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Abstract 

This work investigates the effect of low reactivity fuel characteristics and blending ratio on low 

load RCCI performance and emissions using four different low reactivity fuels: E10-95, E10-98, 

E20-95 and E85 (port fuel injected) while keeping constant the same high reactivity fuel: diesel 

B7 (direct injected). The experiments were conducted using a heavy-duty single-cylinder 

research diesel engine adapted for dual fuel operation. All tests were carried out at 1200 

rev/min and constant CA50 of 5 CAD ATDC. For this purpose, the premixed energy was equal 

for the different blends and the EGR rate was modified as required, keeping constant the rest 

of engine settings. In addition, a detailed analysis of air/fuel mixing process has been 

developed by means of a 1-D spray model. 

Results suggest that in-cylinder fuel reactivity gradients strongly affect the engine efficiency at 

low load. Specifically, a reduced reactivity gradient allows an improvement of 4.5% in terms of 

gross indicated efficiency when the proper blending ratio is used. In addition, EURO VI NOx 

and soot emission levels are fulfilled with a strong reduction in CO and HC compared with the 

case of the higher reactivity gradient among the low and high reactivity fuel. 
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1. Introduction 

As response of the regulations introduced around the world to limit the pollutant emissions 

associated to internal combustion engines, researchers and manufacturers are focusing their 

effort on develop new combustion strategies and aftertreatment systems to fulfill the 

stringent limitations. Since the complex aftertreatment devices incur in higher costs and fuel 

consumption, the in-cylinder emissions reduction is clearly necessary. 

Homogeneous charge compression ignition (HCCI) is a widely investigated LTC combustion 

concept. It has been demonstrated its potential to produce virtually no soot or NOx emissions 

while maintaining high efficiency [1][2][3], but in return, new challenges regarding combustion 

control [4][5] and mechanical engine stress were also identified [6]. Thus, Bessonette et al. [7] 

suggested that different in-cylinder reactivity is required for proper HCCI operation under 

different operating conditions. In particular, high cetane fuels are required at low load and a 

low cetane fuels are needed at medium-high load. With the aim of improving the reduced 

controllability and excessive knocking in HCCI combustion, the use of gasoline-like fuels under 

partially premixed combustion (PPC) strategies has been widely studied [8-12]. The 

investigations confirmed gasoline PPC as promising method to control the heat release rate 

while providing a simultaneous reduction in NOx and soot emissions [13][14]. However, the 

concept demonstrated difficulties at low load conditions using gasoline with octane number 

(ON) greater than 90 [15][16]. In this sense, the spark assistance provided temporal and spatial 

control over the gasoline PPC combustion process [17][18][19], but resulted in unacceptable 

NOx and soot emissions [20], even using double injection strategies [21][22]. 

Recent trends in LTC investigation confirm the extensive interest of the research community in 

dual-fuel compression ignition combustion. This combustion mode enables an effective control 



of the in-cylinder equivalence ratio and reactivity stratification, which allows a flexible 

operation over a wide operating range. Experimental and simulated studies proved that 

reactivity controlled compression ignition (RCCI), a dual-fuel diesel-gasoline combustion 

concept, is a more promising LTC technique than HCCI and PPC [23][24]. Thus, several 

investigations have been conducted with the aim of insight into the RCCI phenomena. First of 

all, the effects of the gasoline percentage in the blend and direct injection timing were widely 

studied [25][26][27]. These works revealed that RCCI concept allows to reach ultra-low NOx 

and soot emissions levels, together with improved fuel consumption compared to 

conventional diesel combustion (CDC). In this direction, further investigations confirmed the 

potential of combining different engine settings, such as in-cylinder gas temperature and 

oxygen concentration with the fuel blending ratio, to improve the RCCI low load combustion 

efficiency to values above 98% [28]. Finally, the influence of geometric factors such as 

compression ratio and piston geometry on RCCI emissions have been also investigated [29]. In 

this sense, crevices and squish volumes were identified as primary responsible of incomplete 

combustion. In addition, it was also identified that RCCI concept offers an interesting potential 

for improving fuel consumption by lowering wall heat transfer [24].  

