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Summary

The neutron diffusion equation is an approximation of the neutron transport equa-
tion that describes the neutron population in a nuclear reactor core. In particular,
we will consider here VVER-type reactors which use the neutron diffusion equa-
tion discretized on hexagonal meshes. Most of the simulation codes of a nuclear
power reactor use the multigroup neutron diffusion equation to describe the neu-
tron distribution inside the reactor core.To study the stationary state of a reactor,
the reactor criticality is forced in artificial way leading to a generalized differential
eigenvalue problem, known as the Lambda Modes equation, which is solved to
obtain the dominant eigenvalues of the reactor and their corresponding eigenfunc-
tions.

To discretize this model a finite element method with h-p adaptivity is used. This
method allows to use heterogeneous meshes, and allows different refinements such
as the use of h-adaptive meshes, reducing the size of specific cells, and p-refinement,
increasing the polynomial degree of the basic functions used in the expansions of
the solution in the different cells.

Once the solution for the steady state neutron distribution is obtained, it is used
as initial condition for the time integration of the neutron diffusion equation. To
simulate the behaviour of a nuclear power reactor it is necessary to be able to
integrate the time-dependent neutron diffusion equation inside the reactor core.
The spatial discretization of this equation is done using a finite element method
that permits h-p refinements for different geometries. Transients involving the
movement of the control rod banks have the problem known as the rod-cusping
effect. Previous studies have usually approached the problem using a fixed mesh
scheme defining averaged material properties and many techniques exist for the
treatment of the rod cusping problem. The present work proposes the use of a
moving mesh scheme that uses spatial meshes that change with the movement of
the control rods avoiding the necessity of using equivalent material cross sections
for the partially inserted cells. The performance of the moving mesh scheme is
tested studying different benchmark problems.
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For reactor calculations, the accuracy of a diffusion theory solution is limited for
for complex fuel assemblies or fine mesh calculations. To improve these results
a method that incorporates higher-order approximations for the angular depen-
dence, as the simplified spherical harmonics (SPN ) method must be employed. In
this work an h-p finite element method (FEM) is used to obtain the dominant
Lambda mode associated with a configuration of a reactor core using the SPN
approximation. The performance of the SPN (N= 1, 3, 5) approximations has
been tested for different reactor benchmarks.
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Resumen

La ecuación de la difusión neutrónica es una aproximación de la ecuación del
transporte de neutrones que describe la población de neutrones en el núcleo de
un reactor nuclear. En particular, consideraremos reactores de tipo VVER y para
simular su comportamiento se utilizará la ecuación de la difusión neutrónica para
cuya discretización se hace uso de mallas hexagonales.

La mayoría de los códigos de simulación de reactores nucleares utilizan aproxi-
mación multigrupo de energía de la ecuación de la difusión neutrónica para de-
scribir la distribución de neutrones en el interior del núcleo del reactor. Para
estudiar el estado estacionario del reactor, es posible forzar la criticidad del reac-
tor de forma artificial modificando las secciones eficaces de forma que se obtiene un
problema de valores propios diferencial, conocido como el problema de los Modos
Lambda, que se resuelve para obtener los valores propios dominantes del reactor
y sus correspondientes funciones propias.

Para discretizar este modelo se ha hecho uso de un método de elementos finitos
con adaptabilidad h-p. Este método permite el uso de mallas heterogéneas, y de
diferentes refinamientos como el uso mallas h-adaptativas, reduciendo el tamaño
de los distintos nodos, y el p-refinado, aumentando el grado del polinomio de las
funciones básicas utilizado en los desarrollos de la solución en los diferentes nodos.
Se ha desarrollado un código basado en un método de elementos finitos de alto
orden para resolver el problema de los Modos Lambda en un reactor con geometría
hexagonal y se han obtenido los modos dominantes para distintos problemas de
referencia.

Una vez que se ha obtenido la solución para la distribución de neutrones en estado
estacionario, ésta se utiliza como condición inicial para la integración de la ecuación
de difusión neutrónica dependiente del tiempo. Para simular el comportamiento
de un reactor nuclear para un determinado transitorio, es necesario ser capaz de
integrar la ecuación de la difusión neutrónica dependiente del tiempo en el interior
del núcleo del reactor. La discretización espacial de esta ecuación se hace usando
un método de elementos finitos de alto orden que permite refinados de tipo h-p
para distintas geometrías.
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Los transitorios que implican el movimiento de los bancos de las barras de con-
trol tienen el problema conocido como el efecto ‘rod-cusping’. Estudios anteriores,
por lo general, han abordado este problema utilizando una malla fija y definiendo
propiedades promedio para los materiales correspondientes a las celdas donde se
tiene la barra de control parcialmente insertada. En el presente trabajo se pro-
pone el uso de un esquema de malla móvil, de forma que en mallado espacial va
cambiando con el movimiento de la barra de control, evitando la necesidad de
utilizar secciones eficaces equivalentes para las celdas parcialmente insertadas. El
funcionamiento de este esquema de malla móvil propuesto se estudia resolviendo
distintos problemas tipo.

La precisión obtenida mediante de la teoría de la difusión en los cálculos de re-
actores es limitada cuando se tienen elementos de combustible complejos o se
pretenden realizar cálculos en malla fina. Para mejorar estos resultados, es nece-
sario disponer de un método que incorpore aproximaciones de orden superior de
la ecuación del transporte de neutrones. Una posibilidad es hacer uso de las ecua-
ciones PN simplificadas (SPN ). En este trabajo se utiliza un método de elementos
finitos h− p para obtener los modos dominantes asociados con una configuración
dada del núcleo de un reactor nuclear con geometría hexagonal usando la aprox-
imación SPN . El funcionamiento de las aproximaciones SPN (N = 1, 3, 5) se ha
estudiado para distintos problemas de referencia.
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Resum

L’equació de la difusió neutrònica és una aproximació de l’equació del transport
de neutrons que descriu la població de neutrons en el nucli de un reactor nuclear.
En particular, considerarem reactors de tipus VVER i per a simular el seu com-
portament s’utilitzarà l’equació de la difusió neutrónica que es discretitza fent ús
de malles hexagonals.

La majoria dels codis de simulació de reactors nuclears utilitzen l’aproximació
multigrup d’energia de l’equació de la difusió neutrónica per a descriure la distribu-
ció de neutrons a l’interior del nucli del reactor. Per a estudiar l’estat estacionari
del reactor, és possible forÃ§ar la seua criticitat de forma artificial modificant les
seccions eficaces de manera que s’obté un problema de valors propis diferencial,
conegut com el problema dels Modes Lambda, que es resol per a obtenir els valors
propis dominants del reactor i les seues corresponents funcions pròpies.

Per a discretitzar aquest model s’ha fet ús d’un mètode d’elements finits amb
adaptabilitat h-p. Aquest mètode permet l’ús de malles heterogènies, i de difer-
ents refinaments com l’ús malles h-adaptatives, reduint la grandària dels diferents
nodes, i el p-refinat, augmentant el grau del polinomi de les funcions bàsiques
utilitzat en els desenvolupaments de la solució en els diferents nodes. S’ha desen-
volupat un codi basat en un mètode d’elements finits d’alt ordre per a resoldre
el problema dels Modes Lambda en un reactor amb geometria hexagonal i s’han
obtingut els modes dominants per a diferents problemes de referència.

Una vegada que s’ha obtingut la solució per a la distribució de neutrons en estat
estacionari, aquesta s’utilitza com a condició inicial per a la integració de l’equació
de difusió neutrònica depenent del temps. Per a simular el comportament d’un
reactor nuclear per a un determinat transitori, és necessari ser capaÃ§ d’integrar
l’equació de la difusió neutrónica depenent del temps a l’interior del nucli del reac-
tor. La discretitzación espacial d’aquesta equació es fa usant un mètode d’elements
finits d’alt ordre que permet refinats de tipus h-p per a diferents geometries.

Els transitoris que impliquen el moviment dels bancs de les barres de control tenen
el problema conegut com l’efecte ‘rod-cusping’. Estudis anteriors, en general, han
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abordat aquest problema utilitzant una malla fixa i definint propietats equivalents
per als materials corresponents a les celÂ·les on es té la barra de control par-
cialment inserida. En el present treball es proposa l’ús d’un esquema de malla
mòbil, de manera que en mallat espacial va canviant amb el moviment de la barra
de control, evitant la necessitat d’utilitzar seccions eficaces equivalents per a les
celÂ·les parcialment inserides. El funcionament de aquest esquema de malla mòbil
s’estudia resolent diferents problemes tipus.

La precisió obtinguda mitjanÃ§ant de la teoria de la difusió en els càlculs de reac-
tors és limitada quan es tenen elements de combustible complexos o es pretenen
realitzar càlculs en malla fina. Per a millorar aquests resultats, és necessari dis-
posar d’un mètode que incorpore aproximacions d’ordre superior de l’equació del
transport de neutrons. Una possibilitat és fer ús de les equacions PN simplifi-
cades (SPN ). En aquest treball s’utilitza un mètode d’elements finits h− p per a
obtenir els modes dominants associats amb una configuració donada del nucli de
un reactor amb geometria hexagonal usant l’aproximació SPN . El funcionament
de les aproximacions SPN (N = 1, 3, 5) s’ha estudiat per a diferents problemes de
referència.
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Chapter 1

Introduction

The nuclear industry life cycle is not very different from other kind of industry,
being some of its distinguishing characteristics, its long time horizons, its technical
complexity and the necessity of excellence. The nuclear sector has evolved quickly,
but this would not has been possible without high quality research and support
programmes to promote knowledge generation and technically competent staff for
the safely plant operation.

In nuclear reactor core physics two main objects to study can be distinguished.
On one hand, the localisation and dynamics (or behaviour) of neutrons and on the
other hand, the criticality of the reactor, i.e., whether it is possible to maintain
the chain reaction in its interior. Among the many different methods that exist to
answer these questions, the most commonly used ones are based on the neutron
diffusion theory, which is an approximation to the neutron transport theory.

The behaviour of a nuclear reactor is governed by the transport of neutrons and
the interactions between neutrons and matter.Therefore, the design, analysis and
control of nuclear reactors requires solving numerically the neutron transport equa-
tion (or an approximation of it) in order to determine the neutron distribution in
the reactor and hence, validate and verify design and safety parameters.

The rigorous treatment of this problem is completely analogous to that used in
classic studies of gaseous diffusion [1]. The method of study consists of taking a
control volume at some point of the reactor and deriving expressions that account
for the different ways of entry and exit from this control volume of neutrons, having
a given velocity vector by introducing effective cross sections, avoiding to consider
specific interactions of neutrons within the control volume. The balance between
the proportion of neutrons which enter and the proportion of neutrons which exit
the control volume, gives rise to what is known as the Boltzmann transport equa-
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tion. To simplify this equation, some hypothesis are introduced such as that all
the neutrons can be grouped into energy ranges (groups) and that the distribu-
tion of the neutron velocity vectors is independent of the direction. Under these
conditions, one can obtain the neutron diffusion equation as an approximation of
the transport equation.

There are mainly two types of calculations associated with the neutron diffusion. A
first type of static calculations involving the determination of the Lambda Modes
associated with a given configuration of the reactor in a given time. This is a
generalized eigenvalue problem associated with a differential operator with given
boundary conditions. The determination of the fundamental mode allows us to
describe the behaviour of the reactor in steady state. Another type of calculations
are those made for the determination of a transient from a perturbation made on a
stationary configuration of the reactor, using for that the time dependent neutron
diffusion equation.

Several algorithms to integrate the neutron diffusion equation in hexagonal geome-
tries have been developed, both for the Lambda Modes problem [2] beginning to
study the problem of updating the lambda Modes for close configurations of the
reactor [3]. Also, the time dependent neutron diffusion equation has been studied
for this kind of reactors [4] using homogeneous meshes. Mesh adaptivity begun in
the late 1970’s [5] and is based on the idea that in order to achieve high accuracy,
a uniformly fine mesh is not necessarily required; rather, the computational grid
only needs to be fine in regions where the solution is rough and can be coarse
in areas where the solution is smooth and, therefore, well resolved even on large
cells. The challenge is that, in general, it is not known a priori where the solution
will require the mesh to be fine. Consequently, the computation of local error or
smoothness indicators from a numerical solution, previously obtained on a coarser
mesh, lies at the heart of all adaptive mesh refinement algorithms and a signif-
icant number of successful approaches have been developed for this problem in
the last decade [6], [7]. Using these methods, it has been shown for many prob-
lems that the computational effort needed to reach a certain accuracy can often
be reduced by one or several orders of magnitude compared to uniform meshes,
frequently enabling the solution of entire new classes of problems that were pre-
viously considered too expensive computationally to be solved with the required
accuracy. The use of adaptive meshes for the study of nuclear reactors has been
recently proposed [8], [9], beginning with the study of different error estimators
for the mesh refinement for the computation of the k-effective of the reactor and
the stationary power distribution.
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1.1 Objective of the thesis

The main objective of the present thesis is the development and verification of a
3D neutronic code for nuclear reactors with hexagonal geometry to be able to learn
about the behaviour of nuclear power reactors and to carry out safety studies in
the most common transients and reactivity accidents. The objectives can be listed
as :

• Implementation of an adaptive h-p finite element method to compute the
dominant Lambda Modes associated with a configuration of a reactor core,
the reactor power distribution and the subcritical modes.

• Implementation of a finite element method for the time dependent neutron
diffusion equation inside the reactor core to be able to analysis a transient
and simulate the behaviour of the nuclear power reactor.

• Implementation of a new technique for the treatment of the rod cusping
problem in the 3D transients calculations using the open source finite ele-
ments library deal.II, developing a moving mesh strategy that move the mesh
with the movement of the control rod avoiding the problem of the partially
rodded nodes homogenization.

• Implementation of an adaptive h-p finite element method for the other ap-
proaches of the neutron transport equation solutions, taking into account
different angular discretizations as SPN equations and compare the obtained
results with the diffusion results.

1.2 Thesis outline

The following sections serve as an overview of the finite element method (FEM)
and introduction to the neutron transport equation and its solution approaches
describing the PN and SPN Equations, the Lambda Modes equations, the VVER
reactors and illustrating the capabilities of the deal.II finite element library, the
PETSC library, the SLEPc library and Gmsh package, respectively.

In Chapter 2, an introduction to the finite element method (FEM) is given. Dif-
ferent solution approaches for the static solution of the neutron transport equation
are briefly described. A particular focus, however, is put on the adaptive h-p finite
element method and its numerical calculation.

In Chapter 3, a finite element method is introduced for the time dependent neutron
diffusion equation inside the reactor core. A treatment of the rod cusping problem
in the 3D calculations with control rods using the open source finite elements
library deal.II has been presented.
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Chapter 4 of this thesis is concerned with the high order finite element method
for the simplified spherical harmonics equations. A particular focus, however, is
put on the simplified PN (or SPN ) transport method, which provides a basis for
SP3, SP5 and the diffusion approaches. A numerical analysis of the performance
of the SPN transport and diffusion methods developed in the previous chapters is
demonstrated with particular regard to mesh refinement analyses. Several hexago-
nal benchmark and test problems with different material compositions are studied.

In Chapter 5, The final chapter summarizes the whole work.

1.3 Finite element method

In the earlier days of nuclear engineering, the process of solving the neutron dis-
tribution in a nuclear reactor core was split into four sub-tasks (in a divide and
conquer fashion)[10] : first, a small 2D geometrical motif of the core was solved
with high fidelity, requiring the solution of the neutron transport equation; then
the results of the previous stage were used to homogenize the geometry and ma-
terial compositions; subsequently, the homogenized data are solved on 3D coarse
meshes using the diffusion approximation of transport; finally, the coarse 3D re-
sults along with the 2D fine results are used to reconstruct the fine 3D results. This
methodology is still prevalent nowadays but possesses inherent drawbacks found
in its homogenization and reconstruction processes. It is commonly acknowledged
[11] that overcoming these drawbacks will require solving the multi-group trans-
port equation on the whole heterogeneous 3D geometry, with a large number of
energy groups and angular directions or moments. A 3D solution will certainly
not be feasible without improved algorithms such as automatic mesh adaptation,
where the mesh cells are automatically and selectively refined in order to reduce
the largest contributions to the total error. Even though the ultimate goal is the
efficient resolution of the transport equation in 3D, there are some necessary issues
which need to be resolved but can be understood and analyzed on a reduced scale.
In this thesis, we investigate the behaviour of mesh refinement techniques in the
case of eigenproblems consisting of systems of coupled equations (the multi-group
equations).

Historically, solutions to reactor core analysis problems were first obtained using
traditional finite difference methods (FDM)[12] , [13] in the 1960’s. FDM requires
a large number of mesh points in order to represent accurately the spatial variation
of the neutron flux. It is well-known that the finite difference mesh spacing must
be on the order of the smallest group-wise diffusion length for correct results. The
computational cost associated with FDM motivated the development of modern
transverse-integrated nodal methods [14]. These nodal methods reached maturity
in the mid 1980’s and are widely used for reactor physics design and on-site mon-
itoring. Nowadays, 3D calculations for light water reactors with homogenized fuel
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assemblies can now be performed even in on-site fashion. However, the accu-
racy and the theoretical justification for the homogenization and reconstruction
processes, which enabled the use of FDM and nodal methods, now hinders any
further improvements to 3D solutions using these techniques. It is even believed
that the success of modern nodal methods prohibited the further development of
other spatial discretization techniques in reactor core analysis. However, with the
emergence of new types of reactors with more intricate geometries or more severe
flux transients, the motivation to pursue more accurate numerical simulations is
calling for finer geometrical details, increased number of energy groups and more
angles or moments in the transport equation. The finite element method (FEM)
since as early as the mid 70’s, [15], [16], [17] , which had been introduced in nuclear
engineering and gradually obtained more attention [18], [19], is of special interest
to us because it provides an efficient way to refine the mesh non-uniformly while
delivering accurate solutions.

The FEM is a computational technique for obtaining approximate solutions to
the partial differential equations that arise in scientific and engineering applica-
tions. Rather than approximating the partial differential equations directly as,
for instance, with finite difference method, the finite element method utilizes a
variational problem that involves an integral of the differential equation over the
problem domain. This domain can contain complex geometries (and boundaries).
FEM can easily handle such domains whereas FDM is restricted to handle only
regular shapes and simple alterations of them. In FEM, the computational domain
is divided into a number of sub-domains called finite elements and the solution of
the partial differential equation is approximated by a polynomial function on each
element. The division of the domain can be arbitrary. The polynomial orders
within each element can be of any value. Hence, FEM provides two options for re-
fining a mesh non-uniformly. However, optimally distributing these approximation
parameters - the sizes h of the elements and the orders p of the polynomial shape
functions- represents a significant departure from the conventional finite element
techniques. Suchh-p-refinements emerged in late 1980’s and required the resolu-
tion of several formidable problems for an effective implementation [20], [21], [22]
: new data structures, efficient linear solvers, effective local (a posteriori) error
estimations. Note that in the recent years, h-refinement and p-refinement have
been investigated for neutronics calculations [23], [24].

1.4 Neutron diffusion equation

The behaviour of a nuclear reactor is modelled by means of the neutron distribution
in the reactor core as a function depending on the position, the velocity, the energy
and the time. Thus, one of the main problems for the nuclear reactor theory is to
predict this distribution. It can be done solving the neutron transport equation
over the reactor domain. But, due to the complexity of this equation, the neutron
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diffusion equation is widely used as an approximation [25]. We will proceed to show
the process followed to deduce the neutron diffusion equation as an approximation
for the transport equation [26].

Within the transport theory the neutron is considered as a classical particle, in
the sense that it can be fully determined by means of knowing its position and
its velocity. The interaction between neutrons and atomic nuclei is dealt from a
macroscopic point of view, avoiding the details of the interaction process inside the
core. Moreover, the cross sections associated to the probability of a determined
type of reaction is defined and it is supposed that this interaction is produced
instantly.

The balance equation in a differential control volume is obtained taking into ac-
count that the rate of change for the density respect to the time inside the volume
dV dEd~Ω of the phase space is given by the difference between the neutron rate
flow into and out of that control volume. To describe the neutron population the
magnitude denoted as neutron angular density, N(~r,E, ~Ω, t), is used, defined as
the probable (or expected) number of neutrons at position ~r with direction ~Ω and
energy E, at time t, per unit volume and per unit solid angle per unit energy.
Moreover,the neutron angular flux is defined as

Ψ(~r,E, ~Ω, t) ≡ υN(~r,E, ~Ω, t), (1.1)

where υ is the neutron speed, and the balance equation inside the control volume
which describes the neutron transport equation is expressed as follows [25],

1

υ

∂Ψ

∂t
(~r,E, ~Ω, t) = −~Ω.~∇Ψ(~r,E, ~Ω, t)− ΣT (~r,E, t)Ψ(~r,E, ~Ω, t) +Q(~r,E, ~Ω, t)

+ (1− β )
χp(E)

4π

∫ ∞
0

dE′νΣf (~r,E′, t)

∫
~Ω′
d~Ω′ Ψ(~r,E′, ~Ω′, t)

+

∫ ∞
0

dE′
∫
~Ω′
d~Ω′ Σs(~r,E

′, ~Ω′ → E, ~Ω, t) Ψ(~r,E′, ~Ω′, t)

+

K∑
k=1

λk
χk(E)

4π
Ck(~r, t). (1.2)

The first term on the right hand of the equation, ~Ω.~∇Ψ(~r,E, ~Ω, t) , takes into
account the neutron advection flowing out the control volume, where ~Ω is the unit
vector denoting the direction of the going neutrons.

The second term, ΣT (~r,E, t) Ψ(~r,E, ~Ω, t), describes the rate at which neutrons
flow out the control volume by means of scattering and absorption processes.
Q(~r,E, ~Ω, t) denotes a possible external source of neutrons. The fourth term indi-
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cates the neutrons introduced into the volume element by fission processes, assum-
ing isotropic fission distribution. The fifth term describes the neutrons introduced
into the volume element by scattering. The delayed neutrons appearing in the vol-
ume from the precursor’s decay is taken into account by means of the last term.

ΣT and Σf denote the total cross section and the fission cross section respec-
tively. χp indicates the spectrum of the neutron produced by fission and χk is
the spectrum of neutrons produced by the precursors decay. The probability for
a neutron to be scattered from a volume dV dE′d ~Ω′ to other dV dEd~Ω, is repre-
sented by Σs(~r,E

′, ~Ω′ → E, ~Ω, t). The fission neutron rate scattered due to the
transformation of a precursor of type k is βk , where β =

∑K
k=1 βk and K is the

number of neutron precursors considered. The decay rate for which a precursor of
type k decays is λkCk.

The concentration of delayed neutron precursors satisfies the following balance
equation

∂Ck
∂t

(~r, t) = βk

∫ ∞
0

dE

∫
~Ω

d~Ω νΣf (~r,E, t) Ψ(~r,E, ~Ω, t)− λkCk(~r, t), (1.3)

where ν is the average number of neutrons arising in one fission, and k = 1, ...,K. It
is assumed that the angular dependency for the neutron scattering is mainly due
to the angle between the direction of the incident neutron, ~Ω′ , and the direction
of the emerging neutron, ~Ω. It is defined

~Ω = (Ω1,Ω2,Ω3) = (sin θ cosϕ, sin θ sinϕ, cos θ),

~Ω′ = (Ω′1,Ω
′
2,Ω

′
3) = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′),

µ∗ = ~Ω′.~Ω = cos θ∗, µ = cos θ, µ′ = cos θ′ (1.4)

where θ and θ′ are the angles of directions ~Ω and ~Ω′ , respectively, with the z axis
of the chosen reference system (see Figure 1.1).

The spherical harmonics method to approximate the neutron transport equation
consists of expanding the angular neutron flux, Ψ(~r,E, ~Ω, t), and the external
neutron source, Q(~r,E, ~Ω, t), as follows

Ψ(~r,E, ~Ω, t) =

∞∑
t=0

+1∑
m=−1

Φml (~r,E, t)Y ml (~Ω), (1.5)

Q(~r,E, ~Ω, t) =

∞∑
t=0

+1∑
m=−1

Qml (~r,E, t)Y ml (~Ω), (1.6)
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Figure 1.1: Magnitudes for the Addition theorem for the Legendre polynomials.

where Y ml (~Ω) are the (normalized) spherical harmonics defined as

Y ml (θ, ϕ) ≡ Hm
l P

m
l (cos θ)eimϕ, (1.7)

where

Hm
l =

√
2l + 1 (l −m)!

4π (l +m)!
. (1.8)

It is assumed that scattering only depends on the relative angle, µ∗ = ~Ω. ~Ω′ ,
and that the scattering cross section can be expanded as the following Legendre
polynomials series:

Σs(~r,E
′, ~Ω′ → E, ~Ω, t) =

∞∑
t=0

2l + 1

4π
Σsl(~r,E

′ → E, t)Pl(µ∗), (1.9)

Pl(µ∗) = Pl(µ)Pl(µ
′) + 2

l∑
m=1

(l −m)!

(l +m)!
Pml P

m′

l cosm(ϕ− ϕ′) (1.10)
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where Pl are the Legendre polynomials. Making use of the addition theorem for
the Legendre polynomials (equation 1.10), it can be written

∞∑
t=0

2l + 1

4π
Σsl(~r,E

′ → E, t)Pl(µ∗) =

∞∑
t=0

2l + 1

4π
Σsl(~r,E

′ → E, t)

(
Pl(µ)Pl(µ

′)

+ 2

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′) cosm(ϕ− ϕ′)

)
=

∞∑
t=0

2l + 1

4π
Σsl(~r,E

′ → E, t)

×
(
Pl(µ)Pl(µ

′) + 2

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′)

(
eimϕe−imϕ

′
+ e−imϕe+imϕ′

2

))

=

∞∑
t=0

2l + 1

4π
Σsl(~r,E

′ → E, t)

(
4π

2l + 1
Y 0
l (~Ω)Y 0

l ( ~Ω′)

+

l∑
m=1

(l −m)!

