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Abstract

The interest in car-following models has increased in the last years due to its connection with vehicle-
to-vehicle communications and the development of driverless cars. Some non-linear models such as the
Gazes-Herman Rothery model were already known to be chaotic. We consider the linear Forward and
Backward Control traffic model for an infinite number of cars on a track. We show the existence of solutions
with a chaotic behaviour by using some results of linear dynamics of C0-semigroups. In contrast, we also
analyze which initial configurations lead to stable solutions.

Keywords: Distributional chaos, C0-semigroup, Devaney-chaos, birth-and-death models, car-following
models.
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1. Introduction

In this paper we study chaotic traffic patterns described by car-following models. Several notions of
chaos can be considered, such as the one of Devaney [19] or the one of distributional chaos by Schweizer and
Smı́tal [41]. Devaney chaos consists of 3 ingredients: transitivity, existence of a dense set of periodic points,
and sensitive dependence on the initial conditions. Many ways have been used in order to explain this last
notion. Here we refer to the one by Ethan Hunt due its connection with traffic. For instance, when you hit
the brakes for a second, just tap them on the freeway, you can literally track the ripple effect of that action
across a 200-mile stretch of road, because traffic has a memory, see [1]. In other words, when considering
a number of cars on a track, the behaviour of one of them can be transmitted and propagated to the ones
in front (and behind) of it. The mathematical models used to described these interactions are known as
car-following models.

The first ones were due to Greenshields [28, 29] in the 1930’s. Car-following models were perfectioned
in the 50’s and 60’s by taking into account considerations involved in driving a motor vehicle on a lane
[17], such as the difference between the velocities of a car and the car in front of it, a distance of a car
respect to the preceeding one, or the driver’s reaction time, see for instance [26, 39]. An interested reader
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can find a historical evolution of these models in [14]. Recently, these models have attracted the interest
of researchers thanks to the development of vehicle-to-vehicle (V2V) and of vehicle-to-infrastructure (V2I)
communications, see e.g. [31]. These models contribute not only to the study the possibility of allowing
vehicles to talk or communicate with each other, but also to increase the efficiency of vehicles communication
with the networks.

One of the simplest models is the Quick-Thinking Driver (QTD) model, which states that the acceleration
of a car depends on its distance respect to the car in front of it. With just two cars, with one of them following
the other, one can even find chaos relating its dynamics with certain solutions of the logistic equation, see
[35]. Nevertheless, it has already been known for decades that chaotic behaviours exist in traffic flow systems.
Gazis, Herman, and Rothery developed for General Motors a generalized car-following model, known as the
(GHR) model. The discontinuous behaviour of some of their solutions and the nonlinearity presented there
suggested the existence of chaotic solutions for a certain range of input parameters, [27, 40]. Later on,
Disbro and Frame [20] showed the presence of chaos for (GHR) model without taking into account signals,
bottlenecks, intersections, etc. or with a coordinated signal network. Chaos was also observed for a platoon
of vehicles described by the traditional (GHR) model modified by adding a nonlinear inter-car separation
dependent term, [2, 3].

However, when taking an infinite number of cars on a lane, each of them following one another, even a
linear simplification of these models can show chaotic phenomena. In [15] the authors show the existence of
some Devaney and distributional chaotic solutions for the Infinite Quick-Thinking-Driver (IQTD) model.
This situation can be represented by the following infinite system of ordinary differential equations:

u′i(t) = λi(ui+1(t)− ui(t)) for i ∈ N, (1)

in which u1 stands for the velocity of the car 1; u2 for the velocity of the car in front of car 1, namely
car 2; and t1 denotes the reaction time of driver 1. The positive number λ1 is a sensitivity coefficient that
measures how strongly driver 1 responds to the acceleration of the car in front of her. Usually λi lies between
0.3− 0.4s−1 [14]. We also assume that the velocities at t = 0, (ui(0))i, are given and belong to `1(s). Such
a behaviour is obtained by relating this model with the one of gene amplification–deamplification processes
with cell proliferation. These models have been widely studied by Banasiak et al. [6, 7, 8, 10] (see also
[5, 18, 30]). Such a behaviour can also be found on certain size structured cell populations, c.f. [22, 23] and
analyzing the growth of a cell population where cellular development is characterized by cellular size [33].