Taking into account the major findings about RCCI described above, it is clear that local 

reactivity plays a fundamental role to enhance the RCCI combustion propagation, which 

proceed gradually from high reactivity to low reactivity regions, reducing the incomplete 

combustion. In this sense, a primary source of local reactivity in RCCI concept is the in-cylinder 

fuel blending, which can be managed as required depending on the engine operating 

conditions. Thus, several studies confirm that in order to achieve high efficiency while reducing 

NOx and soot emissions, the higher portion of the energy should come from the low reactivity 

fuel. Taking into account this statement, it is clear that the low reactivity fuel characteristics 

and its amount in the blend have a significant contribution to the in-cylinder reactivity. Thus, 

the main objective of the present work is to evaluate the effect of the low reactivity fuel 



characteristics and blending ratio on RCCI combustion efficiency as well as on its performance 

and emissions at low load. For this purpose, four different low reactivity fuels (port fuel 

injected) were tested keeping constant the same high reactivity fuel. In order to provide 

details in terms of combustion development, emissions and efficiency differences between the 

different fuel blends, the experiments were conducted at constant combustion phasing 

(CA50). 

2. Experimental Facilities and Processing Tools 

2.1. Test cell and engine description 

A single-cylinder, heavy-duty (HD) diesel engine representative of commercial truck engine, 

has been used for all experiments in this study. The major difference to the standard unit 

production is the hydraulic VVA system, which confers great flexibility during the research. In 

particular, the valve timing, duration and lift can be electronically controlled for each valve 

during the engine tests. Thus, a slightly adapted cylinder head to include a dedicated oil circuit 

is required. Detailed specifications of the engine are given in Table 1. 

As it is illustrated in Figure 1, the engine was installed in a fully instrumented test cell, with all 

the auxiliary facilities required for its operation and control. In addition, Table 2 summarizes 

the accuracy of the instrumentation used in this work. 

Moreover, to achieve stable intake air conditions, a screw compressor supplied the required 

boost pressure before passing through an air dryer. The air pressure was adjusted within the 

intake settling chamber, while the intake temperature was controlled in the intake manifold 

after mixing with the exhaust gas recirculation (EGR) flow. The exhaust backpressure produced 

by the turbine in the real engine was replicated by means of a valve placed in the exhaust 

system, controlling the pressure in the exhaust settling chamber. Low pressure EGR was 

produced taking exhaust gases from the exhaust settling chamber. Thus, the determination of 

the EGR rate was carried out using the experimental measurement of intake and exhaust CO2 



concentration. The concentrations of NOx, CO, unburned HC, intake and exhaust CO2, and O2 

were analyzed with a five gas Horiba MEXA-7100 DEGR analyzer bench by averaging 40 

seconds after attaining steady state operation. Smoke emission were measured with an AVL 

415S Smoke Meter and averaged between three samples of a 1 liter volume each with paper-

saving mode off, providing results directly in FSN (Filter Smoke Number) units. PM 

measurements of FSN were transformed into specific emissions (g/kWh) by means of the 

factory AVL calibration. 

2.2. Fuels and delivery 

To enable RCCI operation the engine was equipped with a double injection system, one for 

each different fuel used. This injection hardware enables to vary the in-cylinder fuel blending 

ratio and fuel mixture properties according to the engine operating conditions. Thus, to inject 

the diesel fuel, the engine was equipped with a common-rail flexible injection hardware which 

is able to perform up to five injections per cycle. The main characteristic of this hardware is its 

capability to amplify common-rail fuel pressure for one of the injection events by means of a 

hydraulic piston directly installed inside the injector. Concerning the gasoline injection, an 

additional fuel circuit was in-house built including a reservoir, fuel filter, fuel meter, electrically 

driven pump, heat exchanger and commercially available port fuel injector (PFI). The 

mentioned injector was located at the intake manifold and was specified to be able to place all 

the gasoline fuel into the cylinder during the intake stroke. Consequently, the gasoline 

injection timing was fixed 10 CAD after the IVO to allow the fuel to flow along 160 mm length 

(distance from PFI location to intake valves seats). Accordingly, this set-up avoids fuel pooling 

over the intake valve and the undesirable variability introduced by this phenomenon. The main 

characteristics of the diesel and gasoline injectors are depicted in Table 3. 



To carry out the experimental tests, commercially available diesel and four different low 

reactivity fuels were used. Their main properties related with auto-ignition are listed in Table 

4. All the properties were obtained following ASTM standards. 

2.3. Analysis of in-cylinder pressure signal 

The combustion analysis was performed with an in-house one-zone model named CALMEC, 

which is fully described in [30]. This combustion diagnosis tool uses the in-cylinder pressure 

signal and some mean variables (engine speed, coolant, oil, inlet and exhaust temperatures, 

air, EGR and fuel mass flow…) as its main inputs.  