(l +m)!
Pml (µ)Pml (µ′)eimϕe−imϕ

′

+

l∑
m=1

(l −m)!

(l +m)!

(l +m)!

(l −m)!

(l +m)!

(l −m)!
P−ml (µ)P−ml (µ′)e−imϕe+imϕ′

)
∞∑
t=0

+l∑
m=−l

Σsl(~r,E
′ → E, t)Y ml (~Ω)Y m∗l ( ~Ω′), (1.11)

finally obtaining the equality,

Σs(~r,E
′, ~Ω′ → E, ~Ω, t) =

∞∑
t=0

+l∑
m=−l

Σsl(~r,E
′ → E, t)Y ml (~Ω)Y m∗l ( ~Ω′). (1.12)

It will be assumed the external neutron source to be isotropic, i.e., Qme but for Q0
0.

Due to this assumption equation (1.6) becomes.

Q(~r,E, ~Ω, t) = Q0
0(~r,E, t)Y 0

0 (~Ω), (1.13)

For the PL approximation, previous series are truncated for a given value l = L,
taking into account that when L→∞ we recover the exact solution.

Now the identities (1.5),(1.12) and (1.13) are substituted into equation (1.2), ob-
taining
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L∑
l=0

+l∑
m=−l

Y ml (~Ω)

(
1

υ

∂Φml
∂t

(~r,E, t) + ~Ω.~∇Φml (~r,E, t) + ΣT (~r,E, t)Φml (~r,E, t)

−
∫ ∞

0

Σsl(~r,E
′ → E, t)

∞∑
α=0

+α∑
γ=−α

∫
~Ω′
Y γα ( ~Ω′)Y m∗l ( ~Ω′)dΩ′Φγα(~r,E′, t)dE′

)

− (1− β )
χp(E)

4π

∫ ∞
0

νΣf (~r,E, t)

L∑
l=0

+l∑
m=−l

Φml (~r,E, t)

∫
~Ω′
Y ml ( ~Ω′)dΩ′dE′

−Q0
0(~r,E, t)Y 0

0 (~Ω)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) = 0. (1.14)

Then integrals with respect to ~Ω′ are solved using the orthogonality properties of
the spherical harmonics

∫ 2π

ϕ=o

∫ π

θ=o

Y m1∗
l1

(θ, ϕ)Y m2

l2
(θ, ϕ) sin θ dθ dϕ = δl2l1 δ

m2
m1
. (1.15)

Obtaining

∞∑
α=0

+α∑
γ=α

(∫
Ω′
Y γα ( ~Ω′)Y m∗l ( ~Ω′)dΩ′

)
Φγα(~r,E′, t)

∞∑
α=0

+α∑
γ=α

δmγ δ
l
αΦγα(~r,E′, t) = Φml (~r,E′, t), (1.16)

∞∑
l=0

+l∑
m=−l

∫
Ω′
Y ml ( ~Ω′)dΩ′Φml (~r,E′, t) =

Φ0
0(~r,E′, t)

H0
0

, (1.17)

where Hm
l is defined at equation (1.8), and substituting equation (1.16) and (1.17)

into the equation (1.14), it is obtained
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L∑
l=0

+l∑
m=−l

Y ml (~Ω)

(
1

υ

∂Φml
∂t

(~r,E, t) + ~Ω.~∇Φml (~r,E, t)

+ ΣT (~r,E, t)Φml (~r,E, t)−
∫ ∞

0

dE′Σsl(~r,E
′ → E, t)Φml (~r,E′, t)

)
− (1− β )

χp(E)

4π

∫ ∞
0

dE′νΣf (~r,E′, t)
Φ0

0(~r,E′, t)

H0
0

−Q0
0(~r,E, t)Y 0

0 (~Ω)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) = 0. (1.18)

Now the objective is to decouple the equation (1.18) into a system of partial
differential equations, weighted by a set of spherical harmonics. First, the operator
~Ω.~∇ is rewritten by means of the expression

Y ml (~Ω)(~Ω.~∇) =
(
Al,m1 Y m+1

l+1 (~Ω)−Al,m2 Y m+1
l−1 (~Ω)

)( ∂

∂x
− i ∂

∂y

)
+
(
−Al,m3 Y m−1

l+1 (~Ω) +Al,m4 Y m−1
l−1 (~Ω)

)( ∂

∂x
+ i

∂

∂y

)
+
(
−Al,m5 Y ml−1 (~Ω) +Al,m6 Y ml+1 (~Ω)

) ∂

∂z
. , (1.19)

Thus, equations will be decoupled substituting at (1.18), multiplying by Y γ∗α (~Ω)
and integrating for all direction, making use of the orthogonality property for the
spherical harmonics (equation 1.15), it is obtained

1

υ

∂Φγα
∂t

(~r,E, t) +

(
∂

∂x
− i ∂

∂y

)(
Aα−1,γ−1

1 Φγ−1
α−1(~r,E, t)−Aα+1,γ−1

2 Φγ−1
α+1(~r,E, t)

)
+

(
∂

∂x
− i ∂

∂y

)(
Aα−1,γ+1

3 Φγ+1
α−1(~r,E, t) +Aα+1,γ+1

4 Φγ+1
α+1(~r,E, t)

)
+

∂

∂z

(
Aα+1,γ

5 Φγα+1(~r,E, t) +Aα−1,γ
6 Φγα−1(~r,E, t)

)
− ΣT (~r,E, t) Φγα(~r,E, t)−

∫ ∞
0

dE′ Σsl(~r,E
′ → E, t) Φγα(~r,E′, t)

− (1− β )
χp(E)

4π

∫ ∞
0

dE′ νΣf (~r,E′, t)
Φ0

0(~r,E′, t)

H0
0

H0
0 δ

α
0 δγ0

− Q0
0(~r,E, t)

H0
0

H0
0 δ

α
0 δγ0 −

K∑
k=1

λk
χk(E)

4π
Ck(~r, t) H0

0 δ
α
0 δγ0 = 0,

α = 0, 1, ....., L, γ = −α, ....., α. , (1.20)
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where constants Al,mn , n = 1, ....., 6 are defined as

Al,m1 =
1

2

(
(l +m+ 2)(l +m+ 1)

(2l + 3)(2l + 1)

) 1
2

,

Al,m2 =
1

2

(
(l −m)(l −m− 1)

(2l + 1)(2l − 1)

) 1
2

,

Al,m3 =
1

2

(
(l −m+ 2)(l −m− 1)

(2l + 3)(2l + 1)

) 1
2

,

Al,m4 =
1

2

(
(l +m)(l +m− 1)

(2l + 1)(2l − 1)

) 1
2

,

Al,m5 =

(
(l +m)(l −m)

(2l + 1)(2l − 1)

) 1
2

,

Al,m6 =

(
(l +m+ 1)(l −m+ 1)

(2l + 3)(2l + 1)

) 1
2

. (1.21)

The terms with invalid values for α and γ will be assumed to be 0.

To obtain the P1 approximation, L = 1 is taken in the previous system (1.11),
and in the series expansion for the angular flux the remaining terms are Φ0

0,Φ1
1 ,Φ0

1

and Φ1
1 , and all the coefficients of higher order are considered equal to zero. The

following notation is introduced

Q0
0(~r,E, t)

H0
0

= Q̃(~r,E, t)

Φ0
0(~r,E, t)

H0
0

= Φ(~r,E, t) (1.22)

where Q̃ means neutron source, and Φ is the scalar neutron flux. Imposing the
following conditions.

∂Φ−1
1

∂t
(~r,E, t) =

∂Φ0
1

∂t
(~r,E, t) =

∂Φ1
1

∂t
(~r,E, t) = 0, (1.23)

the following system of equations is obtained
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1.4 Neutron diffusion equation

− 1

υ

∂Φ

∂t
(~r,E, t) = −

√
1

6

(
∂

∂x
− i ∂

∂y

)
Φ−1

1 (~r,E, t)

H0
0

−
√

1

6

(
∂

∂x
+ i

∂

∂y

)
Φ1

1(~r,E, t)

H0
0

−
√

1

3

(
∂

∂z

)
Φ0

1(~r,E, t)

H0
0

+ ΣT (~r,E, t)Φ(~r,E, t)

−
∫ ∞

0

dE′Σs0(~r,E′ → E, t)Φ(~r,E′, t)

− (1− β )
χp(E)

4π

∫ ∞
0

dE′νΣf (~r,E′, t)Φ(~r,E′, t)

− Q̃(~r,E, t)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) , (1.24)

√
1

6

(
∂

∂x
+ i

∂

∂y

)
Φ0

0(~r,E, t) = ΣT (~r,E, t)Φ−1
1 (~r,E, t)

−
∫ ∞

0

dE′Σs1(~r,E′ → E, t)Φ−1
1 (~r,E′, t), (1.25)

√
1

3

(
∂

∂z

)
Φ0

0(~r,E, t) = ΣT (~r,E, t)Φ0
1(~r,E, t)

−
∫ ∞

0

dE′Σs1(~r,E′ → E, t)Φ0
1(~r,E′, t), (1.26)

√
1

6

(
∂

∂x
− i ∂

∂y

)
Φ0

0(~r,E, t) = ΣT (~r,E, t)Φ1
1(~r,E, t)

−
∫ ∞

0

dE′Σs1(~r,E′ → E, t)Φ1
1(~r,E′, t), (1.27)

Moreover, it is supposed that the inelastic neutron scattering is isotropic, which
implies that Σs1 only describes the elastic scattering. It is considered that the
anisotropic elastic scattering is done without change in the neutron’s energy, and
then it can be written

Σs1(~r,E′ → E)J(~r,E′)dE′ = Σs1(~r,E → E′)J(~r,E)dE′,

where the right-hand side can also be rewritten as

Σs1(~r,E)J(~r,E),
13



Chapter 1. Introduction

with

Σs1(~r,E) =

∫ ∞
0

Σs1(~r,E → E′)dE′ .

The transport cross section is defined as

Σtr(~r,E, t) = ΣT (~r,E, t)− Σ̄s1(~r,E), t),

and the diffusion coefficient

D(~r,E, t) =
1

3Σtr(~r,E, t)
.

Now it will be used the newly defined terms to write equations (1.25),(1.26)and
(1.27) as follows

Φ−1
1 (~r,E, t) =

√
3

2
D(~r,E, t)

(
∂

∂x
+ i

∂

∂y

)
Φ0

0(~r,E, t),

Φ0
1(~r,E, t) = −

√
3D(~r,E, t)

(
∂

∂z

)
Φ0

0(~r,E, t),

Φ1
1(~r,E, t) = −

√
3

2
D(~r,E, t)

(
∂

∂x
− i ∂

∂y

)
Φ0

0(~r,E, t). (1.28)

Substituting equations (1.28) in the equation (1.24) to obtain a formulation de-
pending only on Φ0

0 , and then using the definition (1.22) of Φ, it is obtained

− 1

υ

∂Φ

∂t
(~r,E, t) = − ∂

∂x
D(~r,E, t)

∂

∂y
Φ(~r,E, t)

− ∂

∂y
D(~r,E, t)

∂

∂y
Φ(~r,E, t)

− ∂

∂z
D(~r,E, t)

∂

∂z
Φ(~r,E, t) + ΣT (~r,E, t)Φ(~r,E, t)

−
∫ ∞

0

dE′Σs0(~r,E′ → E, t)Φ(~r,E′, t)

− (1− β )
χp(E)

4π

∫ ∞
0

dE′νΣf (~r,E′, t)Φ(~r,E′, t)

− Q̃(~r,E, t)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) . (1.29)

This is,
14



1.4 Neutron diffusion equation

− 1

υ

∂Φ

∂t
(~r,E, t) = −~∇.

(
D(~r,E, t)~∇Φ(~r,E, t)

)
+ ΣT (~r,E, t)Φ(~r,E, t)

−
∫ ∞

0

dE′Σs0(~r,E′ → E, t)Φ(~r,E′, t)

− (1− β )
χp(E)

4π

∫ ∞
0

dE′νΣf (~r,E′, t)Φ(~r,E′, t)

− Q̃(~r,E, t)−
K∑
k=1

λk
χk(E)

4π
Ck(~r, t) . (1.30)

Moreover, taking into account that the neutron current, ~J , is defined as

~J(~r,E, t) ≡
∫
~Ω

d~Ω~ΩΦ(~r,E, ~Ω, t) ,

from where

~J(~r,E, t) =
Φ1

1(~r,E, t)− Φ−1
1 (~r,E, t)

2H1
1

~i

−
i
(

Φ1
1(~r,E, t) + Φ−1

1 (~r,E, t)
)

2H1
1

~j +
Φ0

1(~r,E, t)

H0
1

~k. (1.31)

Substituting equations (1.28) in equation (1.31) it is obtained

~J(~r,E, t) = −D(~r,E, t)~∇Φ(~r,E, t),

which is known as the Fick’s first law.

The cross sections, generally, are functions depending on the neutrons energy, and
to simplify the neutron diffusion equation it is used a multi-group approximation.
Such an approximation consists of obtaining an equation for the neutrons whose
energy belongs to the interval [Eg ,Eg+1], g = 1, ...., G−1 , where G is the number
of groups to be considered.

The magnitudes associated with group g are defined as follows,

15



Chapter 1. Introduction

Φg(~r, t) =

∫ Eg+1

Eg

dE Φ(~r,E, t) ,

1

υg
=

∫ Eg+1

Eg

dE
1

υ

Φ(~r,E, t)

Φg(~r, t)
,

ΣTg(~r, t) =

∫ Eg+1

Eg

dE ΣT (~r,E, t)
Φ(~r,E, t)

Φg(~r, t)
,

νΣfg(~r, t) =

∫ Eg+1

Eg

dE νΣf (~r,E, t)
Φ(~r,E, t)

Φg(~r, t)
,

Q̃g(~r, t) =

∫ Eg+1

Eg

dE Q̃(~r,E, t) ,

χpg =

∫ Eg+1

Eg

dE χp(E) ,

χkg =

∫ Eg+1

Eg

dE χk(E) ,

Σsg′→g(~r, t) =

∫ Eg′+1

E′
g

dE′
∫ Eg′+1

E′
g

dE Σs0(~r,E′ → E, t)
Φ(~r,E, t)

Φ′g(~r, t)
, (1.32)

and for each spatial direction, j , the diffusion coefficient for the group g is defined
as the function Dg(~r, t) satisfying the following equation,

Dg(~r, t) =

∫ Eg+1

Eg

dED(~r,E, t)
∂jΦ(~r,E, t)

∂jΦg(~r, t)
.

The total cross section is written as the sum of an absorption term and scattering
terms of the form

ΣTg(~r, t) = Σag(~r, t) +

G∑
g′=1

Σsg′g(~r, t) ,

and the scattering cross section for the group g is introduced as

Σsg(~r, t) =

G∑
g′ 6=g

Σsg′g(~r, t) .
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1.4 Neutron diffusion equation

Integrating the equation (1.30) from Eg to Eg+1 , and making use of the previous
definitions, the diffusion equation for the group g is obtained as

− 1

υ

∂Φg
∂t

(~r, t) = ~∇.
(
Dg(~r, t)~∇Φg(~r, t)

)
− (Σag(~r, t) + Σsg(~r, t)) Φg(~r, t)

+

G∑
g′ 6=g

Σsg′g(~r, t)Φg′(~r, t) + (1− β )χpg

G∑
g′=1

Σfg′(~r, t)Φg′(~r, t)

+

K∑
k=1

λkχkgCk(~r, t) + Q̃(~r, t). (1.33)

With these approximations, the equation (1.3) for the concentration of neutron
precursors is written in the form

dCk(~r, t)

dt
= βk

G∑
g′=1

νΣfg(~r, t)Φg(~r, t)− λkCk(~r, t). (1.34)

It is worth to note that, when approximating equations (1.2) and (1.3) by means
of equations (1.33) and (1.34), the space where the fields are defined has been
reduced from the space characterized by the variables (~r,E,Ω, t) to the coordinate
space (~r, t), with the consequent simplification of the problem.

From now on, the two energy groups neutron diffusion equation is considered, i.e.,
the energy spectrum is divided into a fast group E1 , corresponding to the neutrons
whose energy is higher to certain value, and a thermal group E2 , corresponding
to the neutrons whose energy is smaller than the previous quantity. Moreover, it
is assumed than there are not scattering processes from the thermal to the fast
group, i.e.,Σ21(~r, t) = 0, and there is not neutron production in the thermal group,
i.e., χp2 = 0 and χk2 = 0. Finally, it is supposed that there is no neutron external
source, and χp1 = 1 and χk1 = 1. Making use of these considerations, a system of
partial differential equations for the fast and the thermal group is obtained with
the following form

[v−1]
∂Φ

∂t
+ LΦ = (1− β )MΦ +

K∑
k=1

λkχCk , (1.35)

∂Ck
∂t

= Ċk = βk[νΣf1 νΣf2]Φ− λkCk , k = 1, . . . ,K , (1.36)

where, K is the number of delayed neutron precursors groups considered and the
matrices are defined as
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Chapter 1. Introduction

L =

(
−~∇ · (D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

)
, [v−1] =

( 1
v1

0

0 1
v2

)
,

M =

(
νΣf1 νΣf2

0 0

)
, Φ =

(
φ1

φ2

)
, χ =

(
1
0

)
,

where φ1 and φ2 are the fast and the thermal neutron fluxes, respectively. The
diffusion constants and cross-sections, Dg, Σ12, Σag, νΣfg, g = 1, 2, appearing
in the equations depend on the reactor materials, that is, they are position and
time dependent functions. βk is the yield of delayed neutrons in the k precursors
group and λk is the corresponding decay constant. Both coefficient are related to
the delayed neutron precursor decay.

1.5 Lambda Modes equation

A reactor is said to be critical when the material configuration inside the reactor
is set in a way that the neutron production is equal to the neutron loss. Under
these conditions the reactor is in steady state. To study the steady state of a given
reactor using the neutron diffusion equation, its criticality can be forced artificially
[40], dividing the fission cross sections by a number λ. In such a way, it is expected
that there exists a number λ satisfying the equations

LΦ =
1

λ
(1− β ) MΦ +

K∑
k=1

λkCkχ, (1.37)

0 =
1

λ
βk [νΣf1νΣf2] Φ − λkCk. (1.38)

Substituting (1.37) in (1.38), and taking into account that
∑K
k=1 βk = β , it is

obtained

LΦ =
1

λ
MΦ (1.39)

which is known as the Lambda Modes equation for the reactor, and is a generalized
differential eigenvalue problem associated with the operators L and M, where L
is the neutron loss operator and M is the neutron production operator. We will
consider the approximation of two groups of energy, that the neutrons are born
in the fast group, and that there is not up-scattering from the thermal to the fast
group. Taking into account these assumptions, the looses operator is
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1.5 Lambda Modes equation

L =

(
−~∇ · (D1

~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

)
,

M =

(
νΣf1 νΣf2

0 0

)
, Φ =

(
φ1

φ2

)
.

In order to study the steady state neutron flux distribution inside a nuclear reactor
and the sub-critical modes responsible for example for the regional instabilities that
can take place in its core, it is necessary to obtain the dominant modes and their
corresponding eigenfunctions. The computation of modes can also be important
in transient analysis, in which the problem must be solved each certain time step.
In this last case, it is critical to be able to compute the modes solution as fast as
possible [41].

For a numerical treatment, this equation must be discretised in space. Nodal meth-
ods are extensively used in this case. These methods are based on approximations
of the solution in each node in terms of an appropriate basis of functions such as
Legendre polynomials [42]. In this work the spatial discretization selected will be a
hight order finite element method that will be described later. It is assumed that
nuclear properties are constant in every cell. This process allows the transforma-
tion of the original system of partial differential equations into an algebraic large
sparse generalised eigenvalue problem

Lφ̃ =
1

λ
Mφ̃ , (1.40)

where L and M are matrices of order 2N with the following block structure

(
L11 0
−L21 L22

)(
φ̃1

φ̃2

)
=

1

λ

(
M11 M12

0 0

)(
φ̃1

φ̃2

)
, , (1.41)

By eliminating φ̃2 , we obtain the following N -dimensional non-symmetric stan-
dard algebraic eigenproblem

L−1
11

(
M11 +M12L

−1
22 L21

)
φ̃1 = λφ̃1 . (1.42)

The eigenvalues λ associated with the equation 1.42) are interpreted as cross sec-
tions factors. Then, they must be necessarily real numbers, and thus the eigen-
functions φ̃1 will also be real functions.

It is usually supposed that the Lambda Modes form a complete set of functions
for the development of modal methods for the integration of the time dependent
neutron diffusion equation [43]. Thus, the problem of determining the Lambda
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Modes of a given reactor can be considered as a previous problem for the study of
the characteristics of the time dependent neutron diffusion equation.

1.6 VVER reactors

The Lambda Modes problem for reactor cores with geometries based on quadrilat-
eral prisms, has been widely studied [10, 11, 4, 5, 6]. The developed methods are
used to analyze reactors of type PWR and BWR, which are the most used occiden-
tal reactors. To analyze VVER reactors it is necessary to modify the methodologies
applied when discretizing the equations, due to the geometry composed by hexag-
onal prisms (See Figure 1.2). Due to this fact it is interesting to study different
methods for these reactors. VVER is the acronym of the Russian name Voda Voda
Energo Reactor. VVER reactors are the Russian version of the PWR, and they
have been developed along three different generations [12].

Hexagonal Mesh Rectangular Mesh

VVER PWR , BWR

Figure 1.2: Core mesh for the VVER and PWR reactor.

The first generation (VVER-440 Model 230) was developed in the 60’s. Their
principal strengths are [26]
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1.6 VVER reactors

• Six primary coolant loops, each with a horizontal steam generator, which
together provide a large volume of coolant.

• Isolation valves that allow plant operators to take one or more of the six
coolant loops out of service for repair while continuing to operate the plant.

• Ability to sustain a simultaneous loss of coolant and off-site power, due to
coolant pumps and two internal power generators that "coast down" after a
shutdown.

• Plant worker radiation levels reportedly lower than many western plants, due
to selection of materials, high-capacity primary coolant purification system,
and water chemistry control.

• Ability to produce significant amounts of power despite design and instru-
mentation and control deficiencies.

Meanwhile the principal deficiencies are:

• Accident Localization System (which serves as a reactor confinement) de-
signed to handle only one four-inch pipe rupture. If larger coolant pipes
rupture occurs, this system vents directly to the atmosphere through nine
large vent valves. Western nuclear plants have containments designed for
rupture of the largest pipes. In addition, the confinement has very small
volume, very poor leak-tightness and poor hydrogen mitigation.

• No emergency core cooling systems or auxiliary feed-water systems similar
to those required in western nuclear plants.

• Major concern about embrittlement (gradual weakening) of the reactor pres-
sure vessel surrounding nuclear fuel, due to lack of internal stainless-steel
cladding and use of low-alloy steel with high levels of impurities.

• Plant instrumentation and controls, safety systems, fire protection systems,
and protection for control room operators are below western standards.

• Quality of materials, construction, operating procedures and personnel train-
ing are below western standards.

The second generation (VVER-440 Model 213) was designed between 1950 and
1980. Their principal strengths are:

• Upgraded Accident Localization System vastly improved over the earlier
VVER-440 Model V230 design, comparable to several western plants, and us-
ing a vapour-suppression confinement structure called a "bubbler-condenser"
tower.
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• Addition of emergency core cooling and auxiliary feedwater systems.

• Reactor pressure vessel with stainless-steel internal lining to alleviate much
concern about the vessel embrittlement associated with the earlier VVER-
440 Model V230 design.

• Improved coolant pump, and continued use of six coolant loops (providing
multiple paths for cooling the reactor) and horizontal steam generators (for
better heat transfer) with large coolant volume.

• Standardization of plant components, providing extensive operating expe-
rience for many parts and making possible incremental improvements and
backfits of components.

Meanwhile the principal deficiencies are:

• Plant instrumentation and controls for example, reactor protection systems
and diagnostics behind western standards. Significant variations exist among
countries with VVER-440 Model V213 plants.

• Separation of plant safety systems (to help assure that an event in one system
will not interfere with the operation of others), fire protection, and protection
for control room operators improved over Model V230 plants, but generally
below western standards.

• Poor leak-tightness of confinement.

• Unknown quality of plant equipment and construction, due to lack of doc-
umentation on design, manufacturing and construction, and reported in-
stances of poor-quality materials being re-worked at plant sites.

• Major variations in operating and emergency procedures, operator training,
and operational safety (for example, use of control-room simulators) among
plants. These aspects of plant operations depend primarily on the organi-
zation or country operating Model V213 plants rather than on the plant
supplier. Some countries have added safety features to their Model V213
plants.

These two kind of reactors has six loops and produce 444 Mw of power.

The third generation (VVER-1000) was developed between 1975 and 1985. These
reactors have four loops and produce 1000 MW of power. They have a new design,
to incorporate the new safety standards, where the principals strengths of these
reactors are:
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1.6 VVER reactors

• Steel-lined, pre-stressed, large-volume concrete containment structure, simi-
lar in function to western nuclear plants.

• "Evolutionary" design incorporating safety improvements over VVER-440
Model V213 plants. The Soviet approach to standardization was based on
continued use of components that had performed well in earlier plants.

• Use of four coolant loops and horizontal steam generators-both considered
improvements by Soviet designers.

• Redesigned fuel assemblies that allow better flow of coolant, and improved
control rods.