We want to emphasize that the models we shall study, which are based on simple linear equations, cannot
describe all the highly complex situations that, as a matter of fact, occur on a roadway every morning on
the way to work. These theoretical models work better on long stretches of road with dense traffic [15].
In this note we introduce the infinite version of the Forward and Backward Control (FBC) model. The
(FBC) model was developed by [32] for General Motors. The infinite coupled system of ordinary differential
equations that is required to model the behaviour of these vehicles can be represented as a linear operator
on a suitable infinite-dimensional separable Banach space. Then, using some results of linear dynamics of
C0-semigroups we can prove the existence of different chaotic behaviours for the solutions of these equations.

The paper is organized as follows: In Section 2 we describe the Infinite Forward and Backward Control
(IFBC) model and introduce all the preliminaries required on linear dynamics and C0-semigroups. Its
representation as a C0-semigroup and the main results are contained in Section 3. In Section 4 we deal
with the stability of certain solutions. Finally, in the last section we state the main conclusions from an
application of the results.

2. Preliminaries

In the basic formulation of the (FBC) car-following model, there is a relation between the acceleration
of a car and the speeds of the cars that go in front and behind of it. We consider this model for an infinite
number of cars that circulate on a road, then the corresponding model for these cars is given by an infinite
system of first-order differential equations. We will refer to it as the Infinite Forward and Backward Control
(IFBC) model.

2



Definition 2.1 (The (IFBC) traffic model). Let us consider (ui)i, the vector of speeds for an infinite number
of cars, where ui stands for the speed of the car i, ui−1 for the speed of the car behind the car i, and ui+1

for the car in front of it. The acceleration of each car ui, i ≥ 2, is given as a linear combination of the
differences of speed of the i car respect to cars i− 1 and i+ 1.

u′1(t) = −µ1u1(t) + µ2(u2(t)− u1(t)),

u′i(t) = µ1(ui−1(t)− ui(t)) + µ2(ui+1(t)− ui(t)), for all i ≥ 2,
(2)

with control constants µ1, µ2 > 0, µ1 < µ2.

The vector of speeds (ui)i will be considered in a weighted space of summable sequences. In particular,
we will consider `1(s), with 0 < s ≤ 1, the weighted space of summable sequences defined as

`1(s) =

{
(vi)i∈N ∈ KN : ||(vi)i∈N||s =

∑
i∈N
|vi|si <∞

}
. (3)

If s = 1, we will simply denote it as `1. If s < 1, then any vector representing the velocities of all the
cars in the (IFBC) model clearly belongs to `1(s). We point out that such a choice of weights gives more
importance to the speeds of cars with low index i.

Let X be a separable infinite-dimensional Banach space. We assume that the reader is familiar with the
terminology of C0-semigroups on Banach spaces, see for instance [38, 25]. Next, let us recall some basic
definitions on linear dynamics of C0-semigroups. A C0-semigroup {Tt}t≥0 on X is said to be hypercyclic if
there exists x ∈ X such that the set {Ttx : t ≥ 0} is dense in X. An element x ∈ X is called a periodic
point for the semigroup {Tt}t≥0 if there exists some t > 0 such that Ttx = x. A semigroup {Tt}t≥0 is called
Devaney chaotic if it is hypercyclic and the set of periodic points is dense in X. We point out that these
two requirements also yield the sensitive dependence on the initial conditions, as it was seen by Banks et al
[11, 30]. Further information on the linear dynamics of C0-semigroups can be found in [30, Ch. 7].

Sometimes these properties do not hold in the whole space but they do on a closed subspace of X.
Following the terminology of [9], we say that a C0-semigroup T = {Tt}t≥0 is called sub-chaotic (sub-

hypercyclic) if there exists a closed subspace X̃ invariant under T , with {0} 6= X̃ ⊂ X, such that T̃ :=

{Tt|X̃}t≥0 is chaotic (hypercyclic) as a semigroup on X̃.
Another variation of the definition of chaos is the notion of distributional chaos introduced by Schweizer

and Smı́tal [41], see also [34, 37] for its presentation in the infinite-dimensional linear setting. A C0-semigroup
{Tt}t≥0 on X is said to be distributionally chaotic if there exists an uncountable subset S ⊂ X and δ > 0 such
that, for each pair of distinct points x, y ∈ S and for every ε > 0, we have Dens({s ≥ 0; ||Tsx−Tsy|| > δ}) = 1
and Dens({s ≥ 0; ||Tsx− Tsy|| < ε}) = 1, where Dens stands for the upper density of a set of real positive
numbers. The semigroup is said to be densely distributionally chaotic if S is dense on X.