The pressure traces from 150 consecutive engine cycles were recorded in order to compensate 

the cycle-to-cycle variation during engine operation. Thus, each individual cycle's pressure data 

was smoothed using a Fourier series low-pass filter. Once filtered, the collected cycles were 

ensemble averaged to yield a representative cylinder pressure trace, which was used to 

perform the analysis. Then, the first law of thermodynamics was applied between intake valve 

closing (IVC) and exhaust valve opening (EVO), considering the combustion chamber as an 

open system because of the blow-by and fuel injection. The ideal gas equation of state was 

used to calculate the mean gas temperature in the chamber. In addition, the in-cylinder 

pressure signal allowed obtaining the gas thermodynamic conditions in the chamber to feed 

the convective and radiative heat transfer models in the chamber [31], as well as the filling and 

emptying model that provided the fluid-dynamic conditions in the ports, and thus the heat 

transfer flows in these elements. The convective and radiative models are linked to a lumped 

conductance model to calculate the wall temperatures. 

The main results of the model used in this work were the Rate of Heat Release (RoHR) as well 

as the heat transfer analysis. Moreover, several parameters were calculated from the RoHR 

profile. In particular, start of combustion (defined as the crank angle position in which the 

cumulated heat release has reached 2%), end of combustion (defined as the crank angle 



position in which the cumulated heat release has reached 90%) and combustion phasing 

(defined as the crank angle position of 50% fuel mass fraction burned) were obtained. 

Additionally, ringing intensity was calculated by means of the correlation of Eng [32]: 

RI =
1

2γ

[0.05 ∙ (dP/dt)max]2

Pmax
√γRTmax 

(1) 

Where  is the ratio of specific heats, (dP/dt)max is the peak PRR, Pmax is the maximum of in-

cylinder pressure, R is the ideal gas constant, and Tmax is the maximum of in-cylinder 

temperature. 

2.4. Analysis of mixing process 

A 1-D spray model, DICOM [33][34], has been used to understand the changes in mixing 

process associated to variations in the in-cylinder fuel blending and intake oxygen 

concentration. The necessary inputs for the model are the evolution of the in-cylinder 

thermodynamic conditions (pressure, temperature and density), the spray cone angle and the 

fuel mass injection rate. To reproduce the real in-cylinder conditions more accurately, two 

additional inputs are also needed for the 1-D model; the oxygen mass fraction at IVC and the 

stoichiometric equivalence ratio of the in-cylinder fuel blend (2) [35]. These two parameters 

are used to account the fresh air, EGR rate and low reactivity fuel entrainment. Finally, the 

calculation time for each test was set from the start of injection of HRF (SOIHRF) to the 

experimental start of combustion (SOC). 

𝜙𝑒𝑠𝑡 =  
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 (2) 



Where φLRF and φHRF are the equivalence ratios of low reactivity fuel (LRF) and high reactivity 

fuel (HRF), CHRF and CLRF denote the number of carbon atoms, HHRF and HLRF are the number of 

hydrogen atoms, YN2,IVC stands for nitrogen mass fraction at IVC and YO2,IVC accounts the oxygen 

mass fraction at IVC. 

To perform the calculations, the model solves the general conservation equations either in a 

transient or steady formulation for axial momentum and fuel mass in terms of the on-axis (i.e., 

center line) referred to instantaneous values of velocity and species mass fractions. Finally, by 

processing the raw results, the high reactivity fuel mass distribution mixed to different 

equivalence ratios at experimental SOC was obtained. Figure 3 shows an example of the 1-D 

model results as a histogram. In this case, the bars represent the result of the high reactivity 

fuel masses mixed to different local equivalence ratios and the solid line represents the 

envelope curve of the bars. For the sake of clarity, in the present work the results were also 

represented as a pie chart format. 

3. Test methodology 

As literature demonstrates, to achieve high efficiencies in a wide range of engine speeds and 

loads during RCCI operation, the mass ratio of premixed fuel (low reactivity) to direct injected 

fuel (high reactivity) should be changed accordingly. Previous works defined the in-cylinder 

fuel blending ratio as the mass of premixed fuel to the total fuel. However, since there is a 

significant difference in lower heating value (LHV) between E85 and the three remaining low 

reactivity fuels tested, as shown in Table 4, the premixed energy ratio (PER) is presented here. 

Thus, the premixed energy ratio is defined as the ratio of energy of the low reactivity fuel to 

the total fuel (3), where the low reactivity fuel and the high reactivity one are denoted by the 

subscripts LRF and HRF respectively. 

𝑃𝐸𝑅[%] =
𝑚𝐿𝑅𝐹 ⋅ 𝐿𝐻𝑉𝐿𝑅𝐹

𝑚𝐻𝑅𝐹 ⋅ 𝐿𝐻𝑉𝐻𝑅𝐹 +  𝑚𝐿𝑅𝐹 ⋅ 𝐿𝐻𝑉𝐿𝑅𝐹
 



(3) 

In the present study, four different premixed energy ratios were tested for each fuel blend. 

