark that the first two
conditions implies sensitivity in the general setting of
continuous maps on infinite metric spaces [3] (see also
[15]). The recent books [5] and [17] contain the theory

and most of the recent advances on hypercyclicity and
linear dynamics.

The interest on recurrent properties for the dynamics
on compact sets goes back to Furstenberg [10,12,11],
where important characterizations and results were
obtained. We also refer to the works [1,9,14,19,22,23]
for more on this topic. In linear dynamics, some recent
advances have been produced on recurrence (see [6,7,
24]). Given a metric space(X,d), a continuous map
f : X → X, a pointx∈ X, and a subsetA⊂ X, we denote
by N(x,A) = {n ≥ 0 ; f nx ∈ A}. A point x ∈ X is called
recurrentif N(x,U) is infinite for every neighbourhoodU
of x. When X is compact, a pointx ∈ X is said to be
product recurrentif given any recurrent pointy in any
dynamical system(Y,g), with Y a compact metric space,
then the pair(x,y) is a recurrent point for the dynamical
system(X×Y, f ×g). A pair of pointsx1,x2 ∈ X is called
proximal if there exists an increasing sequence(nk)k in N

such that limk d( f nkx1, f nkx2) = 0. A pointx∈ X is distal
if it is not proximal to any point in its orbit closure other
than itself. Furstenberg [11] showed that, in a compact
metric space, product recurrent points coincide with distal
recurrent points. It is worth mentioning that many years
later Auslander and Furstenberg in [2] asked about points
x which are recurrent in pair with any uniformly recurrent
point y (i.e. points such thatN(x,U) is syndetic for every
neighborhoodU of x) in any dynamical system on
compact metric space. There is no full characterization of
such pointsx, however it is known that such pointx does
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not have to be distal. It was first proved by Haddad and
Ott in [19] (in fact x does not even have to be uniformly
recurrent as shown in [19]). Later, some other sufficient
conditions for this kind of product recurrence were
provided in [13] and [18].

From now on we will be concerned with the dynamics
of a linear operatorT : X → X on a metrizable and
complete topological vector space (in short,F-space)X.
In this situation,X is never compact, not even for the
finite dimensional case since it is easy to prove that finite
dimensional topological vector spaces are isomorphic to
Kn, a finite product of the scalar field.

We will say that x ∈ X is product recurrent (with
respect toT) if (x,y) is recurrent for(X ×Y,T ×R), for
any recurrent pointy ∈ Y with respect to an operator
R : Y →Y on anF-spaceY.

More particularly, we are interested in the dynamics
of weighted shifts on sequence spaces. By asequence
space we mean anF-spaceX which is continuously
included inω , the countable product of the scalar field
K= R or K= C. Given a sequencew= (wn)n of positive
weights, the associatedunilateral weighted backward
shift Bw : KN → KN is defined by
Bw(x1,x2, . . . ) = (w2x2,w3x3, . . . ). If a sequenceF-space
X is invariant under certain weighted backward shiftT,
then T is also continuous onX by the closed graph
theorem (see for instance [17, Theorem A.13]). Chapter 4
of [17] contains more details about dynamical properties
of weighted shifts on sequence Fréchet spaces (i.e.,
F-spaces whose topology is defined by a sequence of
seminorms). The results on Devaney chaos for shift
operators given in [17] (we refer the reader to [16] for the
original results) remain valid for a unilateral weighted
backward shiftT = Bw : X → X on a sequenceF-spaceX
in which the canonical unit vectors(en)n∈N form an
unconditional basis. In particular,Bw is chaotic if, and
only if,

∞

∑
n=1

( n

∏
ν=1

wν

)−1
en,

respectively,

0

∑
n=−∞

( 0

∏
ν=n+1

wν

)

en+
∞

∑
n=1

( n

∏
ν=1

wν

)−1
en,

converges unconditionally. We recall that a series∑nxn in
X converges unconditionallyif it converges and, for any 0-
neighbourhoodU in X, there exists someN ∈ N such that
∑n∈F xn ∈U for every finite setF ⊂ {N,N+1,N+2, . . .}.

For a weight sequencev= (vi)i the following Banach
sequence spaces are considered: for 1≤ p< ∞

ℓp(v) :=







(xi)i ∈K
N : ‖x‖ :=

(

∞

∑
i=1

|xi |
pvi

)1/p

< ∞







,

and also

c0(v) :=

{

(xi)i ∈K
N : lim

i→∞
|xi |vi = 0, ‖x‖ := sup

i
|xi |vi

}

.

In this situation, the required condition to have the
operatorBw : ℓp(v)→ ℓp(v) bounded (i.e., continuous) is

sup
i∈N

∣

∣wp
i+1

∣

∣

vi

vi+1
< ∞, (1)

condition that will always be assumed to hold (details are
given for the unweighted case in [17, Example 4.4 a)]).