3. Chaos for the Forward and Backward model

In order to solve the infinite system of equations in (2), we pose the following abstract Cauchy problem
on `1(s): {

u′(t) = Au(t),

u(0) = (ui(0))i∈N.
(4)

Here the operator A is defined as

(Au(t))i =

{
aui(t) + dui+1(t), i = 1,

bui−1(t) + aui(t) + dui+1(t), i ≥ 2,
(5)

with b = µ1, a = −µ1−µ2, d = µ2; for u = (ui(t))i∈N ∈ `1(s) for t ≥ 0, being (ui(0))i∈N the vector of speeds
of the cars at t = 0.
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The solution to (2) can be represented by a C0-semigroup {Tt}t≥0 on `1(s) whose infinitesimal generator
is A. If A ∈ L(X), then the operators in the C0-semigroup can be represented as Tt = etA =

∑∞
k=0(tA)n/n!

for all t ≥ 0, see for instance [25, Ch. I, Prop. 3.5].
The problem of determining Devaney chaos for the C0-semigroup generated by A on `1(s) was analysed

by Banasiak and Moszyński in [10], when studying the exponential decay of the drug resistant population of
cells. There, ui(t), i ≥ 1, stood for the number of copies of the drug resistant gene in the i-th subpopulation
of cells.

Theorem 3.1. [10, Th. 4] If 0 < |b| < |d| and |a| < |b+ d| hold, then {etA}t≥0 is chaotic on `1.

We will study the existence of distributional chaos for the solutions to this general model, and we will
analyze, as a particular case, its consequences for the (IFBC) car-following model. In order to do this, we
will use the following criterion which ensures distributional chaos and can be found in [4].

Criterion 3.2. Dense Distributionally Irregular Manifold Criterion Let T = {Tt}t≥0 be a C0-
semigroup in L(X) such that there exist a dense subset X0 ⊂ X such that lim

t→∞
Ttx = 0, for each x ∈ X0,

and a Lebesgue measurable set B ⊆ [0,∞) with Dens(B) = 1 satisfying

(i) either

∫
B

1

‖Tt‖
dt <∞,

(ii) or X is a complex Hilbert space and

∫
B

1

‖Tt‖2
dt <∞.

Then T has a dense distributionally irregular manifold. In particular, T is densely distributionally chaotic.

First, let us denote by As the following matrix, which will permit to relocate our problem into `1.

As =



a d/s
sb a d/s

sb a d/s

sb a
. . .

. . .
. . .

 . (6)

Let us define the linear and continuous operator As := aI +Cs, s > 0, on `1, where Cs is the linear and
continuous operator also defined on `1 as

Cs =



0 d/s
sb 0 d/s

sb 0 d/s

sb 0
. . .

. . .
. . .

 . (7)

The following lemma will be helpful in the proof of our main theorem in order to compute the powers of
the operator Cs.

Lemma 3.3 (See Lemma 1 in [10]). We have

(Cks u)n =

k∑
i=0

[(
k

i

)
−
(

k

k − (n+ i)

)]
(sb)k−i

(
d

s

)i
un−k+2i, (8)

where u = (ui)i, fi = 0 for i ≤ 0, and the Newton symbol is also 0 for negative entries.
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We will first prove that Ts = {etAs}t≥0 is distributionally chaotic on `1 and then via conjugation we will
obtain the analogous result for T = {etA}t≥0 on `1(s). We recall that the operator A can be represented by
the infinite matrix

A =



a d
b a d

b a d

b a
. . .

. . .
. . .

 . (9)

This matrix A is tridiagonal with constant coefficients and thus it represents a bounded operator on `1(s)
for any 0 < s ≤ 1. We are interested in studying distributional chaos for the (IFBC) where a = −µ1−µ2 < 0,
so we will focus our attention on the case when a < 0. The main result of this paper is the following:

Theorem 3.4. The C0-semigroup Ts = {etAs}t≥0 is distributionally chaotic on `1 for all s > 0 provided
that a, b, d, s satisfy:

0 < b < d, a < 0, (10)

0 < a+ bs+
d

s
. (11)

Its proof is based on an application of the Dense Distributionally Irregular Manifold Criterion (Criterion
3.1). The condition on the existence of a dense set of elements whose orbits by the C0-semigroup tend to 0
is implicit in the proof of [10, Th. 4]. This proof is a consequence of an application of Criterion 1.2 and 1.3
from [9]. Before presenting these results, let us introduce some notation.