The baseline operation was selected according to B7+E20-95 blend. In this sense, four different 

blending ratios were proposed (mass based) and then, the total energy delivered to the 

cylinder was maintained constant for the three remaining blends by adjusting the low 

reactivity fuel mass as required in each case. The diesel B7 mass was kept constant for each 

premixed energy ratio between the different fuel blends. In order to clarify the test 

methodology, Table 5 depicts the fuel mass per blend as well as the total energy delivered to 

the cylinder for each PER proposed. 

All the tests were carried out at 1200 rev/min and constant combustion phasing (CA50) of 5 

CAD ATDC. In order to keep constant the CA50 while introducing low reactivity fuels with very 

different characteristics, the EGR rate was modified as required in each case, keeping constant 

the rest of engine settings. At these operating conditions, the mean IMEP resulted in 7.5 bar, 

with a maximum value of 7.83 bar (E10-95 and PER 59%) and minimum value of 7.03 bar (E10-

95 and PER 59%) due to differences in combustion development between fuels. Table 6 

depicts the constant engine settings. 

4. Results and discussion 

4.1. Combustion development 

In order to understand the main differences in combustion process due to variations in low 

reactivity fuel characteristics, an analysis of the parameters derived from the in-cylinder 

pressure measurement is presented here. In this sense, the instantaneous RoHR traces for the 

different premixed energy ratios and blends are shown in Figure 4. A detailed view of the low 

temperature heat release (LTHR) profiles is presented inside each figure. In addition, the EGR 

rate, combustion duration (CA90-CA10) and ringing intensity are depicted in Figure 5, Figure 7 

and Figure 8, respectively. It is interesting to note that, in the case PER=79% was not possible 



to obtain the desired combustion phasing (5 CAD ATDC) with E85, even without the use of 

EGR. In this case, the higher octane number of ethanol E85 combined with the greater intake 

cooling effect associated to its significantly higher enthalpy of vaporization compared with the 

conventional gasolines [36][37][38], delayed the combustion far from 5 CAD ATDC. 

As explained in the test methodology, in order to keep constant the CA50 while introducing 

low reactivity fuels with very different characteristics, the EGR rate was modified as required in 

each case. Thus, Figure 5 shows the EGR rate for the different premixed energy ratios and 

blends. As expected, the results illustrate that the EGR rate depends on the blend reactivity. 

Taking into account that diesel injection timing as well as its injected fuel mass was kept 

constant for each PER, the blend reactivity was modified only by means of the low reactivity 

fuel. Focusing on the values depicted in Table 4, it is clear that the higher RON and MON, the 

lower EGR rate needed to maintain the combustion phasing. Moreover, as PER is increased, a 

deterioration in the blend reactivity is promoted due to the low diesel fuel mass, requiring 

lower EGR rates for the same blend. 

In RCCI operation, the combustion starts with the autoignition of the high reactivity fuel 

followed by the entrained low reactivity fuel. The consequent increase in temperature and 

pressure initiates a reaction zone, identified in literature as an auto-ignition or flame 

propagation depending on equivalence ratio conditions, which proceed gradually from high to 

low reactivity regions of the combustion chamber [39][40][41]. Focusing on the RoHR profiles 

in Figure 4, it is clear that the SOC pattern of the high temperature heat release (HTHR) stages 

between the different fuels is the same independently on PER. In particular, B7+E85 exhibits 

earlier HTHR growth, followed by B7+E10-98, B7+E20-95 and finally B7+E10-95. Considering 

the low reactivity fuel characteristics, it is clear that this pattern is opposite to the fuel blend 

reactivity (i.e., octane number). In this sense, the increase in oxygen concentration through the 

EGR reduction counteracts the deterioration in the mixture reactivity due to the fuel 



characteristics. Thus, an earlier HTHR growth is achieved in spite of the high ON fuel blend 

[42]. In addition, the higher oxygen content of E85 compared to other fuels also contributes to 

the more evident advance in the HTHR onset. 

Figure 6 illustrate some pie charts of the high reactivity fuel mass distribution mixed to 

different φ at experimental SOC for the different premixed energy ratios and blends. From the 

four scenarios proposed, the ones containing the more reactive equivalence ratios (0.9<φ<1.1) 

govern the autoignition process. In this sense, it is possible to see how there is not a significant 

difference in the mass distribution for the diesel fuel when comparing the cases of B7+E20-95, 

B7+E10-98 and B7+E10-95, whatever the PER. Thus, the first slope in the HTHR profiles for 

these three blends are nearly equal. Regarding the diesel mass distribution in the case of E85 

for these two ranges of equivalence ratios, it is shown that in the cases of PER=49% and 