• Plant worker radiation levels reportedly lower than in many western plants,
apparently due to selection of materials, high-capacity system for purifying
primary coolant, and water chemistry control.

The most important deficiencies of this type of reactors are:

• Substandard plant instrumentation and controls. Wiring of emergency elec-
trical system and reactor protection system does not meet western standards
for separation-control and safety functions are interconnected in ways that
may allow failure of a control system to prevent operation of a safety system.

• Fire protection systems that do not appear to differ substantially from earlier
VVER models, which do not meet western standards.

• Quality control, design and construction significantly deficient by U.S. stan-
dards.

• Protection measures for control-room operators essentially unchanged from
earlier VVER-440 Model V213 design, which does not meet U.S. standards.
Unlike all U.S. nuclear plants, and most in western countries, VVER-1000s
have no on-site "technical support center" to serve as a command post for
stabilizing the plant in an emergency. Technical support centers were incor-
porated in U.S. and many western nuclear plants following the accident at
Three Mile Island Unit 2 in 1979.

• Operating and emergency procedures that fall far short of western standards
and vary greatly among operators of VVER-1000 plants.

• Higher power densities and the smaller volume of primary and secondary
systems result in a somewhat less forgiving and stable reactor.
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Nowadays, new designs are being studied, such as the new VVER-1200 [44] (which
supposes a substantial improvement of the VVER-1000), VVER-1500 and VVER-
1600 [45], which are not operative yet.

The main difference between the VVER and the western PWR is the fuel assem-
blies design and the core geometry. The VVER have fuel assemblies with the shape
of hexagonal prisms, instead of the fuel assemblies with the shape of paralepipedal
prisms for the western PWR (See Figure 1.2).

The VVER-440 reactor core has 312 fuel assemblies and 37 control rods. 30 of
these fuel rods are always outside, (as it is shown in Figure 1.3). The different
colors indicate different materials composing the fuel.

14.70 cm

Figure 1.3: Layout of the VVER-440 core reactor.

Another example of the hexagonal reactors is the VVER-1000 reactor core which
has 167 fuel assembles as shown in Figure 1.4.
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23.60 cm

Figure 1.4: Layout of the VVER-1000 core reactor.

1.7 The deal.II finite element library

The spatial discretization selected for the neutron diffusion equation is a high order
finite element method,which has been implemented making use of deal.II [46],[8].

deal.II is an object-oriented class library providing all tools needed for simulations
with the finite element method, targeted at the computational solution of partial
differential equations using adaptive finite elements. Using the structuring means
of C++, the different objects used in such a simulation program are well sepa-
rated, allowing for a wide variation of applications without sacrificing program
structure or increasing susceptibility to programming errors. In particular, the
strict separation of meshes, finite element spaces and linear algebra classes allows
for a very modular approach in programming applications built on deal.II, and to
combine the provided functionality in many different ways, suiting the particular
needs of an application. It uses state-of-the-art programming techniques to offer
a modern interface to the complex data structures and the algorithms required.

The library uses advanced object-oriented and data encapsulation techniques to
break finite element implementations into smaller blocks that can be arranged to fit
users requirements. Through this approach, deal.II supports a large number of dif-
ferent applications covering a wide range of scientific areas, programming method-
ologies, and application-specific algorithms, without imposing a rigid framework
into which they have to fit. A judicious use of programming techniques allows to
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avoid the computational costs frequently associated with abstract object-oriented
class libraries.

The main aim of deal.II is to enable rapid development of modern finite element
codes, using among other aspects adaptive meshes and a wide array of tools classes
often used in finite element program.

The development of deal.II (and its predecessor DEAL) was initiated by the need
for a software tool for research in novel adaptive and high-performance finite el-
ement schemes of a number of areas. Most available software tools would either
be tuned to performance, but be specialized to one class of applications, while
others offer flexibility and generality at a significant waste of memory and com-
puting power. In addition, very few packages were publicly available at the time.
Therefore, DEAL filled a gap when its design began in 1992 and was the software
basis of the development of goal oriented error estimation and adaptive methods
for partial differential equations [47],[48],[49]. However, by 1997, it became clear
that some concepts of DEAL had become too cumbersome, and that important
improvements could be made by building on the then recent developments in the
C++ programming language [50] and compilers for it, in particular mature sup-
port for templates and the standard template library [51] , [52]. Therefore, a fresh
start was made with the new implementation of deal.II.

deal.II is widely used in many academic and commercial projects. For its creation,
its principal authors have received the 2007 J. H. Wilkinson Prize for Numerical
Software. It is also part of the industry standard (SPEC CPU 2006) benchmark
suite used to determine the speed of computers and compilers, and comes pre-
installed on the machines offered by the commercial Sun Grid programs.

Among other features, deal.II offers:

• Support for one, two, and three space dimensions, using a unified interface
that allows to write programs almost dimension independent.

• Handling of locally refined quadrangular grids, including different adaptive
refinement strategies based on local error indicators and error estimators.
Both h,p , and h-p refinement is fully supported for continuous and discon-
tinuous elements.

• Support for a variety of finite elements: Lagrange elements of any order,
continuous and discontinuous; Nedelec and Raviart-Thomas elements of any
order; elements composed of other elements.

• Parallelization on single machine through the Threading Build Blocks and
across nodes via MPI. deal.II has been shown to scale to at least 16k pro-
cessors.
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• Modern software techniques that make access to the complex data struc-
tures and algorithms as transparent as possible. The use of object oriented
programming allows for program structures similar to the structures in math-
ematical analysis.

• A complete stand-alone linear algebra library including sparse matrices, vec-
tors, Krylov subspace solvers, support for blocked systems, and interface to
other packages such as Trilinos [53], PETSc [54] and METIS [55], [56].

• Support for several output formats, including many common formats for
visualization of scientific data.

• Portable support for a variety of computer platforms and compilers.

1.7.1 Interfaces to other software

In addition to the functionality deal.II provides itself, it also has interfaces to
numerous additional programs and libraries for pre- and post-processing as well
as linear algebra. A list of areas in which deal.II uses external programs is the
following one :

• Grid generators. The grid handling of deal.II always assumes that there is
a coarse mesh approximating the geometry of the domain of computation.
While the mesh refinement process is able to follow curved boundaries, the
coarse mesh has to be provided either internally using functions for a simple
hypercube, or externally through mesh generators. deal.II has the capability
to read several different mesh formats, among which are UCD [57], Gmsh,
and NetCDF [58].

• Linear algebra. While deal.II provides an extensive suite of linear algebra
classes for the iterative solution of linear systems, it does not offer direct
or sparse direct solvers for large matrices. However, interfaces to the sparse
direct solvers in the UMFPACK [59] and HSL [60] packages are provided;
a copy of UMFPACK is actually part of deal.II distributions, courtesy of
the author. In addition, basic support for LAPACK [61] eigenvalue solvers
exists. Interfaces exist for linear algebra libraries such as PETSC, SLEPC
and ARPACK [62].

• Parallelization. deal.II includes genuine support for shared memory paral-
lelization by multi-threading, a significant advantage at a time when multi-
processor and multicore machines become more common. For parallelization
by message passing, an interface to PETSc [63] is provided. Since PETSc
relies on MPI, it is portable to a large number of parallel systems. Interfaces
to METIS [56] can be also used to partition meshes efficiently.
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• Visualization. The library has output drivers for a significant number of
different visualization tools as well as its own Postscript output. Generation
of output data is implemented as a two-step process, where the first gener-
ates an intermediate format from simulation data independent of the actual
output format, and the second step them converts this, rather simple, in-
termediate data into one of the supported graphical formats. It is therefore
quite simple to write a new driver for a missing file format. At present, the
following formats are supported: VTK [64] , OpenDX in both text and bi-
nary format, UCD format for AVS Express , binary and text files for Tecplot
[65], Gnuplot [66], encapsulated postscript, and GMV [67].

1.8 The PETSc library

The Portable, Extensible Toolkit for Scientific Computation [63] (PETSc, pro-
nounced PET-see; the S is silent), is a suite of data structures and routines devel-
oped by Argonne National Laboratory for the scalable (parallel) solution of scien-
tific applications modeled by partial differential equations. It employs the Message
Passing Interface (MPI) standard for all message-passing communication.

PETSc is the world’s most widely used parallel numerical software library for
partial differential equations and sparse matrix computations. It provides support
for problems arising from discretization by means of regular meshes as well as
unstructured meshes. Its approach is to encapsulate mathematical algorithms
using object-oriented programming techniques in order to be able to manage the
complexity of efficient numerical message-passing codes [41].

PETSc is intended for use in large-scale application projects, many ongoing com-
putational science projects are built around the PETSc libraries. Its careful design
allows advanced users to have detailed control over the solution process. PETSc
includes a large suite of parallel linear and nonlinear equation solvers that are
easily used in application codes written in C, C++, Fortran and now Python.

PETSc is built around a variety of data structures and algorithmic objects. The
application programmer works directly with these objects rather than concentrat-
ing on the underlying data structures. The three basic abstract data objects are
index sets (IS), vectors (Vec) and matrices (Mat). Built on top of this foundation
are various classes of solver objects, including linear, nonlinear and time-stepping
solvers [41]. In addition, PETSc includes support for parallel distributed arrays
useful for finite difference methods.
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Figure 1.5: Structure of PETSc (on the left) and SLEPc (on the right).

1.9 The SLEPc library

Eigenvalue problems are a very important class of linear algebra problems. The
need for the numerical solution of these problems, associated with stability and
vibrational analysis, arises in a wide range of situations in science and engineering.
They are usually formulated as large sparse eigenproblems. SLEPc is one of the
most complete and widely used libraries that deals with the solution of sparse
eigenvalue problems.

SLEPc, the Scalable Library for Eigenvalue Problem Computations SLEPc [54], is
a software library for the solution of large sparse eigenproblems on parallel com-
puters. It can be used for the solution of problems formulated in either standard
or generalized form, as well as other related problems such as the singular value
decomposition or the quadratic eigenvalue problem.

The emphasis of the software is on methods and techniques appropriate for prob-
lems in which the associated matrices are sparse, for example, those arising after
the discretization of partial differential equations. Therefore, most of the meth-
ods offered by the library are projection methods or other methods with similar
properties. Examples of these methods are Krylov-Schur, Jacobi-Davidson, and
Subspace Iteration, to name a few. SLEPc provides implementations of these
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methods. It also provides built-in support for spectral transformations such as the
shift-and-invert technique. SLEPc is a general library in the sense that it covers
standard and generalized eigenvalue problems, both Hermitian and non-Hermitian,
with either real or complex arithmetic.

SLEPc is based on the PETSc data structures and extends its functionality in order
to solve eigenproblems arising in real applications by using well-known techniques
such as shift-and-invert and state-of-the-art methods, in addition employs the MPI
standard for message-passing communication. It is being developed by researchers
from Universitat Politécnica de Valéncia (Spain).

1.10 Gmsh

Gmsh [68] is a three dimensional finite element grid generator with a build-in
CAD (Computer-Aided Design) engine and post-processor capabilities including
advanced means for manipulation and visualization of the data. Its design goal is
to provide a fast, light and user-friendly meshing tool with parametric input and
advanced visualization capabilities.

Gmsh is built around four modules: geometry, mesh, solver and post-processing.
All geometrical, mesh, solver and post-processing instructions are prescribed either
interactively using the graphical user interface (GUI) or in text files using Gmsh’s
own scripting language. Interactive actions generate language bits in the input
files, and vice versa. This makes possible to automate all treatments, using loops,
conditionals and external system calls. To describe geometries this mesh generator
uses a boundary representation ("b-rep" is a method for representing shapes using
the limits)[69].

As a general procedure for mesh generators (and also for Gmsh), first we have
to generate geometrical entities by successively defining points, oriented lines (line
segments, circles, ellipses, splines), oriented surfaces (plane surfaces, ruled surfaces,
triangulated surfaces) and volumes; in this order ), each one has assigned an
identifier (a number) at the moment they are created. In Gmsh there are also
physical groups, that are simply and basically a group of geometrical entities
(points, lines, surfaces or volumes) and they have also an identifier. Nevertheless,
they cannot be modified by geometry commands.

Once the geometry is defined, we have to specify (as far as possible) how the
FEM elements have to be generated by elementary geometrical elements of various
shapes (lines, triangles, quadrangles, tetrahedra, prisms,hexahedra and pyramids).
And finally, we order to mesh them (i.e., generation of the FE nodes and elements).
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The mesh generation is performed in the same bottom-up flow as the geometry
creation: lines are discretized first; the mesh of the lines is then used to mesh the
surfaces; then the mesh of the surfaces is used to mesh the volumes.

The generation of meshes is done on parametric surface patches like non-uniform
rational B-Splines (NURBS). A speciality of Gmsh is the integrated adaption of
the mesh element sizes to features. It supports a variety of 2D meshing strategies
in addition to Delaunay triangulation and natively Delaunay Tetrahedalization
and Advancing Front schemes for 3D volume meshing. It has both a convenient
language and graphical user interface (GUI) for description and manipulation of
the geometry.

Additionally, Gmsh can provide quality-optimal tetrahedral elements in volume
meshes. Another advantageous feature of this software package is its capability
to visualize and manipulate geometrical entities, mesh elements and the results of
calculations.

It is well known that the most laborious and error prone tasks in performing
numerical simulation is the input of the initial data that describe the geometry
of the device as well as its subsequent modification. This problem can be solved
using the functionality of Gmsh as geometrical modeller and CAD program. FEM
models can be generated graphically (through the GUI of Gmsh), or by use of
scripts (a file containing the instructions for the mesh generation).

Gmsh scripts have the extension’.geo’. In these scripts, we can define all the
instructions than can also be input graphically. The use of these scripts has many
advantages:

• We can re-use it for other models.

• We can parameterize the model, in order to be able to change dimensions or
properties without the need to start from zero.

• Portability is better.The script file occupies some kbytes, while a model can
be quite large to back it up.The only disadvantage is that it has to be re-run
to get the model.

The reactor core consist of several fuel elements across the diameter with hexagonal
shape, namely cells as shown in Figure 1.6. The number and the pitch size of this
fuel elements depend to the core type geometry. As the deal.II library doesn’t
support the Hexadric cells, the geometry is transformed to quadrilateral cell with
Gmsh as shown in Figure 1.6.

As beginning to generate the mesh we made a script containing the instructions
for the mesh generation. Each point is specified by three Cartesian coordinates
(X,Y,Z). Thus, for each line, the points along it are specified. To each point a
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Gmsh

Figure 1.6: Hexadric cells transformed into quadrilaterals with Gmsh.

fourth parameter, namely the characteristic length lc is associated, which controls
the sizes of the finite elements. Then from points we compose lines and from lines
we compose the hexagonal. The hexagonal are used to describe closed loops that
bound surfaces. Three-dimensional volumes are created either by rotation or by
extrusion of surfaces. They can also be specified defining a sequence of surfaces
(plane or ruled) that encompass the closed space.

It can easily be manipulated and/or modified using the GUI of the code or editing
the ASCII file (∗.geo file) that contains the description of the geometrical data.
Each of the elementary entities, as well as all the complex elements are identified
by unique names and numbers that are used for their description and also for
attachment of appropriate boundary conditions to them. Additionally, the GUI
allows one to specify the visibility individually to any element or to a combination
of elementary entities and in such a way to visualize selectively different parts of
the geometry.

The final step here is to export the mesh. To this just push the Save button and
a .msh format mesh file will be produced. This will then need to be copied to the
deal.II directory.
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Chapter 2

Hexagonal Reactors : Static
Calculation

Most of the simulation codes of a nuclear power reactor use the multigroup neutron
diffusion equation to describe the neutron distribution inside the reactor core. The
neutron diffusion equation is an approximation of the neutron transport equation
that states that the neutron current is proportional to the gradient of the neutron
flux by means of a diffusion coefficient. This approximation is analogous to the
Fick’s law in species diffusion and to the Fourier law in heat transfer.

As it has been explained in Chapter 1, for a given configuration of a nuclear reactor
core it is always possible to force its criticality dividing the neutron production rate
due to fission by a positive number, λ, obtaining a generalized differential eigen-
value problem, known as the Lambda Modes equation (equation (1.37)), which is
solved to obtain the dominant eigenvalues of the reactor and their corresponding
eigenfunctions.

Therefore this turns the formulation into a differential generalized eigenvalue prob-
lem. The fundamental eigenvalue (the one with the largest magnitude which is
known as the keff of the reactor core) shows the criticality of the reactor core and
its corresponding eigenfunction describes the steady state neutron distribution in
the core. Next sub-critical eigenvalues and their corresponding eigenfunctions are
interesting because they have been successfully used to develop modal methods to
integrate the time dependent neutron diffusion equation [70]. Also the sub-critical
modes have been used to classify BWR instabilities [71], [72].

The Lambda Modes problem has been studied for reactors with rectangular geom-
etry as the PWR and BWR [10, 11, 2, 6]. To discretize the problem for reactors
with a hexagonal geometry, as for example the VVER reactors, a different strat-
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egy is necessary because the design of these reactors define a natural mesh with
hexagonal cells instead of rectangular cells.

Different methods have been proposed to solve the neutron diffusion equation on
hexagonal geometry as, for example, the Fourier transform method [73], the con-
formal mapping method [74], the polynomial expansion nodal method [75], etc.
All these methods compute the keff and the stationary neutron flux in the reactor
core by means of a system of non linear equations, which is solved iteratively. To
obtain a set of dominant modes it is necessary to approximate the initial differ-
ential eigenvalue problem (equation (1.37)), by a generalized algebraic eigenvalue
problem. This can be done, for example, by using a finite element method [76] or
finite difference method [77]. On the other hand, for nuclear reactors the spatial
mesh is naturally defined by the different materials defining the core, and for this
reason, it is interesting to use a method that can use this kind of coarse meshes.

Finite elements methods have been used in rectangular geometry to analyze the
PWR and BWR [78], and in hexagonal geometries [2]. Adaptivity is one of main
advantages in the use of the finite element method. h-adaptable meshes have been
proposed to obtain the static configuration of a nuclear reactor core with the use of
triangular finite elements [79] and rectangular elements [8]. Also unstructured grid
schemes have been developed to solve the problem in non standard geometries [80].

In this chapter, an h-p finite element method is used to obtain the dominant
Lambda Modes associated with a configuration of a reactor core. The first step to
discretize a multidimensional reactor with hexagonal geometry, for dimensions d =
2, 3, is to divide each hexagonal prism or hexagonal element into three rectangular
prisms or rectangular elements. The rectangular prisms or rectangular elements
of the discretization will be denoted by Ωe and will be referred as elements, in-
dependently of the dimension for the problem, d = 2, 3. In order to increase the
accuracy of the solution of the finite element method it is necessary to refine the
mesh used. Two main different refinement techniques exist such as h-refinement
and p-refinement. In h-refinement, the finite elements are spatially subdivided
into smaller ones, keeping the original element boundaries intact. p-refinement
increases the polynomial degree of the basic functions used in the expansions in-
creasing the exactitude of the solution. Most of the literature [81] advise to use
h-refinement in regions where the solution is not rough or possesses singularities.
Otherwise, the p-refinement is advised in regions where the solution is smooth.
Sometimes, it is possible to combine efficiently the h- and p-refinements and call it
the h-p refinement. In this procedure both the size of elements h and their degree
of polynomial p are altered. To select which cells are refined an error estimator is
used. Thus, all the process is automatic leading to Automatic Mesh Refinement.
Also, with the h-refinement is possible to solve the neutron diffusion equation with
cross sections assembly averaged for the majority of fuel assemblies and pin-cell
averaged for a particular fuel assembly of interest.
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2.1 h-p finite element method

2.1 h-p finite element method

The usual finite element analysis would proceed from the selection of a mesh
and basis to the generation of a solution to an accuracy appraisal and analysis.
Experience is the traditional method of determining whether or not the mesh
and basis will be optimal or even adequate for the analysis at hand. Accuracy
appraisals typically require the generation of a second solution on a finer mesh or
with a different method and an comparison of the two solutions. At least with a
posteriori error estimation, accuracy appraisals can accompany solution generation
at a lower cost than the generation of a second solution.

The theory of a posteriori error estimations [6], [5] has matured and allows the
measure, control and minimization of approximation errors. In this theory, the
computed solution itself is used to provide inexpensively point-wise error estima-
tions. In the framework of finite element methods, there are several factors on
which one can play to reduce the error in a cell chosen for refinement: (1) the
cell can be subdivided in smaller cells, h-method, or (2) the polynomial order
representation for the numerical solution of that cell can be increased, p-method.
While both of these options perform better than uniform mesh refinement, neither
is independently optimal.

• While h-refinement is indicated for regions where the solution is not smooth,
such as domain corners or zones with significant material property disconti-
nuities, it does not deliver the best convergence rate for regions where the
solution is smooth.

• On the other hand, p-refinement is ideal for zones with a smooth solution
but it should not be applied in regions where the solution is irregular, as
near boundaries or material interfaces.

However, it is possible to combine the advantages of both methods into what is
commonly termed the h-p-refinement technique where the choice between a mesh
subdivision and an increase in the polynomial order is based on a competitive
minimization of local errors. Adaptive h-p-FEM encompasses both h-FEM and
p-FEM but importantly, it also performs h-p refinements where an element is sub-
divided and many possible combinations of polynomial degrees on the subelements
are probed. The main idea of the multimesh discretization is that each physical
component is discretized on an individual mesh that, moreover, is being adapted
in such a way that the overall error is reduced most efficiently.

The h-p finite element method was proposed more than two decades ago by
Babuska and Guo [5], [46] as an alternative to either (i) mesh refinement (i.e.
decreasing the mesh parameter h in a finite element computation) or (ii) increas-
ing the polynomial degree p used for shape functions. It is based on the observation

35



Chapter 2. Hexagonal Reactors : Static Calculation

that increasing the polynomial degree of the shape functions reduces the approx-
imation error if the solution is sufficiently smooth. On the other hand, it is well
known that even for the generally well-behaved class of elliptic problems, higher
degrees of regularity can not be guaranteed in the vicinity of boundaries, corners,
or where coefficients are discontinuous [82], [83]; consequently, the approximation
can not be improved in these areas by increasing the polynomial degree p but only
by refining the mesh, i.e. by reducing the mesh size h. These differing means
to reduce the error have led to the notion of h-p finite elements, where the ap-
proximating finite element spaces are adapted to have a high polynomial degree
p wherever the solution is sufficiently smooth, while the mesh width h is reduced
at places wherever the solution lacks regularity. It was already realized in the
first papers on this method that h-p finite elements can be a powerful tool that
can guarantee that the error is reduced not only with some negative power of the
number of degrees of freedom, but in fact exponentially.

2.2 Discretization of the problem

The Lambda Modes equation in the approximation of two groups of energy without
up-scattering is considered. This equation can be expressed as [40],

(
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where Dg, g = 1, 2 are the diffusion coefficients, Σag, Σfg and Σ12 are the macro-
scopic cross sections of absorption, fission and scattering, respectively. φ1 and φ2

are the fast and thermal neutron fluxes, respectively. The weak formulation of this
equation is obtained by pre-multiplying by a test function
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, is applied and

expression (2.2) is rewritten as
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Using Gauss Divergence theorem
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is obtained, where Γ is the boundary of the domain defining the reactor core.

Finally, the reactor domain Ω is divided into cell subdomains Ωe (e = 1, ..., Nt)
where it is assumed that the nuclear cross sections remain constant. Γe is also
defined as the corresponding subdomain surface which is part of the reactor frontier
Γ. Equation (2.4) is rewritten as
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It has to be noted that there are several surface integrals over the boundary of the
subdomains (Γe) that rely on the boundary conditions and that will be studied
below (Section 2.2.1). The solution φg is approximated through the usual trial
solution as sum of shape functions uj multiplied by their corresponding nodal
values φ̃gj .

φg ≈
p∑
j=0

uj φ̃gj . (2.6)
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In the same way, a Galerkin method [17] is used assuming that the test function
are a finite set of shape functions [46]. Introducing these expressions in (2.5) and
eliminating redundant coefficients to obtain continuous solutions (see, for example,
[2] for more details) in terms of global coefficients, the procedure leads to an
algebraic eigenvalue problem of the form(
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where φ̃1 and φ̃2 are the vectors of coefficients associated with the fast and thermal
neutron fluxes, correspondingly.

The reactor domain, Ω, is divided into non-overlapping subdomains, Ωe (e =
1, ..., Nt), or cells. In the same way, Γe is the corresponding element surface which
is part of the reactor exterior boundary. The matrices elements of the different
blocks appering in the Equation (4.45) are given by

(L11)ij =

Nt∑
e=1

(
D1

∫
Ωe

~∇ui~∇uj dV −D1

∫
Γe

ui~∇uj d~S (2.8a)

+ (Σa1 + Σ12)

∫
Ωe

uiuj dV

)
,

(L21)ij =

Nt∑
e=1

Σ12

∫
Ωe

uiuj dV , (2.8b)

(L22)ij =

Nt∑
e=1

(
D2

∫
Ωe

~∇ui~∇uj dV (2.8c)

−D2

∫
Γe

ui~∇uj d~S + Σa2

∫
Ωe

uiuj dV

)
,

(M11)ij =

Nt∑
e=1

νΣf1

∫
Ωe

uiuj dV , (2.8d)

(M12)ij =

Nt∑
e=1

νΣf2

∫
Ωe

uiuj dV. , (2.8e)

These integrals have a local character, that is, only they are non zero for contiguous
nodes, therefore highly sparse global matrices are obtained.
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2.2 Discretization of the problem

2.2.1 Boundary conditions

Implemented boundary conditions are zero-flux at the frontier, zero-current bound-
ary condition and Albedo boundary conditions. These last conditions are mixed
boundary conditions of the form

~n~∇φg(~x) +
1

Dg

1− β
2(1 + β )

φg(~x) = 0 , ~x ∈ Γ , (2.9)

where ~n is the normal vector to the corresponding surface pointing outwards. If
there are zero-flux boundary conditions, the shape functions of the corresponding
nodes are fixed to zero. Thus, the number of degrees of freedom (DoF) of the
problem is reduced because the nodes have their flux restricted. On the other
hand, if the boundary conditions are zero-current conditions, the integral surface
terms are equal to zero and the finite element formulation takes care of these
conditions without restrictions in the nodes. Albedo boundary conditions are
treated pre-multiplying the condition by the test function and integrating over the
surface of the domain,∫

Γ

ϕg

(
Dg

~∇φg +
1

2

(1− β
1 + β

)
φg

)
d~S .