Let (Ω, µ) be a measure space and f : Ω → X. Given a non-empty set U ⊂ Ω, we denote L(f, U) :=
span f(U) and L(f) := L(f,Ω). If U is a measurable set in Ω we define

Less(f, U) :=
⋂

Ω′⊂U,
µ(Ω′)=0

L(f, U \ Ω′), (12)

and as before, Less(f) = Less(f,Ω).
The next criterion permits to find subspaces of chaoticity and hypercyclicity for a C0-semigroup. We

recall that f is a selection of eigenvectors A in Ω, that means f(λ) ∈ Dom(A) and Af(λ) = λf(λ) for any
λ ∈ Ω.

Criterion 3.5. [9, Crit. 1.2]. Suppose that there exists a measurable subset I ⊆ R and a strongly
measurable selection f of eigenvectors of A on iI which is not almost everywhere equal to zero. Then

Less(f) 6= {0}, (13)

T is sub-hypercyclic, and Less(f) is a space of hypercyclicity for T .

Criterion 3.6. [9, Crit. 1.3]. Suppose that I is an interval of R of non-zero length and f is a weakly
continuous selection of eigenvectors of A on iI which is not constantly equal to zero. Then (13) holds, T is
sub-chaotic, and Less(f) is a space of chaoticity for T . Moreover

Less(f) = L(f).

Finally, let us proceed with the proof of Theorem 3.4.

Proof of Theorem 3.4. We denote by {em}m the canonical basis of `1. As in [13], we compute the `1-norm
of Cks acting over a sequence em with m > k then,

‖Cks em‖`1 =

∞∑
n=0

∣∣∣∣∣
k∑
i=0

[(
k

i

)
−
(

k

k − (n+ i)

)]
(sb)k−i

(
d

s

)i
δn−k+2i,m

∣∣∣∣∣ . (14)
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Since δn−k+2i,m = 0 for n < m− k or n > m+ k, then,

‖Cks em‖`1 =

m+k∑
n=m−k

∣∣∣∣∣
k∑
i=0

[(
k

i

)
−
(

k

k − (n+ i)

)]
(sb)k−i

(
d

s

)i
δn−k+2i,m

∣∣∣∣∣ . (15)

Making j = k − i we obtain

m+k∑
n=m−k

∣∣∣∣∣∣
k∑
j=0

[(
k

j

)
−
(

k

j − n

)]
(sb)j

(
d

s

)k−j
δn+k−2j,m

∣∣∣∣∣∣ . (16)

Changing, also, n′ = n+ k −m, we have

2k∑
n′=0

∣∣∣∣∣∣
k∑
j=0

[(
k

j

)
−
(

k

j + k − n′ −m

)]
(sb)j

(
d

s

)k−j
δn′+m−2j,m

∣∣∣∣∣∣ . (17)

If n′ is odd, δn′+m−2j,m = 0, then we are left with the even terms, getting

k∑
j=0

∣∣∣∣∣
[(
k

j

)
−
(

k

k − j −m

)]
(sb)j

(
d

s

)k−j∣∣∣∣∣ . (18)

Since m > k, we only have
k∑
j=0

(
k

j

) ∣∣∣∣∣(sb)j
(
d

s

)k−j∣∣∣∣∣ , (19)

which is

(
sb+

d

s

)k
. Therefore, ‖Cks ‖ ≥

(
sb+

d

s

)k
.

With the estimates above, we can also approximate the norm of etCs on L(`1).

∥∥etCs
∥∥ =

∥∥∥∥∥
∞∑
k=0

(tCs)
k

k!

∥∥∥∥∥ . (20)

Since Cs is a positive operator, for every m > 0 we have∥∥∥∥∥
∞∑
k=0

(tCs)
k

k!

∥∥∥∥∥ ≥
∥∥∥∥∥
m−1∑
k=0

(tCs)
k

k!

∥∥∥∥∥ ≥
∥∥∥∥∥
m−1∑
k=0

(tCs)
k

k!
em

∥∥∥∥∥ =

m−1∑
k=0

tk
(
sb+ d

s

)k
k!