Some basic notions on combinatorial number theory
are also needed. We recall thatS⊂ N is syndeticif there
existsN ∈ N such that[i, i+N]∩S 6= /0. A subsetA⊂ N is
anIP-setif there exists a sequence(pi)i in N such that

pn1 + · · ·+ pnk ∈ A,

whenever 0≤ n1 < · · · < nk, k ≥ 2, wherep0 := 0. A
subsetD ⊂ N is an IP∗-set if it intersects any IP-set. It is
well-known that IP∗-sets are syndetic. Simply, it was
proved by Furstenberg that every thick set contains an
IP-set (e.g. see Lemma 9.1 in [11]). In connection with
recurrence, ifx is a recurrent point thenN(x,U) is an
IP-set for every neighbourhoodU of x (see [11,
Theorem 2.17]). Also, for any IP-setA, we can find a
recurrent pointy for the backward shift on{0,1}N such
thatN(y,V) ⊂ A for some neighbourhoodV of y (see the
proof of [11, Theorem 2.17]). For more detail on IP-sets
and their connections with recurrence the reader is
referred to [11].

Since the backward shift on{0,1}N can be naturally
embedded in the backward shift on a sequence space
X = ℓp(v) or X = c0(v) with the weight sequence so that
the shift is Devaney chaotic (see, e.g., [4,21]), the above
observation remains true for linear operators. In
particular, either for compact dynamical systems or for
linear operators, product recurrent pointsx are exactly
those such that N(x,U) is an IP∗-set for any
neighbourhoodU of x.

2 Product recurrent points for backward
shifts

In this section we characterize the backward shifts that
admit (non-zero) product recurrent points on the Banach
sequence spacesX = ℓp(v) andX = c0(v). They are the
Devaney chaotic shifts. The study of particular product
recurrent points in the spaceX = KN is more surprising,
as it will be shown at the end of the section.

We recall that the weighted backward shift on a
sequence space is defined as

Bw(x1,x2, . . . ) = (w2x2,w3x3, . . . ),

and that we writeB if the w= (1)i . We recall a basic result
on recurrence of backward shifts [6,24], and we include a
proof of it for the sake of completeness.

Theorem 1.[24] Let B : X → X be the backward shift on
X = ℓp(v) or X = c0(v) satisfying condition(1). Then B
admits a non-zero recurrent point x if, and only if, B is
transitive.
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Proof.Suppose that 06= x∈X is a recurrent point forB. Let
i ∈ N such thatxi 6= 0 and fixU := {y∈ X ; |yi |> |xi |/2},
which is a neighbourhood ofx. SinceN(x,U) should be
infinite, we can find an increasing sequence(nk)k in N such
that

Bnkx∈U, ∀k∈ N.

In other words,|xi+nk| > |xi |/2 for eachk ∈ N. Suppose
thatX = ℓp(v). Sincex∈ X, we have

∑
k∈N

vi+nk ≤
2p

|xi |p
∑
k∈N

|xi+nk|
pvi+nk ≤

2p

|xi |p
‖x‖p < ∞.

In particular, limk vi+nk = 0 and this implies transitivity of
B (characterizations for transitivity of backward shifts on
X are well know and are included in [16,17] for instance).
The caseX = c0(v) is analogous but using the supremum
norm instead of thep-norm.

Conversely, letB be transitive. Then it is hypercyclic
and every hypercyclic vector is, obviously, recurrent.

Remark.If x is a recurrent point for certain operatorT, and
there exists a neighbourhoodU of x such thatN(x,U) is
not syndetic then, as mentioned in the introduction, one
can construct an IP-setJ ⊂ N \N(x,U) and a recurrent
point y for the backward shiftB on, e.g.,ℓ1(v) for vk =
1/2k, k∈N, such thatN(y,V)⊂ J for some neighbourhood
V of y. We then have thatx cannot be product recurrent.

Theorem 2.Let B: X → X be the backward shift on X=
ℓp(v) or X = c0(v) satisfying condition(1). Then B admits
a non-zero product recurrent point x if, and only if, B is
Devaney chaotic.

Proof. Suppose thatx is a non-zero product recurrent
point for B. Let i ∈ N such that xi 6= 0, and fix
U := {y ∈ X ; |yi | > |xi |/2}. By Remark2 we have that
N(x,U) is syndetic. Let l > i such that
N ⊂ N(x,U)− [0, l ]. We find then an increasing sequence
(nk)k in N with such thatnk−nk−1 ≤ l and|xnk| > |xi |/2
for all k ∈ N, wheren0 := 1. Suppose thatX = ℓp(v).
Now,

∑
j∈N

v j ≤
l

∑
s=0

∞

∑
k=1, nk>s

vnk−s

<
2p

|xi |p

l

∑
s=0

∞

∑
k=1, nk>s

|xnk|
pvnk−s

≤
2p

|xi |p

l

∑
s=0

‖Bsx‖p < ∞.

This implies thatB is Devaney chaotic (again, see [16,17]
for the characterizations of Devaney chaotic shifts). As in
the previous proof, the caseX = c0(v) is analogous using
the sup norm.

Conversely, ifB is chaotic then it admits non-zero
periodic points, which are product recurrent.