(2.10)

That is ,

−Dg

∫
Γ

ϕg ~∇φgd~S =
1

2

(1− β
1 + β

)∫
Γ

ϕgφgd~S . (2.11)

Hence, the surface terms that appear in Equation (2.8) are substituted by,

Nt∑
e=1

−Dg

∫
Γe

Ngi~∇Ngjd~S =

Nt∑
e=1

1

2

1− β
1 + β

∫
Γe

NgiNgd~S . (2.12)

2.2.2 Reference element

As it has been already mentioned, the whole reactor domain is discretized into
cells. In order to define these subdomains always over the same reference cell an
affine mapping is used to map each physical element to the reference element. An
example for a bidimensional cell is shown in Figure 2.1.

This change of variables relates physical coordinates (x, y), with the coordinates
of the reference domain (ξ, η) and it is given by
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ξ

+1

–1

–1 +1

1 2

34

η

x

y

(x1, y1) (x2, y2)

(x3, y3)

(x4, y4) A ne

 Transformation

Figure 2.1: Affine transformation used.

x(ξ, η) =
1

4
(1− ξ)(1− η)x1 + (1− ξ)(1 + η)x2

+ (1 + ξ)(1− η)x3 + (1− ξ)(1 + η)x4

(2.13)

y(ξ, η) =
1

4
(1− ξ)(1− η)y1 + (1− ξ)(1 + η)y2

+ (1 + ξ)(1− η)y3 + (1− ξ)(1 + η)y4

(2.14)

This affine mapping helps to compute the integrals defining the matrix elements
taking into account the Jacobian of the transformation |Je|,

dV = dxdy =

∣∣∣∣∣∂x∂ξ ∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣dξdη = |Je|dξdη . (2.15)

2.2.3 Lagrange finite elements

For simplicity, Lagrange finite elements [17] are used. These elements have their
nodes distributed forming a regular mesh over the cell. Their shape functions are
defined with Lagrange polynomials for every dimension. These polynomials have
a value of unity at the corresponding nodal point and zero at the other nodes and
they satisfy all inter-element continuity conditions.

Lagrange polynomials are defined as,

lpI (ξ) =
(ξ − ξ1) . . . (ξ − ξI−1)(ξ − ξI+1) . . . (ξ − ξp+1)

(ξI − ξ1) . . . (ξI − ξI−1)(ξI − ξI+1) . . . (ξI − xp+1)
=

p+1∏
k=1
k 6=I

ξ − ξk
ξI − ξk

, (2.16)

where p is the polynomial degree of the expansion which characterizes the poly-
nomial degree of the finite element method, and ξi is the position of every node in
the element. Multidimensional versions of these elements are obtained by tensor
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2.2 Discretization of the problem

product of their elements. Thus, in two coordinates, if the node is labelled by its
row and column I, J .

NI,J(ξ, η) = lpI (ξ)lpJ(η) . (2.17)

Figure 2.2 shows the shape functions of some one-dimensional Lagrange elements
and an example of these shape functions in a bidimensional element is displayed
in Figure 2.3.
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Figure 2.2: Example of unidimensional shape functions used, linear and quadratic.

(1 ),m ( )N,m

(n,1)(1,1)

( )I,J

1

1

Figure 2.3: A typical shape function for a 2D Lagrangian element, (I=2, J=5, p=4).

The number of nodes in each cell, which is function of the finite element degree p,
is the number of degrees of freedom in each cell. The total number of degrees of
freedom of the problem is calculated multiplying the number of nodes per cell by
the number of cells and removing the repeated nodes in the interface between cells.
Finally, it should be noted that for the integration of the weak formulation in each
cell a Gauss quadrature is used. The degree of the quadrature is selected ensuring
an exact integration inside the approximation of polynomial shape functions.
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2.2.4 Eigenvalue solver and postprocess

With the finite element method exposed above the Lambda Modes problem is
approximated by a generalized algebraic eigenvalue problem. Normally the same
quadrature points are used to compute the integrals and to define the lagrange
finite elements with the following block structure

(
L11 0
−L21 L22

)(
φ̃1

φ̃2

)
=

1

λ

(
M11 M12

0 0

)(
φ̃1

φ̃2

)
. (2.18)

To solve this problem a Krylov-Schur method [85] is used from the library SLEPc
[54]. First, the generalized problem is reduced to an ordinary eigenvalue problem,

L−1
11

(
M11 +M12L

−1
22 L21

)
φ̃1 = λφ̃1 , (2.19)

which is solved for n dominant eigenvalues and their corresponding eigenvectors.
In this way, for each matrix-vector product it is necessary to solve two linear sys-
tems associated with the L11 and L22, to avoid the calculation of their inverse
matrices. These systems are solved by means of an iterative scheme as the pre-
conditioned GMRES method [86]. Particularly, a Cuthill-McKee reordering [87]
performed to reduce the bandwidth of the matrices, together with an incomplete
LU factorization of the matrices is used for the preconditioning.

Once the fluxes are solved, other practical magnitudes are computed as the neu-
tronic power that is defined as a weighted sum of the neutron fluxes,

P = Σf1|φ1|+ Σf2|φ2| . (2.20)

The eigenvectors should be normalized through some criteria. The most usual one
is to fix the mean power productions to 1.

P̄ =
1

Vt

∫
Ω

(Σf1|φ1|+ Σf2|φ2|) dV = 1, (2.21)

where Vt is the total volume of the reactor.

It is needed to introduce the absolute value of the fluxes because this definition is
extended to the subcritical eigenfunctions.
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2.3 Numerical results

2.2.5 Refinement and error estimator

Once the problem is solved, it is convenient to estimate if the obtained solution
has enough accuracy and, if not, refine the mesh accordingly. In this way, two
types of refinements are considered, a global refinement, where all the cells are
refined, and an adaptive refinement, where half of the cells are refined. To choose
which cells are refined a modified version of the error estimator proposed by Kelly
et al.[88] generalized for a non-constant diffusion coefficients [8] is used,

η2
e =

h

24
Σf1

∫
Γe

(
D1

~∇φ1

)
d~S + Σf2

∫
Γe

(
D2

~∇φ2

)
d~S , (2.22)

where Γe is all interior boundaries of the element e and h is the adimensional cell
size. In other words, we are using the jump in net current multiplied by the fission
cross sections as an error estimator. Even though, this is an error estimator for
the Poisson equation (for example ∇2ϕ = f), this indicator is widely used as a
heuristic refinement indicator and it is considered a good choice in the absence of
actual estimators for a particular equation [89].

2.3 Numerical results

To study the performance of the h-p finite element method exposed above to deter-
mine the Lambda Modes of a nuclear reactor, different benchmark problems have
been considered. Firstly, we consider a homogeneous one energy group eigen-
value problem in one-dimension, which has analytical solution. For this problem,
we compare the results obtained using the h-p finite element method, with the
results obtained by the spectral element method (SEM) taked from the reference
[26]. Then, six two-dimensional problems have been studied, the 2D homogeneous
problem, the IAEA with and without reflector, the VVER-1000, the VVER-440
and the HWR.

Also, the three-dimensional VVER-440 problem has been studied. We study all
these problems because different behaviour of the numerical methods can be shown
at different benchmark problems, and then an exhaustive test has been done. The
references for the keff results and for the power distribution is computed using the
finite differences code DIF3D [74], where for the HWR problem a mesh of 384
triangles per hexagon was used, and for the rest of the problems a mesh of 864
triangles per hexagon was used.
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Table 2.1: Different errors used for the spatial discretization.

Relative error εe = |Pwe − Pw∗e |/|Pwi|
Mean relative error ε̄ = 1

Vt

∑
e
εeVe

Maximum relative error εmax = max
e
|εe|

Eigenvalue error ( pcm) ∆keff = 105 |keff − k∗eff|

To compare the performance of the finite element method using different types of
meshes, refinement sizes and strategies for the spatial discretization, and to set the
adequate spatial discretization parameters, different errors have been employed,
which are shown in Table 2.1. In this Table, Pwe and Pw∗e are, respectively, the
reference power and the computed power in the e-th cell [90] (cell averages), Ve is
the volume of the e-th cell and Vt is the total volume of the reactor. keff is the
reference dominant eigenvalue of the reactor and k∗eff is the computed eigenvalue.
Similar errors are defined for the neutron fluxes.

For all the problems we will show tables with the different values of the keff ob-
tained. Also the difference between the obtained result and the reference value are
presented. This difference is denoted as ∆keff in pcm (percent-milli, i.e.,105 ).
We also present results of the subcritical eigenvalues and the symmetry patterns
of the power distribution associated with the modes of the reactor problems. The
code has been written in C++ and executed in a computer with an Intel R©i3-3220
@ 3.30GHz processor with 4 Gb of RAM running Ubuntu GNU/Linux 12.10. The
number of eigenvalues requested has been set to 4 with a relative tolerance of 10−7

in all the examples.
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2.3 Numerical results

2.3.1 1D Homogeneous eigenvalue problem

We consider a homogeneous slab of length 2cm [43], in the approximation of one
group of energy and vacuum boundary conditions (see Figure 2.4). The nuclear
cross sections for this problem are: Σt = 1, Σs = 0.9, and νΣf = 0.25.

 2 cm

0 xL

VacuumVacuum

Figure 2.4: Homogeneous slab with vacuum boundary conditions.

First, we present the analytical solution for this problem [91], defining the param-
eter

τ =
1

D

( 1

λ
νΣf − Σa

)
(2.23)

we have the following differential eigenvalue problem,

d2Φ1

dx2
(x) + τ Φ(x) = 0, x ∈ [0, xL],

Φ(0)− 2D
dΦ

dx
(0) = 0,

Φ(xL) + 2D
dΦ

dx
(xL) = 0 . (2.24)

There exist non trivial solutions for the eigenvalue problem if, and only if, τ > 0.
Thus, the eigenvectors of problem (Equation (2.24)) are

Φ(x) = c
(

sin
(
t
x

xL

)
+

2t

3ΣtxL
cos

(
t
x

xL

))
. (2.25)

where t = xL
√
τ > 0 is a positive solution of the nonlinear equation

f(t) =
(
1− 4

9(ΣtxL)2
t2
)

sin(t) +
4

3ΣtxL
t cos(t) = 0 (2.26)

and the constant c is fixed once a normalization for the eigenvectors is chosen.
Once we obtain, t, the zeros of f(t), the eigenvalues of Equation (2.24) are

λ =
xLνΣf

xLΣa + t2

3ΣtxL

. (2.27)
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Table 2.2: Eigenvalue results for the homogeneous reactor using uniform meshes.

FE Degree h-p-FEM SEM
p λ1 λ2 λ1 λ2

1 0.586917 0.148273 0.587489 0.148478
2 0.587489 0.149134 0.587489 0.149134
3 0.587489 0.149135 0.587489 0.149134
4 0.587489 0.149135 0.587489 0.149135

The first 2 dominant eigenvalues obtained from the analytical solution (equa-
tion (2.27)) are λ1 = 0.587489 and λ2 = 0.149135. In Table 2.2, we show the results
obtained for these first 2 dominant eigenvalues using the h-p finite element method
compared to the results obtained by the spectral element method(SEM)[26].

Table 2.3 shows the results obtained for the first four subcritical eigenvalues com-
puted with the FEM using different values of the polynomial degree (p) of the
finite element approximation compared with the obtained by analytical solution.
We observe that for this problem the method presents a good convergence rate for
the eigenvalues.

Table 2.3: First 3 subcritical eigenvalues for the 1D homogeneous reactor using uniform
meshes.

FE Degree λ1 λ2 λ3 λ4

1 0.586917 0.148273 0.0574547 0.0286639
2 0.587489 0.149134 0.0583772 0.0295962
3 0.587489 0.149135 0.0583796 0.0296016
4 0.587489 0.149135 0.0583796 0.0296016

Analytical Solution 0.587489 0.149135 0.058380 0.029602
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2.3 Numerical results

2.3.2 Homogeneous Reactor

The simplest theoretical bidimensional reactor is one consisting of a 2D rectangular
homogeneous material. Even though this problem is completely theoretical, it is
relevant because it can be solved analytically for all its eigenvalues. The Lambda
Modes problem for a rectangle is defined as

−~∇D1
~∇φ1(x, y) + (Σa1 + Σ12)φ1(x, y) =

1

λ
(νΣf1φ1(x, y) + νΣf2φ2(x, y)) ,

−Σ12φ1(x, y)− ~∇D2
~∇φ2(x, y) + Σa2φ2(x, y) = 0 , (x, y) ∈ [0, L1]× [0, L2] = Ω ,

(2.28)

with homogeneous boundary conditions

φg(0, y) = φg(L1, y) = 0 , φg(x, 0) = φg(x, L2) = 0 , g = 1, 2 . (2.29)

Using the variables separation method,

φg(x, y) = Xg(x)Yg(y), (2.30)

where Xg and Yg are solutions of

d2Xg

dx2
(x) = µxXg(x),

d2Yg
dy2

(y) = µyYg(y), (2.31)

satisfying,
Xg(0) = Xg(L1) = Yg(0) = Yg(L2) = 0 . (2.32)

Thus, these functions have the general form,

Xg = Ag,x cos (µxx) +Bg,x sin (µxx) ,

Yg = Ag,y cos(µyy) +Bg,y sin(µyy) . (2.33)

Using the boundary conditions (2.29)

X(x) = Bg,x sin

(
nπ

L1

)
, µx =

nπ

L1
, (2.34)

Y (y) = Bg,y sin

(
mπ

L2

)
, µx =

mπ

L2
, (2.35)

and
µ2 = µ2

x + µ2
y , (2.36)
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with n,m ∈ N. Different values of n, m correspond to the different eigenvalues
and eigenfunctions of the reactor. The equations are joined as Equation (2.30),

φg(x, y) = kg sin (µx) sin(µy) . (2.37)

The Equation (2.28) implies

φ1(x, y) =
D2µ

2 + Σa2

Σ12
φ2(x, y) . (2.38)

Solving for the eigenvalue from the Equation (2.28), it is obtained

λ =
νΣf1

(
D2µ

2 + Σa2

)
+ νΣf2Σ12

(D2µ2 + Σa2) (Σa1 + Σ12 +D1µ2)
, (2.39)

with the eigenfunctions

φ1(x, y) = k

(
D2µ

2 + Σa2

Σ12

)
sin (µxx) sin(µyy) , (2.40)

φ2(x, y) = k sin (µxx) sin(µyy) . (2.41)

As the fluxes are defined up to a multiplicative constant k, these should be nor-
malized with the criterion exposed in Equation (2.21),

1 =
1

Vt

∫
Ω

(Σf1|φ1|+ Σf2|φ2|) dV

=
1

L1L2

(
Σf1

D2µ
2 + Σa2

Σ12
+ Σf2

)∫ L1

0

dx

∫ L2

0

dy |φ2| . (2.42)

Hence, the normalized magnitudes obtained are

φ1(x, y) =

(
D2µ

2 + νΣa2

νΣf1D2µ2 + νΣf1Σa2 + νΣf2Σ12

)(
π2

4

)
sin

(
nπ

L1
x

)
sin

(
mπ

L2
y

)
,

(2.43)

φ2(x, y) =

(
Σ12

νΣf1D2µ2 + νΣf1Σa2 + νΣf2Σ12

)(
π2

4

)
sin

(
nπ

L1
x

)
sin

(
mπ

L2
y

)
,

(2.44)

P = (Σf1φ1 + Σf2φ2) =
π2

4
sin

(
nπ

L1
x

)
sin

(
mπ

L2
y

)
. (2.45)
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This proves that the normalized neutron distribution in a homogeneous reactor
does not depend on the nuclear properties of the material.

The material cross sections for the (L1 × L2) rectangular reactor are shown in
Table 2.4. Table 2.5 shows the eigenvalue results using different number of cells
and different finite element degrees.

Table 2.4: Geometry and cross section values for the homogeneous bidimensional reac-
tor.

L1 L2 D1 D2 Σa1 Σa2 Σ12 Σf1 Σf2 νΣf1 νΣf2

cm cm ( cm) ( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

40 40 1.32 0.2772 0.0026562 0.071596 0.023106 0.0074527 0.13236 0.0074527 0.13236

The power distribution for the dominant eigenvalue and zero-flux boundary con-
ditions using a very coarse mesh (16 cells, p = 1) is shown in Figure 2.5a and the
relative power error distribution, εi, is shown in Figure 2.5b. It should be noted
that the maximum difference with the analytical solution is up to 11% but the
averaged relative error (ε̄) is only about 3.04% .

1

2

Power

0

2.75

(a) Power distribution.

-8

-4

0

4

8

Difference

-10.1%

11.3%

(b) Error distribution.

Figure 2.5: Fundamental mode power distribution and its error distribution for homo-
geneous reactor with zero-flux boundary conditions.
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(a) 1st Mode.
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Figure 2.6: Power distribution along the line y = 20 cm for the homogeneous bidimen-
sional reactor.

Table 2.5: Eigenvalue results for the homogeneous bidimensional reactor using uniform
meshes.

Number of FE Degree Number 1st Mode 2nd Mode
cells p of DoF λ1 εeig ( pcm) λ2 εeig ( pcm)

16 1 25 1.12178 2186 0.60700 11536
256 1 289 1.14528 137 0.68092 764
4096 1 4225 1.14675 8.7 0.68587 42
16 2 81 1.14660 22 0.68322 429
256 2 1089 1.14685 0.3 0.68615 1.7
16 3 169 1.14685 0.2 0.68610 7.7

Analytical 1.14685 0.68616

2.3.3 Two-dimensional IAEA problem without reflector

This problem is a modification of the PWR benchmark problem IAEA for rectan-
gular elements. The core has 13 fuel elements across its diameter, as it is shown in
Figure 2.7. There are 13 rodded assemblies, and it has a 1/12 reflective symmetry
but, as the subcritical modes do not maintain this symmetry, all the computations
are performed for the problem considering the whole reactor. The fuel assembly
pitch is 20.0 cm.

The reflector is not included in the core, and we will consider vacuum boundary
conditions, i.e., albedo boundary conditions with β = 0. The nuclear cross sections
for this problem are shown in Table 2.6. The different results obtained for the
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Figure 2.7: Geometry of the IAEA problem without reflector.

dominant eigenvalue keff of this reactor core together with the dimension of the
blocks L11 and L22 , (DoF), and the nonzero elements of these matrices, (NNZ)
are presented in Table 2.7.

Table 2.6: Nuclear cross sections definition for the IAEA problem without reflector.

Material Group Dg Σag Σ12 νΣfg Σfg

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

1 1 1.5 0.01 0.02 0.0 0.0
2 0.4 0.08 0.0135 0.056

2 1 1.5 0.01 0.02 0.0 0.0
2 0.4 0.085 0.135 0.056

3 1 1.5 0.01 0.02 0.0 0.0
2 0.4 0.13 0.135 0.056

Figure 2.8 shows the neutronic power distribution for each hexagon computed with
the finite element method (FEM) using a polynomial degree p = 6 in the finite
element expansion, together with the reference result [74] and the percentage of
the relative error on each hexagon.

In Table 2.8, the results obtained for the first three subcritical eigenvalues com-
puted with the FEM using different values of the polynomial degree p of the finite
element approximation, are presented. The reference solution was extrapolated
from DIF3D-FD runs with 864 hexagon subdivisions. Also the results obtained
for the keff using PARCS [92] code has been included.
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Table 2.7: Eigenvalue results and power distribution errors for the IAEA reactor without
reflector.

Degree of FE (keff) ∆keff ( pcm) εmax(%) ε̄ (%) DoF NNZ

1 0.972045 617 10 3.8 421 14188
2 0.977574 52 0.85 0.39 1603 98788
3 0.977990 9 0.40 0.09 3547 345244
4 0.978067 1 0.40 0.03 6253 881572
5 0.978074 0.3 0.39 0.029 9721 1872364
6 0.978076 0.1 0.39 0.029 13951 3518788

PARCS 0.978097 2 0.59 0.31
Reference 0.9780770

Table 2.8: First 3 subcritical eigenvalues for the IAEA reactor without reflector.

Degree of FE λ2 λ3 λ4

1 0.957759 0.957699 0.933083
2 0.962754 0.962753 0.938086
3 0.963111 0.963111 0.963111
4 0.963171 0.963171 0.938430
5 0.963178 0.963178 0.938437
6 0.963180 0.963180 0.938438
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Figure 2.8: Power distribution for the IAEA problem without reflector with finite
element degree p = 6.
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2.3.4 Two-dimensional IAEA problem with reflector

This problem is the same as the previous one, except that in this problem an
additional layer of water reflector surrounding the core is included, as shown in
Figure.2.9. Also, vacuum boundary conditions are considered. The nuclear cross
sections are presented in Table 2.9 and the different results obtained for the critical
eigenvalue keff of this reactor core are shown in Table 2.10.

4 4 4 4 4 4 4 4
4 1 1 1 1 1 1 1 4

4 1 2 2 2 2 2 2 1 4
4 1 2 2 2 3 2 2 2 1 4

4 1 2 2 2 2 2 2 2 2 1 4
4 1 2 3 2 3 2 3 2 3 2 1 4

4 1 2 2 2 2 2 2 2 2 2 2 1 4
4 1 2 2 2 3 2 3 2 3 2 2 2 1 4
4 1 2 2 2 2 2 2 2 2 2 2 1 4
4 1 2 3 2 3 2 3 2 3 2 1 4
4 1 2 2 2 2 2 2 2 2 1 4
4 1 2 2 2 3 2 2 2 1 4
4 1 2 2 2 2 2 2 1 4
4 1 1 1 1 1 1 1 4
4 4 4 4 4 4 4 4

Figure 2.9: Geometry of the IAEA with reflector problem.

Table 2.9: Nuclear cross sections definition for the IAEA problem with reflector.

Material Group Dg Σag Σ12 νΣfg Σfg

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

1 1 1.5 0.01 0.02 0.0 0.0
2 0.4 0.08 0.0135 0.056

2 1 1.5 0.01 0.02 0.0 0.0
2 0.4 0.085 0.135 0.056

3 1 1.5 0.01 0.02 0.0 0.0
2 0.4 0.13 0.135 0.056

4 1 1.5 0.0 0.04 0.0 0.0
2 0.4 0.01 0.0 0.0
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In Table 2.11, the results obtained for the first three subcritical eigenvalues com-
puted with the FEM method using different values of the polynomial degree (p)
of the finite element approximation, are presented.

Figure.2.10 shows the neutronic power distribution for each hexagon computed
with the FE method using a polynomial degree p = 6 in the finite element polyno-
mial expansion, together with the reference result [74] and the percentage of the
relative error on each hexagon.

Table 2.10: Eigenvalue results and power distribution errors for the IAEA reactor with
reflector.

Degree of FE (keff) ∆keff ( pcm) εmax(%) ε̄ (%) DoF NNZ

1 1.01231 676 21.7 12.1 553 18796
2 1.00646 94.8 3.30 1.6 2119 131236
3 1.00557 6.3 0.36 0.18 4699 459004
4 1.00551 0.3 0.04 0.02 8293 1172452
5 1.00551 0.3 0.02 0.007 12901 2490604
6 1.00551 0.3 0.01 0.006 18523 4681156

PARCS 1.005657 15 0.34 0.019
Reference 1.0055070

Table 2.11: First 3 subcritical eigenvalues for the IAEA reactor with reflector.

Degree of FE λ2 λ3 λ4

1 1.004590 1.004290 0.986518
2 0.997652 0.997639 0.978167
3 0.996574 0.996573 0.976901
4 0.996497 0.996497 0.976799
5 0.996490 0.996490 0.976791
6 0.996490 0.996490 0.976791
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Figure 2.10: Power distribution for the IAEA problem with reflector with finite element
degree p= 6.

2.3.5 Two-dimensional VVER-1000 reactor

The reactor core is VVER-1000 type, with 15 fuel elements along its diameter,
with 25 control rods inserted. The geometry of this problem is shown in Figure
2.11. The core is composed of 163 assemblies of pitch equal to 23.60 cm. The
reflector is not explicitly modeled, and vacuum boundary conditions are assumed.
The nuclear cross sections of this problem are defined in Table 2.12.

23.60 cm

Figure 2.11: Geometry of the VVER-1000 reactor.

The results obtained for the fundamental eigenvalue keff using different polynomial
degrees for the finite element method are shown in Table 2.13. In this Table also
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the degree of freedom (DoF) for the reduced ordinary eigenvalue problem and the
non-zero elements (NNZ) of the block matrices are shown.

In Table 2.14 the results obtained for the first three subcritical eigenvalues are
presented using different polynomial degree.

Figure 2.12 shows the neutronic power distribution for each hexagon computed
with a polynomial degree equal to 6 in the finite element expansion, together with
the reference result [74] and the percentage of the relative error on each hexagon.
Some cuts of the thermal flux distrbution for the first two modes of the 2D VVER-
1000 reactor are shown in Figure 2.13.

Table 2.12: Nuclear cross sections definition for the VVER-1000 reactor.