. (21)

Therefore, taking the supremum over m we get
∥∥etCs

∥∥ ≥ et(sb+ d
s ), and hence

1

‖etAs‖
≤ 1

et(a+sb+ d
s )
. (22)

By (11) we have ∫
R+

1

‖etAs‖
<∞. (23)

In order to apply Criterion 3.2 it only remains to show that there exists a dense subset X0 ⊂ X such
that lim

t→∞
Ttx = 0 for each x ∈ X0. Let us also denote W0(T ) := {x ∈ X : limt→∞ Ttx = 0}.

The proof of Theorem 3.1 is based on Criterion 3.6. As it is indicated in [10, pg. 74] we can find a
selection of eigenvectors of A defined as f : iS(b, d, a)→ `1, where S(b, d, a) is the set of the values y ∈]c, c[,

with c =
|bs− d

s |
|bs+ d

s |

√
(bs+ d

s )2 − a2, such that (iy − a)2 − 4bd 6= 0, see also [9, p. 579-580]. Taking S′ as an
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arbitrary non-empty connected component of S(b, d, a), it can be seen that the set f(iS′) is linearly dense
in `1. Therefore:

`1 = L(f, iS′) ⊆ L(f) ⊆ `1. (24)

Now, proceeding with the same technique as in the proof of Criteria 3.5 and 3.6 in [9], let us re-scale

the selection f by defining f̃ := ρ · f , where ρ : iS′ → R is given by ρ(λ) := [(1 + ‖f(λ)‖)(1 + |λ|2)]−1, for
λ ∈ iS′. Let us also define F : R→ `1 as

F (t) :=

∫
S′
eitsf̃(is)ds, t ∈ R. (25)

Denote YF := lin(F (R)). We have, by Criterion 3.6, YF = L(F ), YF ⊂ W0(Ts), and L(F ) = Less(f).
Moreover we obtain that Less(f) = L(f) and hence, we have found YF , a set of points whose orbits by the
semigroup tend to 0, dense in `1, that is

YF = L(F ) = Less(f) = L(f) = `1. (26)

Therefore, it only remains to apply the Dense Distributionally Irregular Manifold Criterion (Criterion
3.2) and we get the conclusion.

Remark 3.7. In the proof of the previous result the existence of W0 was deduced using techniques that
require the use of complex numbers. Nevertheless, for the case when a, b, d where real numbers, the same
result holds just taking the restriction of W0 to the real numbers. For further details we refer the reader to
the proof of Criterion 3.2, see [4, 12, 36]. This approach can be compared with [24, Th. 3.7].

This result can be transferred to the C0-semigroup via the conjugation lemma.

Corollary 3.8. The C0-semigroup {etAs}t≥0 is distributionally chaotic on `1 if and only if {etA}t≥0 is
distributionally chaotic on `1(s).

Proof. Let us define the operator Us : `1 → `1(s), for all s > 0, as

Usu :=
(un
sn

)
n≥1

for every u = (un)n ∈ `1. (27)

This is an isometry from `1 onto `1(s) and it holds that

As = U−1
s AUs. (28)

By an application of the conjugation lemma for distributional chaos, see for instance [34, Th. 2], we get
the distributional chaos for the C0-semigroup {etA}t≥0 from the C0-semigroup {etAs}t≥0.

As a consequence, we have the expected results for the weighted `1(s)-spaces.

Corollary 3.9. The solution C0-semigroup of (4), T = {etA}t≥0 is distributionally chaotic on `1(s) for
each s > 0 provided that a, b, d, s satisfy (10) and (11).

In particular, for the (IFBC) car-following model we have

Corollary 3.10. Let 0 < µ1 < µ2 the coefficients of the (IFBC) model in (2). The solution C0-semigroup
to the (IFBC) model is distributionally chaotic on `1(s) with s > 0 provided that

(µ1 + µ2) <
(
sµ1 +

µ2

s

)
. (29)
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4. Study of stability

In this section we analyze the stability of the (IFBC) car-following model in our setting of weighted
spaces of summable sequences. We recall that a C0-semigroup of the form

{
etA
}
t≥0

defined on a Banach

space X is exponentially stable, [25, p. 296], if there exists ε > 0 such that

lim
t→∞

eεt||etA|| = 0, (30)

and uniformly stable if
lim
t→∞

||etA|| = 0. (31)

In fact, Eisner showed that both notions are equivalent [21]. We recall that a vector x ∈ X is said to be
distributionally irregular for the C0-semigroup T if the following holds: for every δ > 0

lim sup
t→∞

µ({s ∈ [0, t] : ||Tsx|| < δ})
t

= 1, (32)

lim sup
t→∞

µ({s ∈ [0, t] : ||Tsx|| ≥ δ})
t

= 1. (33)

The existence of a distributionally irregular vector is equivalent to the existence of distributional chaos
[4]. So, it is clear that under the conditions expressed in (10) and (11), the C0-semigroup will not be
exponentially stable.