PER=59% the fuel mass distribution is very similar to the ones obtained with the other three 

blends. However, the EGR rate reduction needed in the case of PER=69% to kept constant the 

combustion phasing promotes a very lean mixture distribution, leading to an only 0.5% fuel 

mass mixed in the φ range of 0.9<φ<1.1 and no fuel mass mixed to φ>1.1. From the figure, it is 

highlighted that the diesel fuel mass distribution becomes leaner as PER is increased, whatever 

the fuel blend.  This behavior is explained due to the low diesel fuel mass injected and the 

greater fresh air amount (lower EGR) provided to the cylinder. This fact, combined with the 

stoichiometric equivalence ratio of the low reactivity fuel, contributes to determinate the 

amount of diesel fuel mass mixed to the leanest φ range (0.1<φ<0.5). The over-lean diesel fuel 

stratification will cause a deterioration in the combustion propagation. As it is noted from the 

figure, the same pattern in terms of diesel amount mixed to this φ range is appreciated 

(E85>E20-95>E10-98>E10-95), whatever the PER. 

Once initiated the combustion, its evolution strongly depends on the low reactivity fuel 

characteristics and the high reactivity fuel stratification. Figure 7 shows the combustion 



duration (CA90-CA10) for the different PER and blends. Once again, the combustion duration 

trend is well correlated with the fuel blend reactivity. In this sense, the low reactivity fuels with 

higher reactivity enhance the autoignition process, which results in higher maximum RoHR 

peaks during the HTHR stage and shorter combustion durations. Another interesting finding 

from the RoHR profiles in Figure 4 is that the late combustion phase, from +10 to +20 CAD 

ATDC, is almost equal whatever the PER and blend. Hence, the end of combustion (EOC) is 

almost the same between fuels for the same PER. 

Regarding LTHR profiles, in previous work [28] in which an analysis of the temporal evolution 

of the key combustion species was presented, it was demonstrated that the low temperature 

reactions are mainly associated to the high reactivity fuel. The low temperature reactions are 

triggered by the high reactivity fuel consumption. However, since the low reactivity fuel is well 

mixed at this moment, the temperature increase makes the surrounding zones start also to 

react. Focusing on the evolution of the LTHR profiles represented in the detailed views in 

Figure 4, it is clear that the maximum LTHR peak becomes reduced as PER is increased, 

whatever the low reactivity fuel used. In addition, it is stated that for the same PER, the 

maximum LTHR peak depends on the reactivity of the low reactivity fuel. Thus, the maximum 

LTHR peak is well related to the octane number of the low reactivity fuels, with higher LTHR 

peaks observed as the RON and MON are decreased. 

Finally, from Figure 8, it is stated that ringing intensity trends between the different blends are 

the same regardless the PER. Hence, RI is directly related to the blend reactivity. Since the 

diesel fuel mass was kept constant for each PER, the blend reactivity is modified only by means 

of the LRF. Focusing on the values depicted in Table 4, it is clear that the higher RON and MON, 

the lower RI registered. Also it is interesting that RI values for each fuel become lower as PER is 

increased. Thus, slightly higher RI values are obtained with the lower PER due to the 

enhancement in the blend reactivity through the higher diesel fuel mass. It is remarkable that 



RI values are below 5 MW/m2, which was established by Dec and Yang [43] as a proper upper 

limit to achieve an acceptable combustion noise and knock-free operation. 

4.2. NOx emissions 

Figure 9 represents the NOx emissions for the different premixed energy ratios and blends. As 

reference, dashed lines across the figures denote the EURO VI NOx limits for HD diesel engines 

according to the world harmonized stationary cycle (WHSC), which stablishes a maximum 

value of 0.4 g/kWh for NOx emissions. 

From the figure it is noted that E85 leads to significantly higher NOx emission levels than the 

other low reactivity fuels since much lower EGR rate (Figure 5) is required to maintain the 

proper combustion phasing. The EGR rate reduction promotes an increase in combustion 

temperature, represented in Figure 10. This higher temperature achieved during the 

combustion development enhances the NO formation reactions promoting an increase in the 

NOx levels. Also of note is that as PER is increased, NOx emissions increase whatever the 

blend. In this case, a reduction in the EGR rate is necessary to keep constant the CA50 while 

reducing the diesel fuel mass. It is interesting to note that E20-95, E10-98 and E10-95 are valid 

to fulfill EURO VI NOx limits independently on the PER. Specifically, the higher reactivity of E10-

95 allows to use higher EGR rates, leading to emission levels far below of the current 

regulation limits. 