Material Group Dg Σag Σ12 νΣfg Σfg

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

1 1 1.383200 8.38590E-3 1.64977E-2 4.81619E-3 1.86139E-3
2 0.386277 6.73049E-2 8.46154E-2 3.48111E-2

2 1 1.382990 1.15490E-2 1.47315E-2 4.66953E-3 1.81560E-3
2 0.389403 8.10328E-2 8.52264E-2 3.50622E-2

3 1 1.395220 8.94410E-3 1.56219E-2 6.04889E-3 2.36371E-3
2 0.386225 8.44801E-2 1.19428E-2 4.91322E-2

4 1 1.394460 1.19932E-2 1.40185E-2 5.91507E-3 2.31026E-3
2 0.387723 9.89670E-2 1.20497E-2 4.95721E-2

5 1 1.395060 9.11600E-3 1.54981E-2 6.40256E-3 2.50773E-3
2 0.384492 8.93878E-2 1.29281E-2 5.31856E-2

Table 2.13: Eigenvalue results and power distribution errors for the VVER-1000 reactor.

Degree of FE (keff) ∆keff ( pcm) εmax(%) ε̄ (%) DoF NNZ

1 1.00443 204 17.7 4.53 535 18148
2 1.00643 5.5 1.47 0.35 2047 126628
3 1.00645 3.48 0.37 0.08 4537 442804
4 1.00645 3.48 0.11 0.036 8005 1130980

PARCS 1.006341 14.3 0.66 0.25
Reference 1.006485
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Table 2.14: First 3 subcritical eigenvalues for the VVER-1000 reactor.

Degree of FE λ2 λ3 λ4

1 0.992242 0.992242 0.969948
2 0.994776 0.994776 0.973690
3 0.994810 0.994810 0.973763
4 0.994807 0.994807 0.973765
5 0.994809 0.994809 0.973769
6 0.994809 0.994809 0.973770

0.02

Figure 2.12: Power distribution for the VVER-1000 reactor with finite element degree
p = 6.
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(a) Fundamental Mode (b) 1st Subcritcal Mode

Figure 2.13: Thermal Flux for the first modes.

2.3.6 Two-dimensional VVER-440 reactor

For this problem, the core is a VVER-440 core type, with 25 fuel elements across
the diameter, as is shown in Figure 2.14. The core has 7 control rods inserted
and a layer of reflector at the boundary of the core. The assembly pitch is 14.7
cm. Vacuum boundary conditions are considered at the external boundary of the
reflector. Nuclear cross sections for this geometry are shown in Table 2.15 and
the different results obtained for the critical eigenvalue keff of this reactor core are
presented in Table 2.16.

Figure 2.15 shows the neutronic power distribution for each hexagon computed
using a degree of polynomial p = 6 in the finite element expansion, together with
the reference result [74] and the percentage of the relative error on each hexagon.

In Tables 2.16 and 2.17 the results obtained for the dominant and the first three
subcritical eigenvalues, computed using different values of the polynomial degree
(p) of the finite element approximation, are presented where we have just consid-
ered the decimal precision obtained from the reference result [74]. These Tables
show that for p = 5 we already have a very accurate solution.

.
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14.70 cm

Figure 2.14: Geometry of the VVER-440 reactor.

Table 2.15: Nuclear cross sections definition for the the VVER-440 problem.

Fuel Group Dg Σag Σ12 νΣfg Σfg

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

1 1 1.34660 8.3620E-3 1.6893E-2 4.4488E-3 2.21676E-3
2 0.37169 6.4277E-2 7.3753E-2 3.94368E-2

2 1 1.33770 8.7970E-3 1.5912E-2 5.5337E-3 2.792120E-3
2 0.36918 7.9361E-2 1.0581E-1 5.657200E-2

3 1 1.33220 9.46200E-3 1.4888E-2 7.0391E-3 3.590680E-3
2 0.36502 1.00100E-1 1.4964E-1 8.000000E-2

4 1 1.19530 1.33720E-2 2.2264E-2 0.0 0.0
2 0.19313 1.34980E-1 0.0 0.0

5 1 1.44850 9.2200E-4 3.2262E-2 0.0 0.0
2 0.25176 3.2839E-2 0.0 0.0
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Table 2.16: Critical eigenvalue results and power distribution errors for the VVER-440
problem.

Degree of FE (keff) ∆keff ( pcm) εmax(%) ε̄ (%) DoF NNZ

1 1.01222 249 11.48 6 1339 46372
2 1.01021 50.5 1.68 0.9 5203 325732
3 1.00975 4.95 0.217 0.08 11593 1141204
4 1.00971 0.99 0.22 0.08 20509 2917156
5 1.00971 0.99 0.22 0.08 45919 6199204

PARCS 1.009703 -0.28 0.31 0.14
Reference 1.00970

Table 2.17: First 3 subcritical eigenvalues for the VVER-440 reactor.

Degree of FE λ2 λ3 λ4

1 1.00585 1.00576 0.992453
2 1.00327 1.00327 0.989582
3 1.00271 1.00271 0.988961
4 1.00266 1.00266 0.988899
5 1.00265 1.00265 0.988896

6

Figure 2.15: Power distribution for the VVER-440 Reactor with finite element degree
p = 6.
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2.3.7 Two-dimensional HWR reactor

This core is a very large HWR core of 35 assemblies across the core diameter,
as it is shown in Figure 2.16.The fuel assemblies are surrounded by a tritium-
generating target zone outside of which is the reflector zone. There are many
rodded assemblies an some vacancy assemblies. The assembly pitch is 17.78 cm.
The boundary conditions considered for this core are zero flux at the outside
boundary of the reflector. Table 2.18 shows the nuclear cross sections data for the
HWR core.

Table 2.19 shows the different results obtained for the the critical eigenvalue keff
of this reactor core, we can note that the results obtained for polynomial degree
p = 3 or polynomial degree p = 4 are already quite accurate.

Figure 2.17 shows the neutronic power distribution for each hexagon computed
using a polynomial degree p = 5 in the finite element expansion, together with the
reference result [74] and the percentage of relative error on each hexagon.

In Table 2.20 the results obtained for the first three subcritical eigenvalues, com-
puted using different values of the polynomial degree (p) of the finite element
approximation, are presented.

17.78 cm

Figure 2.16: Geometry of the HWR reactor.
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Table 2.18: Nuclear cross sections definition for the the HWR problem.

Material Group Dg Σag Σ12 νΣfg Σfg

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

1 1 1.38250058 2.9412350E-3 8.16457E-3 2.26216E-3 9.30113E-4
2 0.89752185 2.2306487E-2 2.30623E-2 9.51810E-3

2 1 1.38255219 2.9508050E-3 8.22378E-3 2.22750E-3 9.15899E-4
2 0.89749043 2.2387609E-2 2.26849E-2 9.36233E-3

3 1 1.37441741 2.5322079E-3 8.08816E-3 2.14281E-3 8.80841E-4
2 0.88836771 1.6946527E-2 2.04887E-2 8.45594E-3

4 1 1.31197955 3.7645300E-4 1.23115E-2 0.0 0.0
2 0.87991376 5.2900925E-4 0.0 0.0

6 1 1.38138909 2.7974400E-3 7.76568E-3 2.39469E-3 9.84814E-4
2 0.90367052 2.1902980E-2 2.66211E-2 1.09869E-2

7 1 1.30599110 6.3382099E-4 1.10975E-2 0.0 0.0
2 0.83725587 4.3330365E-3 0.0 0.0

8 1 1.29192957 3.5711600E-4 1.15582E-2 0.0 0.0
2 0.81934103 3.0056488E-4 0.0 0.0

9 1 1.06509884 2.1482210E-3 2.61980E-2 0.0 0.0
2 0.32282849 3.3348874E-2 0.0 0.0

Table 2.19: Eigenvalue results and power distribution errors for the HWR problem.

Degree of FE (keff) ∆keff ( pcm) εmax(%) ε̄ (%) DoF NNZ

1 0.992094 13 5.16 0.89 2863 100516
2 0.991976 1.1 0.6 0.32 11239 709156
3 0.99196 0.5 0.52 0.31 25129 2487604
4 0.99196 0.5 0.52 0.30 44533 6362212
5 0.99194 2.5 0.52 0.31 69451 13524004

PARCS 0.991989 2.4
Reference 0.991965

Table 2.20: First 3 subcritical eigenvalues for the HWR reactor.

Degree of FE λ2 λ3 λ4

1 0.983730 0.983698 0.964245
2 0.983610 0.983610 0.964258
3 0.983591 0.983591 0.964236
4 0.983591 0.983591 0.964235
5 0.983591 0.983591 0.964236
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Material
FEM degree 4

Ref.
Error Rel (%)

Figure 2.17: Power distribution for the HWR Reactor with finite element degree p = 5.
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2.3.8 Three-dimensional VVER-440 reactor

The 3D VVER-440 problem with reflector is a 3D reactor of 250 cm height, with
two reflector layers of 25.0 cm each added, one to the top and the other one to the
bottom of the core. This problem is based on the same core for problem presented
in subsection (2.3.6). The original two-dimensional core is extended to a three-
dimensional core. The core is a VVER-440 type with 25 fuel elements along the
diameter, with 7 control rods half-way inserted from the top, and another reflector
layer added to the radial boundary of the core, as it is shown in Figure 2.18.
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Figure 2.18: Geometry of the 3D VVER-440 problem with reflector.

This core has a radial symmetry by reflection of 1/12 and the pitch is 14.7 cm.
Nevertheless, the calculations have been performed taking into account the whole
core since the subcritical modes do not maintain the radial symmetry. Vacuum
boundary conditions have been considered. Table 2.21 assigns the material types
to assembly types and lists the cross sections in two energy groups. Materials 1,
2, 3 are fuel, material 4 is control rod. The control rod followers are of material
2. Materials 5, 6 are reflectors.

Table 2.22 shows the different results obtained for the fundamental eigenvalue
keff of this reactor core. The reference results are reported in [93]. Table 2.24
summarizes the local results for the normalized power distribution for the best
approximation, i.e., the one obtained with polynomial degree p = 4.

Figure 2.19 shows numbers identifying the position of the cells of the 3D VVER-
440 reactor for the local power distribution.
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Table 2.21: Nuclear cross sections definition for the the VVER-440 problem.

Material Group Dg Σag Σ12 νΣfg Σfg

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

1 1 1.34660 8.3620E-3 1.6893E-2 4.4488E-3 2.21676E-3
2 0.37169 6.4277E-2 7.3753E-2 3.94368E-2

2 1 1.33770 8.7970E-3 1.5912E-2 5.5337E-3 2.792120E-3
2 0.36918 7.9361E-2 1.0581E-1 5.657200E-2

3 1 1.33220 9.46200E-3 1.4888E-2 7.0391E-3 3.590680E-3
2 0.36502 1.00100E-1 1.4964E-1 8.000000E-2

4 1 1.19530 1.33720E-2 2.2264E-2 0.0 0.0
2 0.19313 1.34980E-1 0.0 0.0

5 1 1.44850 9.2200E-4 3.2262E-2 0.0 0.0
2 0.25176 3.2839E-2 0.0 0.0

6 1 1.34130 2.1530E-3 2.7148E-2 0.0 0.0
2 0.24871 6.4655E-2 0.0 0.0

Table 2.22: Fundamental eigenvalue results and power distribution errors for the 3D
VVER-440 problem.

Degree of FE (keff) ∆keff ( pcm) εmax(%) ε̄ (%) DoF

1 1.01372 236 11 5 17407
2 1.01177 44 1.5 0.8 130075
3 1.01138 5.4 0.17 0.06 428941
4 1.0113209 0.09 0.22 0.09 1004941

PARCS 1.0113630 3.75 1.44 0.98
Reference 1.0113250

Figure 2.20 shows the axial averaged neutronic power distribution computed with
a polynomial expansion degree equal of 4, together with the reference result [74]
and the percentage of the relative error on each hexagon. Some cuts of the thermal
flux distrbution for the three first modes of 3D VVER-440 reactor are shown in
Figure 2.21.
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Figure 2.19: VVER-440 type three-dimensional core configuration.
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Figure 2.20: Power distribution for an average plane of 3D VVER-440 Reactor with
finite element degree p = 4.
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Table 2.23: First 3 subcritical eigenvalues for the 3D VVER-440 reactor.

Degree of FE λ2 λ3 λ4

1 1.00586 1.00574 0.990836
2 1.00334 1.00334 0.988095
3 1.00285 1.00285 0.987519
4 1.00278 1.00278 0.987443

(a) Fundamental Mode (b) 1st Subcritcal Mode (c) 2nd Subcritcal Mode

Figure 2.21: Thermal Flux for the first 3 modes of the 3D VVER-440 reactor.
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Table 2.24: Local power distribution for the 3D VVER-440 reactor.

keff =1.011309, Pmax = 2.453
Axial plane

Hex 2 3 4 5 6 7 8 9 10 11

1 0.5214 1.0755 1.4558 1.5852 1.3419 0 0 0 0 0
2 0.4208 0.8694 1.1773 1.2852 1.1427 0.7938 0.5671 0.3985 0.2489 0.1103
3 0.5511 1.1374 1.5414 1.6898 1.5625 1.2507 0.9347 0.6598 0.4125 0.1828
4 0.5642 1.1648 1.5796 1.7350 1.6201 1.3262 1.0023 0.7093 0.4441 0.1969
5 0.4506 0.9319 1.2644 1.3870 1.2789 1.0161 0.7572 0.5356 0.3358 0.1489
6 0.4632 0.9586 1.3015 1.4238 1.2597 0.8571 0.6084 0.4298 0.2702 0.1202
7 0.6151 1.2723 1.7297 1.8933 1.6077 0 0 0 0 0
8 0.6492 1.3442 1.8308 2.0164 1.8155 1.2883 0.9440 0.6784 0.4305 0.1925
9 0.7840 1.6217 2.2125 2.4531 2.3083 1.8938 1.4566 1.0539 0.6700 0.2998
10 0.4761 0.9869 1.3477 1.5002 1.4353 1.2177 0.9536 0.6928 0.4409 0.1969
11 0.5462 1.1270 1.5270 1.6723 1.5357 1.2070 0.8951 0.6310 0.3945 0.1748
12 0.4407 0.9110 1.2352 1.3566 1.2668 1.0369 0.7837 0.5545 0.3470 0.1536
13 0.5616 1.1596 1.5732 1.7287 1.6128 1.3171 0.9949 0.7049 0.4418 0.1960
14 0.5688 1.1753 1.5955 1.7501 1.6023 1.2473 0.9228 0.6536 0.4107 0.1825
15 0.5911 1.2222 1.6609 1.8204 1.6167 1.1082 0.7929 0.5632 0.3552 0.1585
16 0.4935 1.0229 1.3926 1.5319 1.3740 0.9655 0.7032 0.5041 0.3195 0.1426
17 0.5119 1.0619 1.4484 1.6037 1.4976 1.2060 0.9202 0.6649 0.4226 0.1885
18 0.6914 1.4304 1.9532 2.1729 2.0730 1.7491 1.3659 0.9919 0.6313 0.2825
19 0.4103 0.8498 1.1611 1.2949 1.2458 1.0671 0.8410 0.6123 0.3899 0.1744
20 0.5556 1.1472 1.5565 1.7117 1.6044 1.3227 1.0045 0.7124 0.4466 0.1981
21 0.4349 0.8996 1.2215 1.3438 1.2555 1.0269 0.7778 0.5528 0.3473 0.1541
22 0.4416 0.9141 1.2427 1.3679 1.2675 1.0142 0.7626 0.5439 0.3429 0.1525
23 0.5861 1.2127 1.6513 1.8223 1.6881 1.3396 1.0105 0.7256 0.4596 0.2051
24 0.6176 1.2792 1.7451 1.9353 1.8224 1.4968 1.1524 0.8340 0.5301 0.2368
25 0.7269 1.5041 2.0547 2.2888 2.1906 1.8575 1.4562 1.0595 0.6747 0.3020
26 0.5178 1.0724 1.4659 1.6370 1.5793 1.3581 1.0740 0.7835 0.4994 0.2234
27 0.5422 1.1207 1.5239 1.6810 1.5783 1.3010 0.9928 0.7097 0.4476 0.1992
28 0.4394 0.9103 1.2403 1.3735 1.2987 1.0811 0.8339 0.6007 0.3805 0.1695
29 0.4626 0.9596 1.3100 1.4574 1.3917 1.1762 0.9193 0.6673 0.4244 0.1893
30 0.4641 0.9635 1.3174 1.4715 1.4194 1.2193 0.9645 0.7041 0.4488 0.2003
31 0.5820 1.2054 1.6493 1.8466 1.7922 1.5547 1.2383 0.9066 0.5786 0.2590
32 0.5728 1.1864 1.6202 1.8054 1.7346 1.4825 1.1663 0.8481 0.5395 0.2410
33 0.5804 1.2033 1.6464 1.8431 1.7891 1.5526 1.2367 0.9051 0.5774 0.2581
34 0.6151 1.2738 1.7446 1.9582 1.9116 1.6725 1.3410 0.9849 0.6293 0.2820
35 0.3780 0.7836 1.0736 1.2065 1.1808 1.0368 0.8337 0.6132 0.3921 0.1756
36 0.5127 1.0637 1.4574 1.6374 1.6020 1.4061 1.1303 0.8312 0.5313 0.2377
37 0.4247 0.8803 1.2069 1.3583 1.3335 1.1760 0.9491 0.6994 0.4476 0.2005
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Table 2.25: Local power distribution CRONOS recommended solution for the 3D
VVER-440 reactor.

keff=1.011325, Pmax = 2.456
Axial plane

Hex 2 3 4 5 6 7 8 9 10 11

1 0.520 1.075 1.456 1.586 1.344 0 0 0 0 0
2 0.419 0.867 1.175 1.283 1.141 0.793 0.566 0.398 0.248 0.110
3 0.550 1.136 1.541 1.690 1.563 1.251 0.935 0.660 0.412 0.182
4 0.563 1.164 1.579 1.735 1.620 1.326 1.002 0.709 0.444 0.196
5 0.449 0.929 1.262 1.384 1.277 1.014 0.756 0.535 0.335 0.148
6 0.461 0.956 1.299 1.421 1.258 0.856 0.608 0.429 0.270 0.120
7 0.613 1.271 1.729 1.894 1.610 0 0 0 0 0
8 0.647 1.343 1.831 2.017 1.817 1.289 0.945 0.679 0.431 0.192
9 0.782 1.622 2.215 2.456 2.312 1.897 1.459 1.056 0.671 0.299
10 0.475 0.986 1.348 1.501 1.436 1.219 0.954 0.693 0.441 0.197
11 0.545 1.126 1.527 1.672 1.536 1.207 0.895 0.631 0.394 0.174
12 0.439 0.908 1.232 1.354 1.265 1.035 0.782 0.554 0.346 0.153
13 0.560 1.159 1.573 1.728 1.613 1.317 0.995 0.705 0.442 0.196
14 0.567 1.174 1.595 1.750 1.603 1.248 0.923 0.654 0.411 0.182
15 0.589 1.221 1.660 1.820 1.617 1.109 0.793 0.563 0.355 0.158
16 0.491 1.020 1.390 1.529 1.372 0.965 0.702 0.504 0.319 0.142
17 0.509 1.059 1.445 1.601 1.495 1.204 0.919 0.664 0.422 0.188
18 0.689 1.431 1.955 2.175 2.076 1.752 1.368 0.993 0.632 0.282
29 0.410 0.852 1.164 1.299 1.250 1.071 0.844 0.614 0.391 0.174
20 0.554 1.146 1.556 1.712 1.605 1.323 1.005 0.713 0.446 0.198
21 0.433 0.897 1.219 1.341 1.253 1.025 0.777 0.552 0.347 0.154
22 0.440 0.912 1.240 1.366 1.266 1.013 0.762 0.543 0.342 0.152
23 0.584 1.212 1.651 1.823 1.689 1.340 1.011 0.726 0.460 0.205
24 0.616 1.278 1.745 1.936 1.823 1.498 1.153 0.835 0.530 0.236
25 0.725 1.504 2.057 2.292 2.194 1.860 1.459 1.061 0.675 0.302
26 0.517 1.074 1.469 1.641 1.583 1.362 1.077 0.786 0.500 0.223
27 0.541 1.12 1.524 1.682 1.579 1.302 0.993 0.710 0.448 0.199
28 0.438 0.908 1.238 1.371 1.297 1.080 0.833 0.600 0.380 0.169
29 0.461 0.957 1.308 1.455 1.39 1.175 0.918 0.667 0.424 0.189
30 0.462 0.961 1.315 1.469 1.417 1.218 0.963 0.703 0.448 0.200
31 0.581 1.206 1.652 1.850 1.796 1.558 1.241 0.908 0.579 0.259
32 0.571 1.186 1.620 1.806 1.736 1.484 1.167 0.849 0.54 0.241
33 0.579 1.202 1.646 1.844 1.790 1.554 1.238 0.906 0.577 0.258
34 0.614 1.274 1.746 1.961 1.915 1.675 1.343 0.987 0.63 0.282
35 0.378 0.785 1.077 1.210 1.185 1.040 0.837 0.615 0.393 0.176
36 0.511 1.063 1.457 1.637 1.602 1.407 1.131 0.831 0.531 0.237
37 0.424 0.882 1.209 1.362 1.337 1.179 0.952 0.701 0.449 0.200
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Table 2.26: Distribution difference (%) of the FEM solution to CRONOS
recommended solution for the 3D VVER-440 reactor.

∆ keff = 0.4 pcm, ∆ Pmax = 0.003
Axial plane

Hex 2 3 4 5 6 7 8 9 10 11

1 -0.14 -0.05 0.02 0.08 0.21 0 0 0 0 0
2 -0.18 -0.24 -0.23 -0.22 -0.17 -0.08 -0.11 -0.05 -0.09 -0.03
3 -0.11 -0.14 -0.04 0.02 0.05 0.03 0.03 0.02 -0.05 -0.08
4 -0.12 -0.08 -0.06 0 -0.01 -0.02 -0.03 -0.03 -0.01 -0.09
5 -0.16 -0.29 -0.24 -0.3 -0.19 -0.21 -0.12 -0.06 -0.08 -0.09
6 -0.22 -0.26 -0.25 -0.28 -0.17 -0.11 -0.04 -0.08 -0.02 -0.02
7 -0.21 -0.14 -0.07 0.07 0.23 0 0 0 0 0
8 -0.22 -0.12 0.02 0.06 0.15 0.07 0.1 0.06 0.05 -0.05
9 -0.20 0.030 0.25 0.29 0.37 0.32 0.24 0.21 0.1 -0.08
10 -0.11 -0.09 0.03 0.08 0.07 0.13 0.04 0.02 0.01 0.01
11 -0.12 -0.11 0 -0.03 0.03 0 -0.01 0 -0.05 -0.08
12 -0.17 -0.3 -0.32 -0.26 -0.18 -0.19 -0.17 -0.05 -0.1 -0.06
13 -0.16 -0.06 -0.02 -0.07 0.02 -0.01 0.01 0.01 0.02 0
14 -0.18 -0.13 -0.05 -0.01 0.07 0.07 0.02 0.04 0.04 -0.05
15 -0.21 -0.12 -0.09 -0.04 0.03 0.08 0.01 -0.02 -0.02 -0.05
16 -0.26 -0.29 -0.26 -0.3 -0.2 -0.05 -0.12 -0.01 -0.05 -0.06
17 -0.29 -0.29 -0.34 -0.27 -0.26 -0.2 -0.12 -0.09 -0.06 -0.05
18 -0.24 0.06 0.18 0.21 0.3 0.29 0.21 0.11 0.07 -0.05
19 -0.03 0.22 0.29 0.41 0.42 0.39 0.3 0.17 0.11 -0.04
20 -0.16 -0.12 -0.05 0.03 0.06 0.03 0.05 0.06 -0.06 -0.01
21 -0.19 -0.26 -0.25 -0.28 -0.25 -0.19 -0.08 -0.08 -0.03 -0.01
22 -0.16 -0.21 -0.27 -0.19 -0.15 -0.12 -0.06 -0.09 -0.1 -0.05
23 -0.21 -0.07 -0.03 0.07 0.09 0.04 0.05 0.04 0.04 -0.01
24 -0.16 -0.12 -0.01 0.07 0.06 0.12 0.06 0.1 -0.01 -0.08
25 -0.19 -0.01 0.23 0.32 0.34 0.25 0.28 0.15 0.03 0
26 -0.08 0.16 0.3 0.4 0.37 0.39 0.3 0.25 0.06 -0.04
27 -0.12 -0.07 0.01 0.1 0.07 0.1 0.02 0.03 0.04 -0.02
28 -0.14 -0.23 -0.23 -0.25 -0.17 -0.11 -0.09 -0.07 -0.05 -0.05
29 -0.16 -0.26 -0.2 -0.24 -0.17 -0.12 -0.13 -0.03 -0.04 -0.03
30 -0.21 -0.25 -0.24 -0.25 -0.24 -0.14 -0.15 -0.11 -0.08 -0.03
31 -0.10 0.06 0.27 0.34 0.38 0.33 0.27 0.14 0.04 0
32 -0.18 -0.04 -0.02 0.06 0.14 0.15 0.07 0.09 0.05 0
33 -0.14 -0.13 -0.04 0.09 0.09 0.14 0.13 0.09 -0.04 -0.01
34 -0.11 0.02 0.14 0.28 0.34 0.25 0.2 0.21 0.07 0
35 0 0.14 0.33 0.35 0.42 0.32 0.33 0.18 0.09 0.04
36 -0.18 -0.07 -0.04 -0.04 0 0.09 0.07 -0.02 -0.03 -0.07
37 -0.07 0.17 0.21 0.37 0.35 0.3 0.3 0.16 0.14 -0.05
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Chapter 3

Time Dependent Neutron Diffusion
Equation

To simulate the behaviour of a nuclear power reactor it is necessary to be able to
integrate the time dependent neutron diffusion equation inside the reactor core.
In particular, we will consider here VVER-type reactors which use the neutron
diffusion equation discretized on hexagonal meshes. For a given transient, the
balance of neutrons inside a nuclear reactor core can be modelled using the time
dependent neutron diffusion equation in the two energy groups approximation [94].
This equation as defined before in Chapter 1 ( equation 1.36) can be expressed in
the following form

[v−1]
∂φ

∂t
+ Lφ = (1− β )Mφ+

K∑
k=1

λkχCk ,

∂Ck
∂t

= βk[νΣf1 νΣf2]φ− λkCk , k = 1, . . . ,K ,

where K is the number of delayed neutron precursors groups considered and the L,
M operators are known as the neutron loss operator and the neutron production
operator. βk is the yield of delayed neutrons in the k-th precursors group, χ is
the fission neutron spectrum and λk is the corresponding decay constant. Both
coefficients are related to the delayed neutron precursor decay.