For general weighted backward shifts on our sequence
spaces, we can establish characterizations of recurrence
and product recurrence for non-zero points in terms of the
weights of the shift, and the weights of the space. To do
this we simply have to take into account that weighted
backward shifts are conjugated to the unweighted shift by
changing the weights in the space (see Chapter 4 in [17]).

Corollary 1. For a bounded weighted backward shift
operator Bw defined on X= ℓp(v), 1 ≤ p < ∞,
(respectively, on X= c0(v)) the following conditions are
equivalent:

(i)
∞

∑
i=1

vi

∏i
j=1

∣

∣

∣
wp

j

∣

∣

∣

< ∞ (respectively,lim i→∞
vi

∏i
j=1|w j |

= 0),

(ii) Bw admits a product recurrent point.
(iii) Bw is Devaney chaotic.

Also, the following conditions are equivalent:

(i) inf
i∈N

vi

∏i
j=1

∣

∣

∣
wp

j

∣

∣

∣

= 0,

(ii) Bw admits a recurrent point.
(iii) Bw is topologically transitive.

Remark.With a little more effort, it can be shown that the
existence of non-zero recurrent points is equivalent to
transitivity for unilateral weighted backward shifts on
sequenceF-spaces, and the existence of non-zero product
recurrent points is equivalent to Devaney chaos for
unilateral weighted backward shifts on sequence Fréchet
spaces in which the canonical unit vectors(en)n∈N form
an unconditional basis (for details on the techniques, see
Chapter 4 in [17]). We kept the framework of weighted
ℓp-spaces andc0-spaces because they are the most usual
sequence spaces, and the characterizations can be written
down in terms of the weights. Also, for product
recurrence, it turns out that the distal points characterize
product recurrent points for weighted shifts onX = ℓp(v)
or X = c0(v) since, in this case, the orbit of a product
recurrent pointx is relatively compact. Indeed,N(x,U) is
syndetic for every neighbourhoodU of x and, in
particular forU := x+V whereV is the unit ball ofX, we
get that Orb(x) is bounded by boundedness of the
operator. Since the shift is Devaney chaotic, it is easy to
show that bounded orbits are relatively compact (one only
has to check it for the unweighted shift, and then proceed
by conjugacy in the general case).

When it comes to the study of particular product
recurrent points for shifts on the countable product of the
scalar fieldX = KN, the main problem is that most of the
techniques used for compact dynamical systems are
useless in this context, because we can even face the
situation of unbounded orbits. This fact also affects
distality. The following two examples illustrate these type
of phenomena.
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Example 1.Let B : X → X be the backward shift on the
countable product of the scalar fieldX = KN. Recall that
(X,d) is a complete metric space with

d(x,y) =
∞

∑
n=1

1
2n

|xn− yn|

1+ |xn− yn|
.

There exist distal and product recurrent pointsx whose
orbit is unbounded. Indeed, let us consider the blocksP1 =
(1), Pn+1 = (n+1,P1, . . . ,Pn), n∈N, and the vector

x= (P1,P2, . . . ,Pn, . . . )

that is,

P1 = (1)

P2 = (2,1)

P3 = (3,1,2,1)

P4 = (4,1,2,1,3,1,2,1)

...

x= (1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,

5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1, . . .).

Since convergence inX is coordinatewise convergence,
we have that the closure of Orb(x) coincides with
Orb(x) itself. Otherwise, we would have a sequence of
vectors such that for some fixed index the corresponding
coordinates are unbounded, and the sequence of vectors
could not converge. Therefore, the fact thatx is distal is
an easy consequence. Also, the construction ofx yields
that, for each neighbourhoodU of x, there ism∈ N such
that mN ⊂ N(x,U). In particular,N(x,U) is an IP∗-set,
thereforex is product recurrent.

Example 2.Again, letB : X → X be the backward shift on
the countable product of the scalar fieldX = K

N with the
same usual metric as Example 1.

There exist distal pointsy which are not product
recurrent. We slightly modify the previous construction so
that P1 = (1), Pn+1 = (n+ 1, (n). . .,n+ 1,P1, . . . ,Pn), n ∈ N,
where the amount ofn+ 1’s at the beginning of block
Pn+1 equalsn, and define the vector

y= (P1,P2, . . . ,Pn, . . . )

that is,

P1 = (1)

P2 = (2,1)

P3 = (3,3,1,2,1)

P4 = (4,4,4,1,2,1,3,3,1,2,1)

...

y= (1,2,1,3,3,1,2,1,4,4,4,1,2,1,3,3,1,2,1,

5,5,5,5,1,2,1,3,3,1,2,1,4,4,4,1,2,1,3,3, . . .).

As before, the closure of Orb(y) coincides with Orb(y)
itself, andy is distal. But nowN(y,U) is not syndetic for,
e.g.,U := {z∈ X ; |z1|< 2}. By Remark2 we have thaty
is not product recurrent.

Remark.Recall that if (X,T) is a compact dynamical
system andx ∈ X is distal thenx is product recurrent.
Then in Example2 it is essential that Orb(y) is not
compact.
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