 

4.3. Soot emissions 

Soot emissions were measured for the different premixed energy ratios and blends. The soot 

levels registered were below the minimum detection limit of the AVL 415S Smoke Meter in all 

tests. Thus, under this operating conditions, engine-out soot emissions from RCCI operation 

are zero whatever the low reactivity fuel used. Consequently, the limitation in PM mass 



established by the EURO VI regulation for HD diesel engines referred to the WHSC (0.01 

g/kWh), is also fulfilled. 

The results confirm that RCCI soot emissions are mainly associated to the soot formation and 

oxidation processes from the high reactivity fuel. In this sense, an advanced enough injection 

strategy for the direct injected fuel is required to provide sufficient mixing time prior to the 

start of combustion and inhibit soot formation. Concerning the specific injection timing values 

used in this research, shown in Table 6, the pilot direct injection timing was set at -60 CAD 

ATDC in order to ensure that part of the high reactivity fuel mass had sufficient mixing time 

prior to the start of combustion. Moreover, it is interesting to note that the value selected for 

the main injection (-30 CAD ATDC) is advanced enough to allow an adequate mixing time for 

this second fuel mass too, achieving soot levels below the minimum detection limit of the AVL 

415S Smoke Meter in all tests. In order to confirm that the strategy to achieve zero soot is to 

avoid its formation, Figure 11 presents the mass distribution mixed up to different equivalence 

ratios at experimental SOC for the diesel fuel calculated by means of the 1-D spray model 

(DICOM). The different PER and blends are also depicted in the figure. As it can be seen, the 

higher maximum local equivalence ratios are obtained for the lowest PER as a result of the 

higher diesel amount injected in these cases. Even in these conditions, the value of the 

maximum local equivalence ratio is around φL=2, which confirm the non-formation of soot 

[44][45][46]. Moreover, it is interesting to remark how an E85/air ambient enhances the 

mixing process for the diesel fuel. 

4.4. HC and CO emissions 

Figure 12 and Figure 13 represent HC and CO emissions for the different premixed energy 

ratios and blends, respectively. Dashed lines across the figures denote the EURO VI HC and CO 

limits for HD diesel engines according to the WHSC approval cycle (HC <0.13 g/kWh and CO 

<1.5 g/kWh).  



Taking into account the maximum RoHR peaks in Figure 6, it is demonstrated that the low 

cylinder reactivity gradients enhance the autoignition process. From Figure 12 it is noted that 

unburned HC emissions correlate with the fuel blend reactivity, which is also related with the 

maximum energy released during the combustion. Specifically, as the fuel blend reactivity is 

increased (i.e., lower ON) higher RoHR peaks (Figure 6) and lower unburned HC are registered. 

This behavior is the same whatever the PER tested. 

Regarding CO emissions, a reduction in its emission levels are achieved as PER is increased 

from 49% to 69% for all the blends. This trend is explained due to the higher combustion 

temperatures (Figure 10) attained (promoted by the EGR rate reduction required), which 

improves the oxidation process. Increasing the PER up to 79%, it is possible to appreciate a rise 

in the CO levels for the three blends. At this point, the deterioration in the combustion process 

(larger combustion duration and lower RoHR peaks) promoted by the over-lean in-cylinder 

regions, results in higher CO levels even with higher in-cylinder temperature peaks. 

The results suggests that, that independently on the PER, a reduced reactivity gradient 

between the low and high reactivity fuel enhances the combustion propagation, reducing the 

unburned HC and CO emission levels. However, independently on PER and fuel blend, 

unacceptable limits are obtained taking into account the EURO VI limits. In this sense, recent 

study discussed the effectiveness of several diesel oxidation catalyst (DOC) with different 

precious metal loadings under steady-state operation [47]. It was demonstrated that all DOCs 

were effective in oxidizing CO and HC at temperatures greater than 300 °C, with no catalyst 

activity under 200 °C. 

4.5. Discussion 

This section is focused on detailing the influence of the different combinations of fuels and 

blending ratios on RCCI concept efficiency. For this purpose, Figure 14 represents the gross 



indicated efficiency (GIE), heat transfer losses, exhaust losses and combustion losses as a 

percentage of the fuel energy for the different premixed energy ratios and blends.  

 

The results illustrate that, at low load, the gross indicated efficiency of RCCI operation using 

E85 as low reactivity fuel is considerably lower than the ones obtained using the other low 

reactivity fuels tested. Taking into account the energy distribution, it is clear that the main 

cause of the differences in GIE are related to the differences in combustion losses. In this case, 

the higher unburned HC and CO levels (which leads to incomplete combustion) prevails over 

the reduction in heat transfer and exhaust losses, which results in the GIE reduction. The 

combination of B7+E10-95 allows an improvement between 3 and 4.5% in terms of GIE in 

comparison with B7+E85. Thus, it is demonstrated that, at low load, a reduced reactivity 

gradient between the low and high reactivity fuel is needed to improve the thermal efficiency. 