Different methods have been proposed for the time discretization of the time de-
pendent neutron diffusion equation [95]. Standard methods use backward differ-
ence formulas [96]. In these methods the reactor is divided in cells or nodes and
a spatial discretization of the equations is applied. These methods for each time
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step need to solve a system of linear equations, where the matrices involved are
large and sparse. Usually, these systems are solved using iterative methods such as
the Krylov subspace methods. The converge rate of these methods can largely be
improved if a suitable preconditioner is used [97]. Usual preconditioners are based
on incomplete factorizations of the system matrix, but this approach is expensive
in terms of the computational time and memory for the storage of the matrix.
The convergence of the Krylov methods generally depends on the eigenvalues and
eigenvectors of the coefficients matrices. When some estimations of eigenvectors
and eigenvalues are available, low rank transformations can be applied to improve
the convergence rate of the iterative method. This technique is known as spectral
preconditioning of linear systems [98]. For a given transient, a number of systems
have to be solved whose matrices varies continuously in time, and for successive
time steps the coefficients matrices are expected to have similar eigenvalues and
eigenvectors. Thus, the information obtained from the Krylov subspace when solv-
ing a system can be used to precondition the system corresponding to the next time
step. In [99] Different spectral preconditioners based on different Krylov methods
such as GMRES-DR [86] were studied using a typical transient in a nuclear power
reactor with hexagonal geometry.

Other kind of methods such as modal methods [70] or the quasi-static method
[100] have been also studied. An efficient solution method was presented to solve
the time dependent multi-group diffusion equations for subcritical systems with
external sources using a rigorous weight function in the quasi-static method [101].
However, the method is developed for systems which are close to criticality. In
this method, the space and time dependent flux is expressed as the product of
the amplitude function which changes quickly with time and the shape function
which changes slowly with time. A one-point kinetics equation is derived for
the amplitude function by multiplying an appropriate weight function to the time
dependent group diffusion equation, and integrating it over the whole phase space.
The advantage of this method is that a longer time step can be used to calculate
the shape function by using a short time step to calculate the amplitude function
which is much easier to solve, and a solution can be obtained by using short time
steps.

Some transient calculations in reactor cores are based on dynamic changes in
the reactor configuration due to the movement of control rods, which are usual
manoeuvres in the reactor operation. The simulation of these transients presents
what is known as the rod-cusping problem.
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3.1 Rod cusping

3.1 Rod cusping

The rod cusping is a unphysical behaviour of different magnitudes as the power
and the k-effective of the reactor that appears in the calculation along the tran-
sient. This problem is caused by the use of fixed mesh schemes and when the
volume weighted method is used to interpolate the cross sections properties for
the partially rodded node (PRN) by means of the portion of the rod inserted on
the node as Figure 3.1 represents.

Let us suppose a partially rodded node (P) adjacent to a fully rodded node (R)
and to an unrodded node (U). When a control rod is partially inserted in a node,
this partially rodded node (P) node is divided into two parts: the upper part of
the node or the rodded (PR), where the cross sections are modified due to the
effect of the control rod, and the lower part of the node or the unrodded node
(PU), which has the cross sections without modifications. Then, the cross sections
of the whole node are calculated by means of an interpolation procedure taking
into account the position of the control rod tip.

Volume 
Averaged
Material

R  ( Rodded Material )

U  ( Unrodded Material )

P  ( Partially rodded Material )
HPR

HPU

Figure 3.1: Rod-cusping problem in a fixed mesh scheme.

For example, Figure 3.2a shows the evolution of the keff along a given transient
presenting the rod cusping problem while the other Figure (Figure 3.2b) shows
the evolution of the keff in the first 0.07 s. As can be seen in Figure 3.2, for the
curve obtained by PARCS code using 12 planes, a discontinuity appears in the
first derivative, at each boundary between two nodes. This unphysical behaviour
is reduced by increasing the number of planes used in the calculations. The rod
cusping effect can cause some problems in evaluating differential rod worth curves
for control rods or in analyzing transients involving control rod movements. Also
when reactivity is plotted versus assembly insertion distance, the approximation
of volume weighted method for the motion of either a control rod or fuel assembly
results in a reactivity curve with a series of cusps that fall in between positions
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(b) Rod cusping effect in the first 0.07 sec.

Figure 3.2: Rod cusping effect.
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where the assembly is aligned with the mesh. This variation of reactivity leads
also to large errors in the predicted core power in addition to the errors for the
eigenvalue calculation.

One possibility to resolve the rod cusping problem is to use a flux-weighted tech-
nique to obtain the cross-sections of a partially rodded node (PRN). It is necessary,
first of all, to determine the axial flux profile within a PRN. The flux profile can
be used to calculate flux volume weighted homogenized cross sections or axial
discontinuity factors. Several sophisticated methods, based on a flux weighting
technique, have been introduced. One of the first ones is the work of H. S. Joo
in 1984 [1], his approximations were introduced in the determination of the axial
flux profile. Interface displacement [102], quadratic flux representation and for-
ward flux adjoint flux bilinear weighting method [103] are the examples of such
approximations. Although the consequence of these approximations may not be
significant in most practical calculations, they could cause unbearable errors in
heavily rodded cases and transient calculations. Then he presented a new rod
cusping correction method that uses fine mesh flux solutions obtained from two
one-dimensional, three-node problems for each PRN. The heterogeneity within the
PRN is explicitly kept and the flux-weighting factor is calculated from the result-
ing fine-mesh flux profile. The axial discontinuity factors are then generated with
the homogenized cross section in the PRN for the subsequent nodal calculations.

Many other techniques exist for the treatment of the rod cusping problem. As,
for example, a flux weighting method [104], [105], the bilinear weighting method,
the equivalent-node method [104] and moving meshes method [106]. All of these
methods provide satisfactory approximations for the motion of assemblies, with
the exception of the volume weighting method [107]. Since no flux weighting is
taken into account in the simple volume weighting method, extremely large errors
are observed. We report them here in order to permit a comparison between the
different approaches [106].
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3.1.1 Approximate flux weighting method

This method has been proposed by J. C. Gehin [108] in 1992 to avoid discontinu-
ities of the flux versus time behavior in kinetics transients involving control rod
movements. He introduced a simple correction model. In absence of an average
flux in the unrodded (NR) and rodded (R) fractions of the node he approximated
them by the following relations:

φNR,g =
∆zk−1 φk−1,g + (1− fins) ∆zk φk,g

∆zk−1 + (1− fins) ∆zk

φR,g =
∆zk+1 φk+1,g + fins ∆zk φk,g

∆zk+1 + fins ∆zk

where φk,g,g is the neutron flux in node k,∆zk is the size of the node in the vertical
z direction and fins is the fraction of insertion of the rod in the node. With these
definitions, he computed the average cross sections of type X (X = absorption,
neutron-production, removal from group 1 to 2) by the relation:

Σ̄X,g =
(1− fins)ΣNR,X,g φNR,g + fins (ΣNR,X,g + ∆ΣX,g) φR,g

(1− fins) φNR,g + fins φR,g
. (3.1)

3.1.2 Analytical flux weighting with axial discontinuity factors
method

This method has been proposed by K. S. Smith et al. [109] in 1992. In this method,
the two-group flux distribution in the vicinity of a control rod tip is computed by
solving analytically a one-dimensional two-region problem (like the one shown
in 3.3) using the neutron current resulting from the general nodal solution as
boundary conditions. The intranodal flux shapes are integrated analytically over
the volume of the node to obtain flux-volume-weighted cross sections. Additionally,
the axial discontinuity factors for the top and bottom of the partially rodded
node are computed by taking the ratios of the heterogeneous to homogeneous
boundary fluxes (found by solving the two-group diffusion equations with flux-
volume weighted cross sections and fixed current boundary conditions at the top
and bottom of the node).
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3.1.3 Bilinear weighting method

This method has been proposed by Y. H. Kim and N. Z. Cho [110], [103] in 1990.
According to this method, for a partially rodded node, the equivalent homogenized
cross sections of type X for group g are calculated by the relation:

Σ̄X,g =

∫∆zk
0

φgΣX,g φ
+
g dz∫∆zk

0
φg φ

+
g dz

(3.2)

and the equivalent homogenized diffusion coefficient is calculated by:

D̄g =

∫∆zk
0

φg φ
+
g dz∫

0
∆zkφg

1
Dg

φ+
g dz

(3.3)

where the integration is performed over the node k, and φg and φ+
g are the het-

erogeneous forward and adjoint fluxes inside the node.

3.1.4 Equivalent node method

This method is based on the equivalence between two configurations. The former
is a two-node configuration where the upper one is fully controlled by the rod
tip. The total size of these two nodes is equal to the calculation mesh size ∆z in
the core model. The second is the calculation node where the tip of the rod is
homogenized. A scheme of the node is shown in Figure 3.3

Control rod region

topbottom

0 z

Δz

Figure 3.3: A node containing the tip of a control rod.
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The purpose of the equivalence is to obtain parameters that will force the nodal
flux calculation to give results close to the ones that would be obtained by splitting
the rodded nodes into two regions. This is done by imposing that the average two-
group neutron balance and its first and second moment, computed in the two
configurations, be the same. From the condition of equality of the average two-
group neutron balance we obtain the rod cross section weighting factors.

All these methods have to solve a small one-dimensional eigenvalue problem for
each one of the partially rodded nodes. Then, different schemes are applied to ob-
tain the new cross sections of the partially rodded node from the old cross sections
of the two parts of the node (the rodded and the unrodded) and the heterogeneous
flux for the small isolated problem with suitable boundary conditions. These so-
lutions can be improved by means of the use of assembly discontinuity factors for
the interface of the node with the ones on a neighbourhood. Also some approaches
have been discussed to estimate the flux distribution inside the partially rodded
node [107]. Other strategy is based on interpolating the solution on refined meshes
near the moving control rod [111].

3.2 Moving mesh strategy

As mentioned before, to solve accurately these PDEs, it is often necessary to adapt
the mesh to the specifics of the problem. Adaptive techniques are traditionally
sorted into three categories:

• We can adapt the mesh by adding or removing grid points in certain parts
of the domain; this is called h-adaptivity.

• Another technique, when using the finite-element method, is to vary the
degree of the polynomial approximations; this is called p-adaptivity. Some-
times, h- and p-adaptivity are used together, forming a hybrid category
called h− p-adaptivity.

• Lastly, the technique we focus on in this chapter consists of moving the initial
grid points in order to reposition them in an optimal way; one can adapt
based upon the geometry of the surface, or based upon the behaviour of the
PDE solution.

Mesh adaptivity begun in the late 1970s [5] and is based on the idea that in order to
achieve high accuracy, a uniformly fine mesh is not necessarily required; rather, the
computational grid only needs to be fine in regions where the solution is rough and
can be coarse in areas where the solution is smooth and, therefore, well resolved
even on large cells. The challenge is that, in general, it is not known a priori where
the solution will require the mesh to be fine. Consequently, the computation of
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local error or smoothness indicators from a numerical solution, previously obtained
on a coarser mesh, lies at the heart of all adaptive mesh refinement algorithms,
and a significant number of successful approaches have been developed for this
problem in the last decade [7], [88].

Using these methods, it has been shown for many problems that the computational
effort needed to reach a certain accuracy can often be reduced by one or several
orders of magnitude compared to uniform meshes, frequently enabling the solution
of entire new classes of problems that were previously considered too computation-
ally expensive to solve the required accuracy. The use of adaptative meshes or the
study of nuclear reactors has beeen recently proposed [8], [9], begining with the
study of different error estimators for the mesh refinement for the computation of
the k-effective of the reactor and the stationary power distirbution.

A moving mesh strategy is developed here [112] to reduce the rod-cusping problem.
This method is based on the use of different spatial meshes for the different time
steps following the movement of the control rod avoiding the necessity of the use of
averaged material properties, as it is observed in Figure 3.4. To avoid the hanging
nodes problem [113], the spatial mesh is moved in the same way for all the axial
plane. The solutions obtained in each time step for the physical quantities are
interpolated to a new spatial mesh in each time step.

(a) Fixed Mesh (b) Moving mesh

Rod

Mesh

Rod

Mesh

Rod

Mesh

Rod

Mesh

t1

t2

t3

t4

...

...

Figure 3.4: 1D representation of fixed and moving mesh schemes.
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3.3 Time discretization

Once the spatial discretization has been selected, a discrete version of the time
dependent neutron diffusion equation is solved. Since the system of ordinary dif-
ferential equations resulting from the discretization of the neutron diffusion equa-
tions is, in general stiff, implicit methods are necessary. Particularly, a first order
backward method is used [96], needing this method to solve a large system of
linear equations for each time step. The time discretization of the neutron diffu-
sion equation is obtained as follows. After the spatial discretization is performed,
the semi-discrete two energy groups time dependent neutron diffusion equation
together with the neutron precursors concentration equations are of the form

[ṽ−1]
dφ̃

dt
+ Lφ̃ = (1− β )Mφ̃+

K∑
k=1

λkXCk , (3.4)

P
dCk
dt

= βk (M11M21) φ̃− λkPCk , k = 1, . . . ,K , (3.5)

where L and M are the matrices obtained from the spatial discretization of oper-
ators L and M, whose elements are given by equation (2.8) Matrix X and [ṽ−1]
are defined as

X =

(
P
0

)
, [ṽ−1] =

(
P v−1

1 0
0 P v−1

2

)
,

where matrix P is the mass matrix of the spatial discretization, which appears
due to the fact that the polynomial basis used in the spatial discretization is not
orthogonal. The matrix elements of P are given by,

Pij =

Nt∑
e=1

∫
Ωe

N1iN1jdV . (3.6)

The time discretization of the precursors equations (3.5), is done by using a one-
step implicit finite differences scheme. To obtain this scheme, we make use of the
change.

PCk = e−λktBk , (3.7)

obtaining

dBk
dt

= eλktβk (M11M12) Φ̃(t) . (3.8)
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3.3 Time discretization

This equation is integrated between tn and t,

Bk(t) = Bnk +

∫ t

tn

eλkτβk (M11M12) Φ̃(τ) dτ. (3.9)

Making use of the change (3.7), Cn+1
k can be expressed as

PCn+1
k = e−λk∆tnPCnk + e−λktn+1

∫ tn+1

tn

eλkτ βk (M11M12) Φ̃(τ) dτ . (3.10)

where ∆t = tn+1−tn. The term (M11M12) Φ̃(t) inside the integral is approximated
by its value at the instant tn+1 obtaining

PCn+1
k = PCnk e

−λk∆t +
βk
λk

(
1− eλ∆t

) (
Mn+1

11 Mn+1
12

)
Φ̃n+1 . (3.11)

In the same way, Euler’s backward method is used in equation (3.4) obtaining,

[ṽ−1]
1

∆t

(
Φ̃n+1 − Φ̃n

)
+Ln+1Φ̃n+1 = (1−β )Mn+1Φ̃n+1 +

K∑
k=1

λkXC
n+1
k . (3.12)

Taking into account equation (3.11), equation (3.12) is rewritten as the system of
linear equations

Tn+1Φ̃n+1 = RnΦ̃n +

K∑
k=1

λke
−λk∆tXCnk , (3.13)

where the matrices are defined as,

Tn+1 =
1

∆t
[v−1] + Ln+1 − âMn+1 ,

Rn =
1

∆t
[v−1] =

1

∆t

(
P v−1

1 0
0 P v−1

2

)
,

and the coefficient â is

â = 1− β +

K∑
k=1

βk
(
1− eλk∆t

)
.

This system of equations is large and sparse and has to be solved for each time
step. As it was done in before in the eigenvalue problem (Equqtion 1.42) , the
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Chapter 3. Time Dependent Neutron Diffusion Equation

preconditioned BICGSTAB [114] method has been chosen to solve these systems
and the preconditioner used has been the incomplete LU preconditioner.

3.3.1 Mesh interpolation

Traditionally, the time dependent neutron equation is solved using a spatial mesh
that is fixed along all the transient. As it has been already mentioned, the simu-
lation of transients where the control rod banks move suffer from the rod-cusping
problem because averaged cross sections are used for the partially rodded nodes.
Here, we propose the use of a spatial mesh that changes each time step follow-
ing the control rod in such a way that we do not have partially rodded nodes.
This scheme requires the interpolation of the physical solutions of the equations,
which are continuous functions, from the old mesh in step n to the next mesh
corresponding to step n+ 1.

The mesh interpolation process consists of finding the solution in the new support
point values corresponding to the new mesh by polynomial interpolation of the
values of the solution in the old mesh. To maintain the accuracy of the solution this
interpolation is done using Lagrange polynomials of the same degree as the degree
used in the high order finite element method used for the spatial discretization.
In other words, the exact finite element solution was projected to the new mesh.

To formalise the interpolation method we use the superscript notation to refer to
the time step number and the subscript notation to the mesh number step. Then,
Φnm refers to the neutronic flux at time step n in the mesh m. The interpolation
process between meshes described above is implemented by means of a function
f , and can be written as

Φnm+1 = f(Φnm) , (3.14)
Cnk, m+1 = f(Cnk, m) . (3.15)

Figure 3.5 shows an example of the neutron flux interpolation Φn(z) between two
consecutive meshes. This interpolation is similar to the one used in h-refined finite
elements codes to interpolate from the coarse mesh to a finer mesh to accelerate
the convergence of the solution in the finer mesh [46]. However in the moving mesh
method, the support points of the mesh are moved and not only coarse cells are
subdivided into finer cells.

In the moving mesh interpolation, only physical quantities, which are continuous
functions, can be interpolated adequately. However, from equation (3.11), the
obtained quantity for each time step is PCnk and the physical magnitude needed
for the interpolation is Cnk , which can be obtained inverting the mass matrix
P . But this is a computationally expensive task and, to avoid this calculation,
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3.3 Time discretization

an approximation, P̂ , for the mass matrix P is considered by means of a mass
lumping technique [17].

Mesh Mesh 

N
eu

tr
o
n
 F

lu
x

N
eu

tr
o
n
 F

lu
x

z z

Figure 3.5: 1D Mesh interpolation example.

This procedure mainly consists of considering matrix P̂ as a diagonal matrix whose
elements are the result of summing all the elements of each row of matrix P .
This is equivalent to calculate the integrals involving polynomials up to order
s approximately with a quadrature rule up to order s − 1 in the finite element
method [115].

The inverse of the mass lumped matrix P̂ is a diagonal matrix calculated as

P̂−1
ii =

1∑Ne

e=1

(∑Ni

j=1

∫
Ωe
N1iN1jdV

) . (3.16)

In the usual fixed mesh scheme, since there is not any interpolation of physical
quantities, it is not necessary to know the value of Cnk because it is enough to
obtain PCnk for each time step.

The main steps for the implementation of the moving mesh procedure are sum-
marized in the scheme shown in Figure 3.6.

The computation starts with an eigenvalue computation to obtain the stationary
configuration of the reactor core, which is used as initial condition. Then, the
dynamic calculation starts. First, the neutron precursors concentration equations
are solved in the initial mesh. The control bars and the mesh are moved and
the neutronic flux and the precursors distribution are interpolated to the new
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mesh. Then, the system associated with the numerical scheme is solved obtaining
the next flux distribution. This is clearly the most time consuming part of the
computation. Finally, the stopping criterion is checked and, if it is not fulfilled,
the dynamic computation is repeated for the next time step.

Initialization from stable 
configuration 

Move and interpolate 
the mesh

Prepare precursors 
for interpolation
(Mass Lumping)

Solve system

Update concentration 
of precursors

End

No

Yes

Figure 3.6: Summary of the moving mesh time scheme.
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3.4 Numerical results

To study the performance of the moving mesh scheme, three benchmark problems
have been analysed. The first benchmark consists of a one dimensional problem
where a control rod is ejected to a given velocity and then inserted back. The
second benchmark is a small 3D hexagonal reactor where also a rod ejection acci-
dent is studied. The first exercise of the AER benchmark, the three-dimensional
VVER-440 reactor is the third reactor which has been studied.

Firstly, the spatial discretization is tested solving the critical configuration of the
reactor.Then,the time dependent problem is solved using the classical fixed mesh
scheme and the proposed moving mesh scheme. To compare the performance of the
finite element method used for the spatial discretization, and to set the adequate
spatial discretization parameters, different errors have been employed, which are
shown in Table 2.1.

3.4.1 One dimensional problem

To validate the code a simple and small one-dimensional reactor is considered,
which represents a simplified model for a rod-ejection accident. This reactor con-
sists of 12 cells composed of different materials. The reactor geometry is defined
in Figure 3.7 and the cross sections for the materials of each region are given in
Table 3.1. Precursor parameters are given in Table 3.2. Zero-current boundary
conditions are imposed at the boundaries of the system.

Reflector

Rodded 

Unrodded 

200 cm

100 cm

t=0.0s  

25 cm

150 cm

25 cm

25 cm

25 cm

t=4.0s

50 cm

t=10.0s

25 cm

25 cm

200 cm

50 cm

Figure 3.7: Geometry of the 1D reactor problem.

The transient consists of removing the control rod from time 0.0 s to 4.0 s with a
constant velocity of 25 cm/s. Then the control rod is inserted again from 4.0 s to
10 s also with a constant velocity of 25 cm/s. All the transient calculations are
made using cubic polynomials in the finite element method. Reference results for
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Table 3.1: Cross sections of the materials of the 1D reactor.

Fuel Group Dg Σag νΣfg Σfg Σ12

( cm) (1/ cm) (1/ cm) (1/ cm) (1/ cm)

Unrodded 1 1.40343 1.17659e-2 5.62285e-3 2.20503e-3 1.60795e-2
Fuel 2 0.32886 1.07186e-1 1.45865e-1 5.90546e-2

Rodded 1 1.40343 1.17659e-2 5.60285e-3 2.19720e-3 1.60795e-2
Fuel 2 0.32886 1.07186e-1 1.45403e-1 5.88676e-2

Reflector 1 0.93344 2.81676e-3 0.00000e+0 0.00000e+0 1.08805e-2
2 0.95793 8.87200e-2 0.00000e+0 0.00000e+0

Table 3.2: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

βi 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169
λi (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.27× 107 cm/s v2 = 2.5× 105 cm/s β = 0.0065

the neutronic flux and the keff of the problem are computed with the neutronic
code PARCS [92], using a fixed mesh with 120 cells where the rod-cusping problem
should be eliminated.

The results obtained for the dominant eigenvalue keff using different polynomial
degrees for the finite element method (Degree of FE) are shown in Table 3.3. In
this Table, also the number of degrees of freedom (DoF) are shown for the reduced
eigenvalue problem (Equqtion 1.42) in order to have an idea of the size of the
problem solved. Also the mean relative errors and maximum relative errors per
cell for the neutronic flux and power are shown for the initial configuration for the
reactor.

Table 3.3: Dominant eigenvalue and power distribution results for the 1D reactor.

Degree DoF keff ∆keff Power Fast Flux Thermal Flux
of FE ( pcm) ε̄ (%) εmax(%) ε̄ (%) εmax(%) ε̄ (%) εmax(%)

1 13 0.978430 38.1 2.98 9.84 7.17 29.2 7.64 31.62
2 25 0.978757 5.4 0.49 1.54 1.02 3.85 0.62 1.55
3 37 0.978801 1.0 0.10 0.38 0.16 0.53 0.10 0.41

PARCS 0.978811

Figure 3.8 shows a detail of the evolution of the normalized mean power, computed
with the expression
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P̄w(t) =

∫
Ω

(Σf1φ1(t) + Σf2φ2(t)) dV∫
Ω

(Σf1φ1(0) + Σf2φ2(0) ) dV
, (3.17)

During the transient computed using a classical fixed mesh scheme with a mesh
of 12 nodes, the moving mesh scheme presented in this work and the reference
values.

As can be seen in this Figure, the fixed mesh computations present some unphysical
jumps in the normalized mean power, mainly when the control rod is in the middle
of a cell. However the rod-cusping problem is mitigated with the moving mesh
scheme reducing the mean error in the power about three times, from 0.3% to
0.13%. Moreover, the relative errors for the reactor mean power for each one of
the time steps obtained with the fixed mesh scheme and the moving mesh scheme
are shown in Figure 3.9.
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Figure 3.8: Normalized power evolution for the 1D reactor from 3s to 7s.

Figure 3.10 shows the errors in the computation of the dominant eigenvalue (∆keff)
solving an static problem for all the time steps of the transient. As it can be seen
in these Figures, the errors for the keff and the reactor power have very similar
behaviours.
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Figure 3.9: Comparative of errors of relative mean power over time in 1D reactor.
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Figure 3.10: Errors in keff during the transient.