Nevertheless, a weaker version of stability can also be considered, in the same way as it has been done
for considering sub-chaos and sub-hypercyclicity. We say that {etA}t≥0 is exponentially stable on a subspace
Y ⊂ X if there exists ε > 0 such that for any y ∈ Y we have

lim
t→∞

eεt||etAy|| = 0. (34)

Such analysis has been already performed when studying chaos of C0-semigroups in [10, 16].

Theorem 4.1. The solution C0-semigroup of the (IFBC) model where µ1, µ2 and s0 satisfy conditions in
corollary 3.10, is exponentially stable on the subspace Yδ := span{y : Tty = µy, µ ∈ K, <(µ) < δ}, for
every δ < 0.

Proof. Fix 0 < ε < −δ and y ∈ Yδ of the form y =
∑k
i=1 αiyµi . Define δy = max{<(µi) : 1 ≤ i ≤ k}.

Clearly, ε+ δy < 0, then

eεt||etAy||s = eεt

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

αie
tµiyµi

∣∣∣∣∣
∣∣∣∣∣
s

≤ eεt
(

k∑
i=1

et<(µi)||αiyµi ||s

)

< et(ε+δy)

(
k∑
i=1

||αiyµi
||s

)
,

which tends to 0 when t tends to ∞.

Remark 4.2. This analysis of stability can be compared with the one carried out in [32], where the condition
for asymptotic stability is given by

(µ1 − µ2)2

µ1 + µ2
<

1

2
. (35)
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5. Conclusions

We have analyzed the dynamics of an infinite number of cars on a road, where the acceleration of each
car is controlled by the difference of speeds of the cars immediately behind and in front of it. We call it
the Infinite Forward-and-Backward Control model, i.e. the (IFBC) model. This model is analogous to the
birth-and-death model with cell proliferation. The (IFBC) model can be compared with the one in [15],
where the speed of each car is just controlled by its speed relative to the car in front of it, i.e. only the
death part of the process was considered.

We have shown that the (IFBC) car-following model exhibits a distributionally chaotic behaviour under
certain assumptions on the control coefficients, see Section 3. The appearance of this type of chaos means,
roughly speaking, that we can pick two vectors of initial speeds for all the cars on the road (from an
uncountable set) and, as time goes by, there will be long time intervals in which the vectors of speeds of the
cars on the road are very similar for both vectors of initial speeds. On the other hand, there will also be
intervals as long as the previous ones in which the vectors of speeds of the cars are quite different depending
on which one of these two initial vectors we have chosen.

All of this shows how sensitive is traffic flow to very small variations in the speeds of some cars and how
this can be transferred and have some impact on the speeds of cars quite far away. This phenomenon of the
sensitive dependence on initial conditions was already shown by Banasiak and Moszyński [10], since it is
one of the ingredients in the definition of Devaney chaos. However, distributional chaos goes a little deeper
since it states properties on the frequency in which the orbits of the initial conditions by the C0-semigroup
are similar or different. In contrast to the results on the existence of Devaney and distributional chaos, one
can find a linear subspace where the solution C0-semigroup is exponentially stable, see Section 4.

For comparing vectors of speeds, we have considered the weighted space `1(s) of summable sequences
weighted by the sequence (si)i, with 0 < s ≤ 1, defined in (3). Taking this space, the speeds of cars with
low index are more relevant when comparing two vectors of speeds for the whole row of vehicles. Moreover,
when considering the representation of the solution C0-semigroup by the exponential formula applied to the
infinitesimal generator, one realizes that the closer two cars appear in the line, the sooner a variation in the
speed of one of them affects the speed of the other one.
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[10] J. Banasiak and M. Moszyński. Dynamics of birth-and-death processes with proliferation—stability and chaos. Discrete

Contin. Dyn. Syst., 29(1):67–79, 2011.
[11] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney’s definition of chaos. Amer. Math. Monthly,

99(4):332–334, 1992.
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