 

Comparing the results between B7+E20-95, B7+E10-98 and B7+E10-95, in which the 

combustion temperatures are similar as well as the combustion development, it is appreciated 

that the gross indicated efficiency is also mainly correlated with the combustion efficiency. 

Moreover, the higher GIE for B7+E10-95 is also related with its higher maximum RoHR peaks 

and shorter combustion durations whatever the PER. 

 

5. Conclusions 

The present study focused on evaluating the influence of the low reactivity fuel characteristics 

and blending ratio on RCCI combustion efficiency, performance and emissions at low load. In 

particular, an analysis of the parameters derived from in-cylinder pressure signal has been 

combined with a detailed air/fuel mixing process analysis. The major findings from the 

combustion development study are summarized as follows: 



 The maximum LTHR peak became reduced as PER increased, whatever the low 

reactivity fuel used. At same PER, the maximum LTHR peak was dependent also on the 

reactivity of the low reactivity fuel. 

 The greater intake oxygen concentration (lower EGR rate) plus the higher oxygen 

content of E85 fuel compared to other fuels, resulted in advanced HTHR growth. In 

addition, the HTHR onset pattern for the remaining fuels was clearly related to the EGR 

rate. 

 The combustion development was strongly affected by the low reactivity fuel 

characteristics. Thus, the low reactivity fuels with higher reactivity enhanced the 

autoignition process shortening the combustion duration. 

 Knock-free operation was achieved for any fuel blend. In addition, it was 

demonstrated that the higher RON and MON of the low reactivity fuel, the lower 

ringing intensity registered. 

The notable observations comparing performance and emissions from the different 

combinations of high and low reactivity fuel were as follows: 

 The low EGR rate required with E85 fuel enhanced the thermal NOx formation 

resulting in emissions levels far above the EURO VI legislation limit. 

 Independently on the low reactivity fuel used, soot formation was inhibited by setting 

an advanced injection strategy for the diesel fuel. 

 The reduced reactivity gradient between high and low reactivity fuels enhanced the 

combustion propagation, which allowed a considerable reduction in HC and CO 

emissions. The decrease in combustion losses counteracted the increase in heat 

transfer and exhaust losses, which resulted in greater GIE in this case. 

The results of this work demonstrate that the in-cylinder fuel reactivity gradients strongly 

affect the engine efficiency at low load. In particular, an improvement of 4.5% in terms of GIE 



was achieved by reducing the reactivity gradient and selecting the proper blending ratio. In 

terms of engine-out emissions, the use of a lower in-cylinder reactivity gradient allowed a 

notable reduction in CO and unburned HC levels. Moreover, EURO VI NOx and soot emission 

levels are fulfilled in this case. In addition, ringing intensity values are below 5 MW/m2, which 

denotes knock-free operation. 
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Abbreviations 

1-D: One-dimensional 

ASTM: American Society of Testing and Materials 

ATDC: After Top Dead Center 

CAD: Crank Angle Degree 

CA10: Cranck Angle at 10% mass fraction burned 

CA50: Cranck Angle at 50% mass fraction burned 

CA90: Cranck Angle at 90% mass fraction burned 

CO: Carbon Monoxide 

CI: Compression Ignition 

DI: Direct Injection 

DOC: Diesel Oxidation Catalyst 

DPF: Diesel Particulate Filter 

EGR: Exhaust Gas Recirculation 

EVC: Exhaust Valve Close 

EVO: Exhaust Valve Open 

EOC: End of Combustion 

FSN: Filter Smoke Number 



GIE: Gross Indicated Efficiency 

HC: Hydro Carbons 

HCCI: Homogeneous Charge Compression Ignition 

HD: Heavy Duty 

HT: Heat Transfer 

IVC: Intake Valve Close 

IVO: Intake Valve Open 

LHV: Lower Heating Value 

LTC: Low Temperature Combustion 

LTHR: Low Temperature Heat Release 

MON: Motor Octane Number 

ON: Octane Number 

PM: Particulate Matter 

PFI: Port Fuel Injection 

PER: Premixed Energy Ratio 

PPC: Partially Premixed Charge 

PRF: Primary Reference Fuel 

RCCI: Reactivity Controlled Compression Ignition 

RON: Research Octane Number 

RoHR: Rate of Heat Release 



RI: Ringing Intensity 

SOC: Start of Combustion 

SOI: Start of Injection 

WHSC: World Harmonized Stationary Cycle 

  



Engine type Single cylinder, 4 St cycle, DI 

Bore x Stroke [mm] 123 x 152 

Connecting rod length [mm] 225 

Displacement [L] 1.806 

Geometric compression ratio [-] 14.4:1 

Bowl Type Open crater 

Number of Valves 4 

IVO 375 CAD ATDC 

IVC 535 CAD ATDC 

EVO 147 CAD ATDC 

EVC 347 CAD ATDC 

Table 1. Single cylinder engine specifications. 