3.4.2 Small hexagonal reactor

To test the performance of the method in 3D reactors, a small reactor that presents
a large rod-cusping problem is studied [116]. Figure 3.11 shows the layout map of
the small hexagonal reactor [116], for which the hexagonal lattice pitch is 23.6 cm.
The material cross sections of the different materials composing the reactor are
given in Table 3.4. The neutron precursors data used in this problem are given in
Table 3.5.
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Material 1 represents the fuel assemblies, material 2 represents the absorber assem-
blies, and material 3 represents the reflector. Material number 22 and 24 represent
the positions where, either absorber assemblies (material 2) or their fuel followers
(material 1), have to be placed into, due to the axial position of the given absorber
assembly. Material number 23 is used for the ejected rod. One layer of axial re-
flector at the top, another one at the bottom of the reactor, and a radial layer of
reflector are used.

Reflector

UnRodded 

Rodded 

150 cm

100 cm

25 cm

25 cm

2322

25 cm

200 cm

50 cm

25 cm 25 cm

24

25 cm

200 cm

50 cm

Figure 3.11: Small reactor geometry.

Table 3.4: Cross section definitions for the small reactor.

Fuel Group Dg Σag νΣfg Σfg Σ12

( cm) (1/ cm) (1/ cm) (1/ cm)

Unrodded 1 1.40343 1.17659e-2 5.62285e-3 2.20504e-3 1.60795e-2
Fuel 2 0.32886 1.07186e-1 1.45865e-1 6.00267e-2

Rodded 1 1.36764 1.39118e-2 5.37719e-3 2.10870e-3 1.35108e-2
Fuel 2 0.25108 9.96214e-2 1.15403e-1 4.74909e-2

Reflector 1 0.93344 2.81676e-3 0.00000e+0 0.00000e+0 1.08805e-2
2 0.95793 8.87200e-2 0.00000e+0 0.00000e+0

Albedo boundary conditions are applied on the outer edge of the reflector cells.
The extrapolation length is set to 2×Dg. The height of the reactor is 300 cm and
12 axial planes are considered, each one of 25 cm. The first one and the last one
are reflector layers defined by material of type 3. The initial position of control
rod group 22 (see Figure 3.11) is at 200 cm above the bottom reflector (Follower in
2nd -9th axial nodes, absorber rod in 10th -11th axial nodes), the initial position
of control rod group 23 is at 100 cm above the bottom reflector, and the initial
position of control rod group 24 is at 75 cm above the bottom reflector.
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The transient simulates a rod ejection accident as follows.

• At time t = 0.0s , starting from the initial configuration (see Figure 3.11), the
rod 23 begins to be removed until it is completely removed at time t = 0.15s
remaining only the unrodded fuel.

• From t = 0.15s until t = 1.0s nothing happens.

• When the security system acts, a scram is produced inserting absorbers at
constant velocity of 25 cm/s in positions 22 from time t = 1.0s until the
bottom of the reactor is reached at time t = 9.0s.

Table 3.5: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

βi 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169
λi (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.27× 107 cm/s v2 = 2.5× 105 cm/s β = 0.0065

The results obtained for the dominant eigenvalue (keff) using different polynomial
degrees for the finite element method (Degree of FE) are shown in Table 4.4. In this
Table, the number of degrees of freedom (DoF) of the reduced eigenvalue problem
are also shown together with the mean relative errors and maximum relative errors
per cell in the neutronic flux and power for the initial configuration of the reactor.

Table 3.6: Critical eigenvalue and power distribution results for the small 3D reactor.

Degree DoF keff ∆keff Power Fast Flux Thermal Flux
of FE ( pcm) ε̄ (%) εmax(%) ε̄ (%) εmax(%) ε̄ (%) εmax(%)

1 949 0.801287 1539.0 6.38 17.70 15.49 38.13 16.34 36.45
2 6475 0.815211 146.4 0.97 0.84 1.98 3.40 1.14 3.26
3 20683 0.816024 65.3 0.15 0.35 0.17 0.66 0.23 0.81

PARCS 0.816677

Figure 3.12 shows the time evolution of the normalized mean power of the reactor
in the first t = 7.0 secondss. In this Figure, the results obtained with the moving
mesh scheme proposed in this work are compared with the results obtained with
the classical fixed mesh scheme. The reactor with the fixed mesh scheme is solved
using 120 axial planes where the rod-cusping problem is very small and the results
of this computation are taken as a reference. All transient calculations are made
using cubic polynomials in the finite element method.

The time evolution of the relative errors for the reactor total power obtained with
the fixed mesh scheme and the moving mesh scheme are shown in Figure 3.13.
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As can be seen in these Figures, when a small number of axial planes are used, the
fixed mesh computations present some unphysical jumps in the normalized mean
power, mainly when the control bar is in the middle of a cell.
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Figure 3.12: Normalized mean power evolution for the small 3D reactor.
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Figure 3.13: Normalized mean power error for the small 3D reactor.
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However the rod-cusping problem is mitigated with the moving mesh scheme re-
ducing the mean error in the power more than three times, from 5.50 % to 1.41 %.
Thus, the moving mesh scheme produces better results than the fixed mesh scheme
when a small number of axial planes are considered for the spatial discretization.

3.4.3 AER benchmark -VVER-440 3D

To test the performance of the proposed method in a realistic reactor the transient
benchmark AER-DYN-001 proposed in [117] has been studied. This problem
corresponds to an asymmetric control rod ejection accident in a VVER-440 core. A
plane of this reactor showing the disposition of materials together with the initial
position of control rods are shown in Figure 3.14. The hexagonal lattice pitch is
14.7 cm.

The material cross sections of the different materials composing the reactor are
summarized before in Chapter 2 in Table 2.21. The kinetic parameters for the six
groups of neutron precursors and for the velocities are shown in Table 3.7.
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Figure 3.14: Geometry of VVER 440 reactor core.

Type numbers 1, 2, 3 represent fuel assemblies of different enrichment (1.6 % ,
2.4 %, 3.6 %). Type numbers (21, 23, 25, 26) represent the positions where either
absorber assemblies (type 4) or their fuel followers (1,2,3) have to be placed into,
due to the axial position of the given absorber assembly. Type "26" is used for
the ejected rod. Type number "5" represents reflector cells.
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The albedo boundary condition is applied on the outer edge of the reflector nodes,
the extrapolation length is 2.13Dg in both groups, where Dg is the diffusion coef-
ficient given for type "5".

Figure 3.14 also shows the axial arrangement of the problem. For the sake of
comparable output, the minimum number of axial nodes has to be 12. The 1st

node for the bottom reflector, 2nd − 11th nodes for the active length of the core
(250 cm), the 12th node for the top reflector. In this case, the height of the nodes
is 25cm. The initial position of control rod groups 21 and 26 is at 50cm above the
bottom reflector. (Follower in 2nd − 3rd axial nodes, absorber rod in 4th − 11th

axial nodes). Control assembly groups type "23 and 25" are out of the core at the
beginning of the process.

Table 3.7: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

βi 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169
λi (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87

v1 = 1.25× 107 cm/s v2 = 2.5× 105 cm/s β = 0.0065

The transient is defined as follows:

• The control rod denoted by number 26 is ejected in the first 0.08 seconds
(from 75 cm height in the initial Position to 275 cm height at the final
position) with a constant velocity of 2500 cm/s. The worth of the ejected
rod is marginally below the prompt critical value. The delayed neutron
precursors are moving together with the fuel of the absorber followers.

• Then, Scram is initiated at 1.0 sec by dropping safety rods 23 and 25 at
a constant velocity of 5 cm/s. These rods take 11.0 seconds to reach the
bottom of the core.

• The drop of control rod group 21 is also started at 1.0 s with the same
velocity of 5 cm/s.

In Figure 3.15 the total power evolution is presented for several calculations. First,
the power evolution has been computed with the nodal code PARCS [92] using 12
axial planes. These computations present a strong rod cusping problem. In the
same way the finite element method with a fixed mesh presents a similar behaviour
for the computation with 12 axial planes.

To avoid the rod cusping we have computed the transient using the moving mesh
scheme with 12 axial planes. In this case, the power evolution is comparable to
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the behaviour obtained with the PARCS code using 120 axial planes. To be self-
consistent, a reference finite element solution, with fixed mesh and 60 axial planes,
is also shown. All the calculation have been performed with a maximum time step
of 0.01s because this is the maximum time step that achieves sufficient converged
results.
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Figure 3.15: Power evolution for the VVER-440 reactor.

In Figure 3.16 and 3.17 the radial power distributions with 12 axial planes are
illustrated at the beginning and at the end of the process comparing the results
obtained using a polynomial degree p=2 with the the results obtained with PARCS
code and DYN3D code. The power distributions are shown along the diameter of
the core (middle symmetry line on Figure 3.14), at the 3rd elevation (elevations
are numbered from the bottom reflector: 1-12). Node number "426" belongs to
the ejected rod.

Figure 3.18 presented the relative error in each node of the radial profile of the
code and PARCS codes with 12 axial planes, using the solution obtained with
DYN3D code as the reference. It is observed that the maximum error obtained is
less than a 4%.

We can note that all the reactors tested show a good agreement in the normalized
power radial profile with both the DYN3D and the PARCS codes. Also shows that
the moving mesh method has a better performance that the traditional fixed mesh
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scheme when a small number of axial cells are used. The moving mesh scheme
permits to use a coarser discretization and reduces the computational effort.
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Figure 3.16: Normalized radial Power at t = 0s.
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Figure 3.17: Normalized radial Power at t = 6s.
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Figure 3.18: Relative error with respect to DYN3D at t = 0s.
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Chapter 4

High Order Finite Element Method
for The Simplified Spherical
Harmonics Equations

For reactor calculations, the usual approximation of the neutron transport equa-
tion by the multigroup neutron diffusion equation does not provide good results
for complex fuel assemblies or other applications as the ones using fine mesh (pin
by pin geometries). Diffusion theory is not valid when strong material and/or flux
gradients are present, when neutron streaming is significant or when neutron scat-
tering contains a strongly anisotropic component. As such situations have become
increasingly more common in commercial nuclear reactor analysis more accurate
neutron transport are needed.

To improve the results of nodal diffusion theory for situations such as those that
are mentioned above, a computational method that incorporates higher-order ap-
proximations for the angular dependence of the neutron flux must be employed.
Time-dependent formulations for finite-differenced discrete ordinates (SN ) meth-
ods [28, 29], spherical harmonics (PN ) methods and simplified spherical harmonics
(SPN ) methods have all been investigated [30–32].

A classical approach to solve the neutron transport equation is to apply the spheri-
cal harmonics method obtaining a finite approximation known as the PN equations.
PN equations are classical approximations to the neutron transport equation ad-
mitting a diffusive form. Using this property, for example a nodal collocation
method has been developed for the PN approximations, which is based on the ex-
pansion of the angular dependence of flux in terms of orthonormal Legendre poly-
nomials [31]. This method approximates the differential lambda Modes problem by

97



Chapter 4. High Order Finite Element Method for The Simplified Spherical Harmonics

Equations

an algebraic eigenvalue problem from which the fundamental and the subcritical
modes of the system can be calculated.

The spherical harmonic or PN approximation has been well established for many
decades [33]. It is obtained by expanding the angular dependence of the neutron
flux in terms of spherical harmonic functions and retaining only spherical har-
monics up to order N . The exact transport solution is recovered as N → ∞. In
three-dimensional geometries, the number of PN equations grows like (N+1)2 but
in one-dimensional planar geometry, the number of PN equations is only (N + 1).
The PN equations in one-dimensional planar geometry are relatively simple and
can be reformulated in second-order form as (N+1)/2 diffusion like equations cou-
pled only through the angular moments. The PN equations in multidimensional
geometries are complicated but can also be formulated as second-order equations.
However, there are a larger number of these equations, and the coupling involves
not only the angular moments but also mixed spatial derivatives of these moments.

This realization led Gelbard [34–36] to propose a multi-dimensional generaliza-
tion of the planar geometry PN equations which avoids the complexities of the
full spherical harmonics approximation - the simplified PN (SPN ) equations in
the early 1960s. Gelbard presented a simplification to the full spherical harmon-
ics method that greatly reduced the number of unknowns, and also provided an
analysis when the method was equivalent to the full PN equations, see [34–36].
Gelbard replaced the second derivatives in the one-dimensional planar geometry
PN equations with general three-dimensional Laplacian operators. This substitu-
tion yields an ad-hoc multidimensional generalization of the planar geometry PN
equations that avoids the complexities of the full spherical harmonics approxima-
tion. Gelbard tested the SPN approximation in one-dimensional cylindrical [34,
35] and spherical [36] geometries, and the results appeared promising.

Although, unlike PN , the SPN solution does not converge to the true transport
solution as N → ∞, it is more accurate than the diffusion theory results and
still can be obtained within acceptable computing times. The main advantage
of the SPN approximation compared to the Spherical Harmonics is the number
of equations involved and their implementation. The number of equations to
be solved shows increases by (N + 1)2 for spherical harmonics, while it shows
increases by (N+1) for SPN . Moreover, the implementation of the SPN equations
on a computer requires much less effort than spherical harmonics, and the cost
of computation for the SPN method is greatly reduced. In addition, the SPN
approximation does not suffer from the ray effects [118] that can adversely affect
discrete ordinates SN methods for certain types of problems.
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4.1 1D PN equations

Let the eigenvalue problem associated with the following one-group slab geometry
transport problem and vacuum boundary conditions be the starting point for the
following derivation of the planar-geometry PN equations [38, 39].

µ
∂Ψ(x, µ)

∂x
+ Σt(x)Ψ(x, µ)

=

∫ +1

−1

Σs (x, µ0) Ψ (x, µ′) dµ′ +
1

λ

νΣf (x)

2

∫ +1

−1

Ψ(x, µ′) dµ′ , (4.1)

Ψ(0, µ) = 0 , 0 < µ ≤ 1 , Ψ(xL, µ) = 0 , −1 ≤ µ < 0 ,

where x ∈ [0, xL], θ is the angle between the direction of the incident neutron
velocity and the x axis, µ = cos(θ) , θ0 is the angle between the incident neu-
trons and the scattered neutrons, µ0 = cos(θ0). Σt(x) is the total cross-section.
Σs(x, µ0) is the scattering cross-section, Σf (x) is the fission cross-section and ν is
the average number of neutrons produced in each fission. λ is the eigenvalue of the
problem and Ψ(x, µ) its corresponding eigenvector. The solutions of this eigen-
value problem are known as the Lambda Modes of the transport equation [40].
The dominant eigenvalue, λ = keff, is the k-effective of the system and measures
its criticality. The corresponding eigenvector is the directional flux distribution of
a stationary configuration of the system obtained dividing Σf by keff.

The angular dependence of the flux and source functions in equation (4.1) can
be approximated by a truncated series expansion. Therefore, the Legendre poly-
nomials Pn(µ) are introduced representing the one-dimensional equivalents of the
spherical harmonics, to obtain the expansion functions of the PN equations. Like
the spherical harmonic functions, the Legendre polynomials satisfy the relations

P0(µ) = 1,

P1(µ) = µ,

P2(µ) =
1

2
(3µ2 − 1),

P3(µ) =
1

2
(5µ3 − 3µ),

(n+ 1) Pn+1(µ) = (2n+ 1)µPn(µ)− nPn−1(µ), (4.2)

that form an orthogonal system with the properties,

1∫
−1

Pn(µ)Pm(µ)dµ =
2

2n+ 1
δn,m (4.3)
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and
µPn(µ) =

n

2n+ 1
Pn−1(µ) +

n+ 1

2n+ 1
Pn+1(µ), n ≥ 1 , (4.4)

where δn,m denotes the Kronecker delta.

According to this, the angular dependence of both the neutron flux distribution
and the scattering cross-section can be expanded in terms of N + 1 Legendre
polynomials

Ψ(x, µ) =

N∑
n=0

(
2n+ 1

2

)
φn(x)Pn(µ) ,

Σs (x, µ0) =

N∑
n=0

(
2n+ 1

2

)
Σsn(x)Pn (µ0) . (4.5)

where

φn(x) =

∫ 1

−1

dµPn(µ)Ψ(x, µ) , Σsn(x) =

∫ 1

−1

dµ0 Pn (µ0) Σs (x, µ0) .

Inserting the neutron flux distribution and the scattering cross section expansions
into equation (4.1) and with the aid of the orthogonality relations for the Legendre
polynomials and the addition theorem for the associated Legendre function. We
obtain the following PN approximation [119]

dφ1 (x)

dx
+ Σaφ0 (x) =

1

λ
νΣfφ0 (x) ,

(n+ 1)
dφn+1 (x)

dx
+ n

dφn−1 (x)

dx
+ (2n+ 1)(Σt − Σsn)φn (x) = 0, n = 1, .... , N

(4.6)

where Σa = (Σt − Σs0) is the absorption cross section.

The PN equations constitute a set of N + 1 equations with N + 2 unknowns.
This problem is usually solved ignoring the term dφN+1

dx in the n = N equation.To
approximate the vacuum boundary conditions, we shall consider Marshak’s con-
ditions [39].

1∫
0

Pm (µ) Ψ(0, µ)dµ = 0,

0∫
−1

Pm (µ) Ψ(xL, µ)dµ = 0, (4.7)

100



4.1 1D PN equations

with m odd, m = 1, 3, ... , N (or N − 1).

We will consider only the odd-order P1 , P2 and P3 approximations.

4.1.1 Boundary condition

The true boundary condition at the left boundary xL , are

Ψ(xL, µ) = Ψin(xL, µ), µ > 0, (4.8)

where Ψin(xL, µ > 0) is a known incident flux (Ψin(xL, µ > 0) = 0 is the vacuum
boundary condition). This condition cannot be satisfied exactly by the angular flux
approximation of equation (4.5), for a finite N. The most obvious way to develop
approximate boundary conditions that are consistent with the flux approxima-
tion is to substitute equation (4.5) into the exact boundary condition given by
equation (4.8), multiply by Pm(µ), and integrate over 0 ≤ µ ≤ 1 [25]. Since it
is the odd Legendre polynomials that represent directionality (i.e., are different
for µ and −µ), this procedure is repeated for all the odd Legendre polynomials
m = 1, 3, ..., N(or N − 1) as weighting functions to obtain, with the use of the
orthogonality relation of equation (4.4), the Marshak’s boundary conditions

1∫
0

dµ Pm (µ)

N∑
n=0

(
2n+ 1

2

)
φn(xL) Pn(µ) ≡ φm(xL) =

1∫
0

dµ Pm (µ)ψin(xL, µ),

(4.9)
with m odd, m = 1, 3, ... , N (or N − 1).

Equations (4.9) constitute a set of (N + 1)/2 boundary conditions. An additional
(N + 1)/2 boundary conditions are obtained similarly for the right boundary. The
Marshak’s boundary conditions ensure that the exact inward partial current at
the boundary is incorporated into the solution; that is,

J+(xL) ≡
1∫

0

dµ P1 (µ)

N∑
n=0

(
2n+ 1

2

)
φn(xL)Pn(µ)

≡
1∫

0

dµ P1 (µ)ψin(xL, µ) ≡ J+
in(xL) (4.10)

A less intuitive set of Mark’s boundary conditions arises from requiring that the
flux expansion of equation (4.5) satisfies the boundary condition
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1∫
0

N∑
n=0

(
2n+ 1

2

)
φn(xL)Pn(µi) = ψin(xL, µi), µi > 0, (4.11)

for the (N+1)/2 discrete values of µi in the inward direction, which are the positive
roots of PN+1(µi) = 0. Another (N + 1)/2 approximate boundary conditions are
obtained at the other boundary by requiring that the flux expansion satisfy the
true boundary condition for the (N + 1)/2 discrete values of µi in the inward
direction which are the negative roots of PN+1(µi) = 0. These Mark’s boundary
conditions are justified by the fact that analytical solution of the PN equations
for a source free, purely absorbing problem in a infinite half-space leads to these
conditions. However, experience has shown that results obtained with the Mark’s
boundary conditions are generally less accurate than results obtained with the
Marshak’s boundary conditions. A symmetry, or reflective, boundary condition
ψin(xL, µ) = ψin(xL,−µ) obviously requires that all odd moments of the flux
vanish [i.e., φn(xL)= 0 for n = 1, 3, . . . , odd].

4.1.2 P1 equations

Considering N = 1 in equation (4.6), (i.e. we assume that angular flux is at most
linearly anisotropic), the P1 approximation equations are

dφ1

dx
+ Σaφ0 =

1

λ
νΣfφ0 ,

dφ0

dx
+ 3(Σt − Σs1)φ1 = 0 ,

(4.12)

assuming that the source is isotropic, the second of the P1 equations yields a Fick’s
law for neutron diffusion:

φ1 =

∫ 1

−1

µΨ(x, µ)dµ = −Ddφ0

dx
, (4.13)

which, when used in the first of the P1 equations, yields the neutron diffusion
equation or the diffusive form of the P1 equation.

− d

dx

(
D
dφ0

dx

)
+ Σaφ0 =

1

λ
νΣfφ0, (4.14)

where D = 1
3(Σt−Σs1

) is the diffusion coefficient.

The basic assumptions made in this derivation of diffusion theory are that the
angular dependence of the neutron flux is linearly anisotropic:
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Ψ(x, µ) ' 1

2
φ0(x) +

3

2
φ1(x), (4.15)

and that the neutron source is isotropic, or at least has no linearly anisotropic com-
ponent. Diffusion theory should be a good approximation when these assumptions
are valid (i.e., in media for which the distribution is almost isotropic because of
the preponderance of randomizing scattering collisions, away from interfaces with
dissimilar media, and in the absence of anisotropic sources).

From the vacuum Marshak’s (J+
in = 0) boundary conditions (equation (4.11)),

J+
in(xL) =

1∫
0

dµ P1 (µ)

[
1

2
φ0(xL) +

3

2
φ1(xL)

]

=
1

4
φ0(xL)− 1

2
D
dφ0(xL)

dx
, (4.16)

we obtain the equations which, using the Fick’s law, can be rewritten as

D (Γ)
dφ0

dx
(Γ) = nφ0 (Γ) , n =

{
−1 if Γ = 0
+1 if Γ = xL

, Γ = 0, xL (4.17)

where Γ is the boundary of the slab and n is the normal directions of the boundary.
Using another coefficients in equation (4.17), other boundary conditions can be
included as zero-flux, zero-current and fixed albedo conditions.

When the prescribed incident current, J+
in = 0, the vacuum boundary condition

for diffusion theory can be constructed from a geometrical interpretation of the
ratio of the flux gradient to the flux in this equation to obtain the condition that
the extrapolated flux vanishes a distance λex outside the boundary:

φ(xL − λex) = 0, λex =
2

3Σtr
=

2

3
λtr (4.18)
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4.1.3 P3 equations

If we set N = 3 in Equation (4.6), the P3 approximation equations are

dφ1

dx
+ Σaφ0 =

1

λ
νΣfφ0, (4.19a)

dφ0

dx
+ 2

dφ2

dx
+ 3(Σt − Σs1)φ1 = 0, (4.19b)

2
dφ1

dx
+ 3

dφ3

dx
+ 5(Σt − Σs2)φ2 = 0, (4.19c)

3
dφ2

dx
+ 7(Σt − Σs3)φ3 = 0. (4.19d)

From equation(4.19b) and (4.19d) we get the flux moments

φ1 = − 1

3(Σt − Σs1)

d

dx
(φ0 + 2φ2) ,

φ3 = − 3

7(Σt − Σs3)

dφ2

dx
. (4.20)

Considering the change of variables,

F0 = φ0 + 2φ2, F1 = φ2, (4.21)

the P3 approximation can be expressed as

φ1 = −D0
dF0

dx
, φ3 = −D1

dF1

dx
, (4.22)

− d

dx

(
D0

dF0

dx

)
+ Σa(F0 − 2F1) =

1

λ
νΣf (F0 − 2F1), (4.23)

−2ΣaF0 − 3
d

dx

(
D1

dF1

dx

)
+ (4Σa + 5 (Σt − Σs2))F1 =

1

λ
νΣf (−2F0 + 4F1),

(4.24)

where the diffusion coefficients are defined as

D0 =
1

3(Σt − Σs1)
, D1 =

3

7(Σt − Σs3)
. (4.25)

Equation (4.23) and equation (4.24) are the diffusive form of the SP3 equations.
The vacuum Marshak’s boundary conditions of equation (4.7) can be rewritten as
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nD0 (Γ)
dF0

dx
(Γ) =

1

2
F0 (Γ)− 3

8
F1 (Γ) ,

nD1 (Γ)
dF1

dx
(Γ) = −1

8
F0 (Γ) +

7

8
F1 (Γ) .

(4.26)

4.1.4 P5 equations

If we set N = 5 in equation (4.6)

dφ1

dx
+ Σaφ0 =

1

λ
νΣfφ0, (4.27a)

2
dφ2

dx
+
dφ0

dx
+ 3(Σt − Σs1)φ1,= 0 (4.27b)

3
dφ3

dx
+ 2

dφ1

dx
+ 5(Σt − Σs2)φ2,= 0 (4.27c)

4
dφ4

dx
+ 3

dφ2

dx
+ 7(Σt − Σs3)φ3,= 0 (4.27d)

5
dφ5

dx
+ 4

dφ3

dx
+ 9(Σt − Σs4)φ4,= 0 (4.27e)

5
dφ4

dx
+ 11(Σt − Σs5)φ5 = 0. (4.27f)

Equations(4.27a), (4.27b), (4.27c), (4.27d) and (4.27e ) include only flux moments
and the equations (4.27b),(4.27d) and (4.27f) yield for the odd flux moments

φ1 = − 1

3(Σt − Σs1)

d

dx
(φ0 + 2φ2) ,

φ3 = − 3

7(Σt − Σs3)

d

dx

(
φ2 +

3

4
φ4

)
,

φ5 = − 5

(11Σt − Σs5)

dφ4

dx
. (4.28)

Considering the redefinitions,

F0 = φ0 + 2φ2, F1 = φ2 +
4

3
φ4, F2 =

1

3
φ4, (4.29)

The P5 equations can be expressed as

φ1 = −D0
dF0

dx
, φ3 = −D1

dF1

dx
, φ5 = −D2

dF2

dx
, (4.30)
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− d

dx

(
dF0

dx

)
+ ΣaF0 − 2ΣaF1 + 8ΣaF2 =

1

λ
νΣf (F0 − 2F1 + 8F2), (4.31)

−2ΣaF0 − 3
d

dx

(
D1

dF1

dx

)
+ (4Σa + 5(Σt − Σs2))F1 − (20(Σt − Σs2) + 16Σa)F2)

=
1

λ
νΣf (−2F0 + 4F1 − 16F2), (4.32)

−8ΣaF0 − (20(Σt − Σs2) + 16Σa)F1 − 15
d

dx

(
D2

dF2

dx

)
+ (81(Σt − Σs4)

+ 80(Σt − Σs2) + 64Σa)F2 =
1

λ
νΣf (8F0 − 16F1 − 64F2), (4.33)

where the diffusion coefficients are

D0 =
1

3 (Σt − Σs1)
, D1 =

3

7 (Σt − Σs3)
, D2 =

15

11 (Σt − Σs5)
. (4.34)

Equations (4.32) and (4.33) are the diffusive form of the SP3 equations. The
vacuum Marshak’s boundary conditions of Equation (4.7) can be rewritten as

nD0 (Γ)
dF0

dx
(Γ) =

1

2
F0 (Γ)− 3

8
F1 (Γ) +

15

16
F2 (Γ) ,

nD1 (Γ)
dF1

dx
(Γ) = −1

8
F0 (Γ) +

7

8
F1 (Γ)− 205

128
F2 (Γ) ,

nD2 (Γ)
dF2

dx
(Γ) =

1

16
F0 (Γ)− 41

128
F1 (Γ) +

407

128
F2 (Γ) .

(4.35)

4.2 Simplified PN equations

The SPN equations have been derived in three ways [120] (i) by a formal pro-
cedure, in which they are hypothesized as multi-dimensional generalizations of
the 1-D PN equations, (ii) by an asymptotic analysis, in which they are shown
to be asymptotic corrections to diffusion theory, and (iii) by a variational analy-
sis. The first (formal) approach was historically the first to be proposed, in the
early 1960’s [34]. This approach is relatively simple, but is theoretically weak.
The second (asymptotic) approach was developed in the 1990’s [121]; this is much
more theoretically convincing, but it only leads to the basic SPN equations with-
out boundary conditions (the boundary conditions must be hypothesized). The
third (variational) approach was also developed in the 1990’s [32, 122]; this yields
both the SPN equations and their boundary conditions. Unfortunately, from the
algebraic viewpoint, the variational derivation is exceedingly complicated.