Variable measured  Device  Manufacturer / model Accuracy 

In-cylinder pressure Piezoelectric transducer Kistler / 6125B  ±1.25 bar 

Intake/exhaust pressure Piezorresistive transducers Kistler / 4045A10 ±25 mbar 

Temperature in settling 
chambers and manifolds 

Thermocouple TC direct / type K ±2.5 °C 

Crank angle, engine speed Encoder  AVL / 364  ±0.02 CAD 

NOx, CO, HC, O2, CO2  Gas analyzer  HORIBA / Mexa 7100 DEGR 4% 

FSN  Smoke meter  AVL / 415 ±0.025 FSN 

Gasoline/diesel fuel mass flow Fuel balances  AVL / 733S ±0.2% 

Air mass flow Air flow meter Elster / RVG G100  ±0.1% 

Table 2. Accuracy of the instrumentation used in this work. 

Diesel injector Gasoline injector 

Actuation Type Solenoid Injector Style Saturated 

Steady flow rate @ 100 bar [cm3/s] 28.56 Steady flow rate @ 3 bar [cm3/s] 980 

Number of Holes 7 Included Spray Angle [°] 30 

Hole diameter [um] 194 Fuel Pressure [bar] 5.5 

Included Spray Angle [°] 142 Start of Injection [CAD aTDC] 385 

Table 3. Diesel and gasoline fuel injector characteristics. 

 

 Diesel B7 E10-95 E20-95 E10-98 E85 

Density [kg/m3] (T= 15 °C)   837.9 739 745 755 781 

Viscosity [mm2/s] (T= 40 °C)   2.67 - - - - 

RON [-] - 98.8 99.1 103 108 

MON [-] - 85.2 85.6 90 89 

Cetane number [-] 54 - - - - 

Oxygen content [% mass] 0.8 3.5 6.6 3.5 29.7 

Lower heating value [kJ/kg] 42.61 41.32 40.05 41.29 31.56 

Table 4. Physical and chemical properties of the fuels used along the study. 

 



 

 PER=49% PER=59% PER=69% PER=79% 

Diesel B7 [mg] 35 28 21 14 

E20-95 [mg] 35 42 49 56 

E10-95 [mg] 33.9 40.7 47.5 54.3 

E10-98 [mg] 33.9 40.7 47.5 54.3 

E85 [mg] 44.4 53.3 62.2 71.1 

Total Energy [J] 2893.1 2875.2 2857.3 2839.3 

Table 5. Fuel mass per blend as well as the total energy delivered to the cylinder for each 
premixed energy ratio. 

 

Engine speed [rev/min] 1200 

Combustion phasing (CA50) [CAD ATDC] 5 

Intake Temperature [°C] 40 

Diesel pilot inj. timing [CAD ATDC] -60 

Fuel mass in pilot Diesel inj. [%] 50 

Diesel main inj. timing [CAD ATDC] -30 

Diesel injection pressure [bar] 700 

Low reactivity fuel inj. timing [CAD ATDC] 385 

Table 6. Constant engine settings. 

  



 

Figure 1. Complete test cell setup 

Figure 2. Fuel injection systems scheme 

 

Figure 3. Histogram of the high reactivity fuel mass distribution mixed to different equivalence 

ratios at experimental SoC 



Figure 4. RoHR traces for the different premixed energy ratios and blends 

 

Figure 5. EGR rate for the different premixed energy ratios and blends 



Figure 6. High reactivity fuel mass distribution mixed to different φ at experimental SoC for the 

different premixed energy ratios and blends 

Figure 7. Combustion duration (CA90-CA10) for the different premixed energy ratios and 

blends 

Figure 8. Ringing intensity for the different premixed energy ratios and blends 

Figure 9. NOx emissions for the different premixed energy ratios and blends 



Figure 10. Maximum adiabatic combustion temperature 

Figure 11. Mass distribution mixed up to different equivalence ratios at experimental SoC for 

the different premixed energy ratios and blends 

Figure 12. HC emissions for the different premixed energy ratios and blends 

Figure 13. CO emissions for the different premixed energy ratios and blends 



Figure 14. Gross indicated efficiency (GIE), heat transfer losses, exhaust losses and combustion 

losses as a percentage of the fuel energy for the different premixed energy ratios and blends. 

 

 