106



4.2 Simplified PN equations

4.2.1 SP3 equations

Let the one-dimensional P3 equations in first-order form equations (4.19) be the
starting point. Inserting equation (4.20) in equation (4.19a), (4.19c) and taking
into account the diffusion coefficients (4.25) and the redefinitions (4.21). The four
first-order differential equations can be replaced by the two second-order differen-
tial equations for the 0th and 2nd flux moments.

In 1960’s Gelbrad [34] proposed the SP3 equations for general three-dimensional
geometry by replacing the second derivatives in the one-group P3 equations for
one-dimensional geometry d2

dx2 by the Laplace operator ~∇2. Applying this ap-
proach in equations (4.23), ( 4.24) and rearranging terms of this equations yield
the corresponding SP3 equations for three-dimensional geometry:

− ~∇(D0
~∇F0) + Σa(F0 − 2F1) =

1

λ
νΣf (F0 − 2F1),

− 3~∇(D1
~∇F1) + (4Σa + 5(Σt − Σs2))F1 − 2ΣaF0

=
1

λ
νΣf (−2F0 + 4F1). (4.36)

The SP3 trial function given by equations (4.36) is a generalization of equations
(4.23) and (4.24) in the following sense. If the multidimensional transport solution
behaves in a locally one-dimensional manner at each point r in space, then equation
(4.36) reduces to equations (4.23) and (4.24) without approximation, where x in
equations (4.23, 4.24) is the direction in which the multidimensional solution varies.
Thus, equations (4.23) and (4.24) are the P3 approximation for a one-dimensional
transport solution with the variation only in the x-direction; equation (4.36) is
the generalization of equations (4.23) and (4.24) for a multidimensional transport
solution having one-dimensional variation in an arbitrary direction.

To obtain solutions to the SP3 and diffusion equations, boundary conditions have
to be defined. As these equations are furthermore not defined at interfaces where
cross sections are discontinuous, also interface conditions are required. Brantley
and Larsen’s variational derivation of the SP3 equations provides in addition to
the equations (4.36) the interface and Marshak-like boundary conditions [32]. At
the interface rij between the two volumes i and j the following conditions are
obtained

F im(rij) = F jm(rij) and niJ
i
m(rij) = niJ

j
m(rij) (4.37)

where ni is the unit outer normal vector of material zone i and with

J jm(r) = −Di
m
~∇F im for m = 0, 2 (4.38)
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In the case of an outer boundary, the Marshak-like boundary conditions (4.9) are
used to obtain the solution. As we did before, substitute the Legendre Polynomial
(4.2), using the the odd-order flux moments (equation (4.20)) and the diffusion
coefficient (equation (4.25)), we get the incoming and outgoing "partial currents"
at any surface rij of a volume

J±0 (rij) =
1

4
F i0(rij)±

1

2
J i0(rij)−

3

16
F i2(rij)

J±2 (rij) =
3

80
F i0(rij)±

1

2
J i2(rij)−

21

80
F i2(rij)

(4.39)

If there is reflexive at any outer surface rout of the system, the boundary conditions
are given by

J−m(rout) = 0, m = 0, 2. (4.40)

4.2.2 SP5 equations

If we set N = 5 in equation (4.6) a s we did before, let the one-dimensional P5

equations in first-order form (4.31), (4.32) and (4.33) be the starting point.

In the formal derivation of the three-dimensional SPN equations, one simply takes
the one-dimensional PN equations and replaces each 1D diffusion operator by its
3D counterpart. That is, we replace:

− d

dx

(
dFm
dx

)
= −~∇2Fm, m = 1, 2, 3 (4.41)

Thus, equation (4.31), (4.32) and (4.33) become:

− ~∇(D0
~∇F0) + ΣaF0 − 2F1 + 8ΣaF2 =

1

λ
νΣf (F0 − 2F1 + 8F2), (4.42)

−3~∇(D1
~∇F1)− 2ΣaF0 + (4Σa + 5(Σt − Σs2))F1

− (20(Σt − Σs2) + 16Σa)F2

=
1

λ
νΣf (−2F0 + 4F1 − 16F2), (4.43)

−8ΣaF0 − (20(Σt − Σs2) + 16Σa)F1 − 15D2
~∇2F2

+ (81(Σt − Σs4) + 80(Σt − Σs2) + 64Σa)F2

=
1

λ
νΣf (8F0 − 16F1 − 64F2) (4.44)
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A similar approach to the one used for the SP3 equations gives the boundary
conditions for the vaccum and reflective condition.

4.2.3 Finite elemet discretization

As it was reviewed in the last section the SPN consist of a set of diffusion-like
equations for which simultaneous solutions for the unknown fluxes moments are
required. Thus FEM discretizations that were developed for the diffusion equation
can be applied without major changes. A Galerkin finite element discretization
has been applied to equation (4.36) leading to an algebraic generalized eigenvalue
problem of the form,(

L00 L01

−LT01 L11

)(
F̃0

F̃1

)
=

1

λ

(
M00 M01

MT
01 M11

)(
F̃0

F̃1

)
, (4.45)

where the matrix elements are given by

(L00)ij =

Nt∑
e=1

(
D0

∫
Ωe

~∇Ni~∇Nj dV −D0

∫
Γe

Ni~∇Nj d~S (4.46a)

+ (Σa)

∫
Ωe

NiNj dV

)
,

(L01)ij =

Nt∑
e=1

(
−2Σa

∫
Ωe

NiNj dV

)
, (4.46b)

(L11)ij =

Nt∑
e=1

(
−3D1

∫
Ωe

~∇Ni~∇Nj dV + 3D1

∫
Γe

Ni~∇Nj d~S (4.46c)

+(4Σa + 5(Σt − Σs2))Σa2

∫
Ωe

NiNj dV

)
,

(M00)ij =

Nt∑
e=1

(
νΣf

∫
Ωe

NiNj dV

)
, (4.46d)

(M01)ij =

Nt∑
e=1

(
−2νΣf

∫
Ωe

NiNj dV

)
, (4.46e)

(M11)ij =

Nt∑
e=1

(
4νΣf

∫
Ωe

NiNj dV

)
, (4.46f)

where Ni is the prescribed shape function for the i− th node. For simplicity, the
shape functions used are part of Lagrange finite elements.Ωe , k = 1,..., Nt, are
the reactor subdomains (cells) in which the reactor domain is divided. In the same
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way,Γe is the set of the corresponding subdomain surfaces which are part of the
reactor boundary.

For simplicity all derivation are done assuming one neutron energy group, even
though the code implemented and the numerical results presented admit a multi-
group formulation.

To solve the algebraic eigenvalue problem a Krylov-Schur method is used from
the SLEPc library. Finally, the solution fluxes must be normalized using some
arbitrary criteria as all eigenvalue problems. usually it is forced that the average
neutronic power is equal to 1.

1

V

∫
PdV =

1

V

∫ G∑
g=1

Σfgφ0g dV = 1. (4.47)

A similar formulation is used for the SP5 equations.

4.3 Numerical results

The performance of the simplified SPN (N = 1, 3, 5) approximations has been
tested for different problems presented in Chapter2. Firstly, we tested the 1D
case using two problems in slab geometry, a homogeneous one-group and isotropic
scattering eigenvalue problem (section 2.3.1), which can be solved analytically,
then a heterogeneous one with anisotropic scattering. Secondly, we treated a more
realistic problems, a two dimensional VVER-1000 reactor (section 2.3.5) problem,
a small hexagonal reactor (section 3.4.2) and the three dimensional VVER-440
problem (section 2.3.8) have been tested to show the performance in 2D and 3D
problems.

We compared the results obtained for the homogeneous one-group problem with
the nodal collocation method to results from the discrete-ordinates code ONEDANT
[123], which solves the transport problem using a very fine spatial mesh and an
angular SN quadrature set. While for the other problems, we compared the results
obtained for the P1, P3 and P5 approximations to each other.
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4.3.1 Homogeneous slab

We first consider a homogeneous slab 2 cm thick which has been reported before in
section 2.3.1 and has the nuclear cross sections : D = 1

3 , Σs = 0.9, and νΣf = 0.25.
This problem has been selected to show the bad behaviour of the P1 (diffusion)
approximation for systems with a strong spatial variation of the neutronic flux.

Table 4.1 shows the fundamental eigenvalue and those corresponding to the sub-
critical modes obtained for the P1, P3 and P5 approximations compared to the
analytical values of the homogeneous slab. The first eigenvalues keff obtained
using the PN approximations are compared with the SN result from the discrete-
ordinates code ONEDANT [123]. The angular quadrature for the ONEDANT runs
was S96 and the result obtained using number of refinement cycle = 1 and a
polynomial degree p= 3 in the finite element expansion. The calculation performed
with ONEDANT is a very good approximation to the transport equation using
the discrete-ordinates method, but the computational cost of this method is very
high to be used in more realistic problems [119].

Figure 4.1 shows the normalized scalar flux from the ONEDANT reference so-
lution, versus PN solutions with (N = 1, 3, 5) obtained for the P1, P3 and P5

approximations. We can note that for the fundamental mode the PN calculations
follow the reference solution. However, the P3 and P5 curves are closer to the ref-
erence transport curve than the P1 one. As it was expected, the P5 approximation
is the most accurate, and we can also conclude that the diffusion approximation
is not very adequate to study this problem.

Figure 4.3 shows the eigenvectors obtained for the second, third and fourth sub-
critical modes using the P1, P3 and P5 approximations.

Table 4.1: PN compared to the analytical values of the first four eigenvalues for a
homogeneous slab 2 cm thick.

Eigenvalue
Analytical Solution Numerical Result

P1 P3 P5 P1 P3 P5

keff 0.587489 0.652956 0.660523 0.5874890 0.6529562 0.6605229
2nd 0.149135 0.207745 0.223379 0.1491351 0.2077446 0.2233791
3rd 0.058380 0.096091 0.113889 0.0583796 0.0960912 0.0113888
4th 0.029602 0.053122 0.068040 0.0296016 0.0531219 0.0680403

ONEDANT (1st) 0.662951
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Figure 4.1: Normalized scalar fluxes for the homogeneous 2 cm slab.
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Figure 4.2: Normalized scalar fluxes for the homogeneous 10 cm slab.
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Figure 4.3: Eigenvectors for the subcritical modes of the homogeneous slab 2 cm thick.
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We conclude also that the P5 approximation is superior to the P3 one, and that
the P1 approximation results show a large error. Increasing the length of the slab
increases the accuracy of the PN solutions as shown in Figure 4.2, which has been
obtained from a more realistic problem used a seven-region slab with 10 cm length
[119]. This result can be expected, since the leakage from the slab also decreases
when the slab becomes larger, and the problem becomes more diffusive.

4.3.2 Heterogeneous slab

We consider now a more "realistic" system corresponding to a seven-region slab 18
cm thick, with vacuum boundary conditions for the leftmost and rightmost faces,
and discontinuous fission and total cross-sections. This problem is a slight modifi-
cation of a problem presented in [124]. The system is comprised of a combination
of fuel and no fuel regions, as shown in Figure 4.4. The cross-sections for these
materials are shown in 4.2.

FuelNo Fuel FuelNo Fuel FuelNo Fuel

2.4 cm2.7 cm 2.4 cm2.7 cm 2.4 cm2.7 cm 2.7 cm

No Fuel

Figure 4.4: Seven-region slab disposition.

Table 4.2: Seven-region cross sections.

Material νΣf ( cm−1) Σs( cm
−1) Σt( cm

−1)

Fuel 0.178 0.334 0.416667
No fuel 0.0 0.334 0.370370

Table 4.3 shows the three dominant eigenvalues for the PN approximations with
(N = 1, 3, 5). The result obtained using number of refinement cycle = 1 and a
polynomial degree = 3 in the finite element expansion. Also we have included the
result obtained for keffcalculation from ONEDANT, using an angular quadrature
order of S96, with 500 fine mesh cells in each region and a convergence criterion
of epsi = 10−6.
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Table 4.3: Four dominant eigenvalue for the seven-region slab 18 cm thick.

Eigenvalue P1 P3 P5 ONEDANT

keff 1.113872 1.148744 1.157360 1.16224
2nd 0.6586507 0.7350364 0.7466179
3rd 0.4239442 0.5276454 0.5419515
4th 0.1092353 0.1653045 0.1881475

In Figure 4.5 we plot the normalized scalar flux for this problem computed with
the high order finite element method for the P1, P3 and P5 approximations. While
Figure 4.6 shows the normalized second, third and fourth eigenvectors obtained.
As with the homogeneous problem, the P3 and P5 results remain more accurate
than the P1 result.
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Figure 4.5: Normalized scalar fluxes for the heterogeneous slab.
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Figure 4.6: Eigenvectors for the subcritical modes of the heterogeneous slab.
116



4.3 Numerical results

4.3.3 Small reactor

To study the performance of the SPN approximation in the three dimensional
reactors, a small reactor which has been described before in (section 3.4.2) will be
studied using the SP1, SP3 and SP5 approximations.

The obtained results for the dominant eigenvalue keff using SP1, SP3 and SP5

approximations are shown in Table 4.4. The result obtained using zero refinement
cycle and a polynomial degree p = 3 in the finite element expansion. In this Table,
also the number of degrees of freedom (DoF) are shown for the reduced eigenvalue
problem in order to have an idea of the size of the problem solved. Also the mean
relative and maximum relative difference per cell for the neutronic power between
both SP1, SP3 approximation and SP5 approximation are shown for the initial
configuration for the reactor. Figure 4.7 shows the axial power distribution of
the reactor for several calculations. First, the power distribution has been com-
puted for the SPN approximation (N = 1, 3, 5) using 12 axial planes. As SP5

approximation is the most accurate one, we compared it with SP1, SP3 results.
The difference in neutronic power distribution between both SP1, SP3 approxi-
mation and SP5 approximation are shown also in Figure 4.8. This difference can
be expressed as

δ̄ =
1

Ne

Nt∑
e=1

(
Pe,SPN

− Pe,Ref
Pe,Ref

) (4.48)

δmax = max (Pe,SPN
− Pe,Ref ) (4.49)

Where PSPN
is the computed power calculated by SP3 or SP5 approximation while

PRef is the computed power calculated by SP5.

Table 4.4: Eigenvalue results and power distribution difference with respect to SP5 for
the Small Reactor reactor.

DoF keff ∆keff Power
( pcm) δ̄ (%) δmax(%)

SP1 41366 0.8160415 265.8 2.014 1.861
SP3 82732 0.8186731 2.65 0.014287 0.1005

SP5 124098 0.8186996
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Figure 4.7: Axial power evaluation for the small reactor.
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We can note that the results demonstrate a near perfect match. The difference in
the axial power doesn’t exceed 5% in the case of the diffusion and the difference
between the SP3 and the SP5 is very small which mean that the SP3 is sufficient.
Figure 4.9 shows the power difference for both SP1 and SP3 relative to SP5 on
each hexagon. The difference in the case of the diffusion doesn’t exceed 0.28% and
0.02% for the SP3 approximation.

Difference (%) _SP1
Difference (%) _SP3

Material

0.09 0.28

0.01 0.16 0.04

0.09 0.26

2

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.01 0.01

 0.00 0.02 0.01

0.00 0.00

|  23.6  cm |

22

2

2

2

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Figure 4.9: Difference in neutronic power distribution for SP1 and SP3 with respect to
SP5 in the small reactor.

4.3.4 Two dimensional VVER-1000 reactor

The VVER-100 reactor has been described before in (section 2.3.5). This reactor is
a two dimensional reactor composed by 163 assemblies of pitch equal to 23.60 cm.

Table 4.5 shows the results obtained for the dominant eigenvalue keff using SP1,
SP3 and SP5 approximation and the mean relative and maximum relative differ-
ence for the neutronic power between both SP1, SP3 approximation and the SP5

approximation. The result obtained using zero refinement cycle and a polynomial
degree p= 3 in the finite element expansion.

In Table 4.6 the results obtained for the first three subcritical eigenvalues are
presented using SP1, SP3 and SP5 approximation. The difference in neutronic
power distribution between both SP1, SP3 approximation and SP5 approximation
are shown also in Figure 4.10.

119



Chapter 4. High Order Finite Element Method for The Simplified Spherical Harmonics

Equations

Table 4.5: Eigenvalue results and power distribution difference with respect to SP5 for
the VVER-1000 2D reactor.

DoF keff ∆keff Power
( pcm) δ̄ (%) δmax(%)

SP1 9074 1.00645 61.5 1.2539 2.2248
SP3 18148 1.00705 1.4 0.04951 0.0663

SP5 27222 1.00707

Table 4.6: First 3 subcritical eigenvalues for the VVER-1000 2D reactor.

λ2 λ3 λ4

SP1 0.9948101 0.9948101 0.9737631
SP3 0.9955893 0.9955893 0.9749211
SP5 0.9956090 0.9956090 0.9749494
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Figure 4.10: Difference in neutronic power distribution for SP1 and SP3 with respect
to SP5 in the VVER-1000 2D reactor.

120



4.3 Numerical results

4.3.5 Three dimensional VVER-440 reactor

As we did before for the small reactor problem. The performance of the SPN
approximation for the three dimensional VVER-440 reactor has been studied. This
reactor has been described before in (section 2.3.8).

Table 4.7 shows the results obtained for the dominant eigenvalue keff using SP1,
SP3 and SP5 approximations. The result obtained using zero refinement cycle
and a polynomial degree p= 3 in the finite element expansion. The number of
degrees of freedom (DoF) are shown and the mean relative and maximum relative
difference for the axial power between both SP1, SP3 approximation and SP5

approximation are shown for the reactor configuration.

Figure 4.11 shows the axial power distribution for the SPN approximation (N =
1, 3, 5) in the three dimensional VVER-440 reactor. We can note that the results
demonstrate a near perfect match. The difference in neutronic power distribution
between both SP1, SP3 , approximation and SP5 approximation are shown also in
Figure 4.12. The difference in neutronic power distribution in the the sixth plane
between both SP1, SP3 approximation and SP5 approximation are shown also in
figure 4.13.

Table 4.7: Eigenvalue results and power distribution difference with respect to SP5 for
the VVER-440-3D reactor.

DoF keff ∆keff Power
( pcm) δ̄ (%) δmax(%)

SP1 857882 1.01138 127.1 2.1971 0.069568
SP3 1715764 1.01261 3.8 0.058384 0.001632

SP5 2573646 1.01265
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Figure 4.11: Axial power evaluation for the three dimensional VVER-440 reactor.
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Figure 4.12: SP1 and SP3 axial power difference with respect to SP5.
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Figure 4.13: Difference in neutronic power distribution for SP1 and SP3 with respect
to SP5 in the VVER-1000 2D reactor.
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Conclusions

The distribution of neutron population in nuclear reactor is described by using
transport equations. One of possible approximations of neutron transport equa-
tion is given by the neutron diffusion equation. This work deals with this model for
nuclear reactors with hexagonal geometries. First, the stationary neutron diffu-
sion equation is studied. This is a differential eigenvalue problem, called Lambda
Modes problem. To solve the Lambda Modes problem, an adaptive h-p finite
element method has been implemented to approximate the solution of Lambda
Modes problem of a nuclear reactor with hexagonal geometry. This method allows
using high order finite elements with heterogeneous meshes, and leads to different
refinements such as h-refinement and p-refinement. In this way, to increase the
accuracy of the solution it is possible both to refine the spatial mesh and to in-
crease the degree of the polynomials in the finite element method. This method is
based on splitting each one of the rectangular prisms defied by the geometry into
three equilateral rectangular prisms, obtaining a mesh which is kept fixed.

To study the performance of the method to compute the dominant eigenvalues and
their corresponding eigenvectors of a nuclear power reactor, different benchmark
problems have been analysed, using different meshes and configurations of the
computations. An extensive analysis of 1D and 2D benchmark reactor cores has
been carried out. In all the studied reactors the h-p FEM has provided good results
for the (keff) and the neutron power distribution. Also, the three-dimensional
VVER-440 Reactor have been studied. The obtained results for the (keff) and
the neutronic power distribution have been compared with the reference solution
obtained with the DIF3D code. From all the analyses performed is concluded
that the method converges if the mesh is refined or the degree of the polynomial
expansions is increased, being the last strategy the most convenient one to obtain
accurate results with a moderate computational cost.

We propose two different h-p-refinement methods for the Lambda Modes problem
of a nuclear power reactor. The first one is based in the material distribution
inside the reactor that allows to define an heterogeneous mesh a priori. And the
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second one is based on a general error estimator that enables the code to refine
the mesh in an automatic way.

The h-p finite element method used in this work has been implemented using the
open source finite elements library deal.II [46]. With the help of the library, the
code proposed is dimension independent and can manage different cell sizes and
different types of finite elements [89]. In order to solve the resulting algebraic eigen-
value problem from the spatial discretization of the Lambda problem the SLEPc
library [54] is used. As the deal.II library [46] doesn’t support the hexahedra cells,
the geometry is transformed to quadrilaterals with Gmsh [68] as mentioned before.

Once the solution for the steady state neutron distribution is obtained, it is used
as initial condition for the time integration neutron diffusion equation. Many
transients in nuclear power reactors involve the movement of the control rod banks,
based on moving the control rods of the reactor, simulating an accident where a
control rod is ejected and a scram is initialized to control the power evolution. For
the simulation of this kind of transients with the classical methods, it is necessary
to define equivalent material properties corresponding to partially inserted cells
during the movement of the control rods. Volume averaged techniques are used
to define this equivalent cross-sections, but this procedure leads to unphysical
behaviour of some magnitudes during the simulation when a small number of
axial planes are used in the spatial discretization and this problem is known as the
rod cusping problem.

To avoid this problem, a new method based on a high-order finite element method
is proposed. In this new method, the spatial mesh is moved together with the
control rods in such a way that there is no partially inserted cells. The solutions
of the physical magnitudes are transferred between different spatial meshes using
a polynomial interpolation. To study the performance of the moving mesh scheme,
a benchmark problem has been analysed. In these problems, a better performance
of the moving mesh scheme than the traditional fixed mesh schemes when a small
number of axial cells are used is shown. Thus, the moving mesh scheme permits
to use a coarser discretization and reduce the computational effort.

Finally, as the usual approximation of the neutron transport equation by the multi-
group neutron diffusion equation does not provide enough accurate results for
complex fuel assemblies or fine mesh calculations. An h-p Finite Element Method
is used to obtain the dominant Lambda mode associated with a configuration of
a reactor core using the SPN approximation. The performance of the SPN (N=
1, 3, 5) approximations has been tested for different reactor benchmarks to com-
pute the keff of the reactor and its corresponding stationary neutron flux. The
work has been focused on the comparisons between the diffusion equation, SP1,
and the more sophisticated SP3 and SP5 equations. Firstly, two one dimensional
problems were tested, a homogeneous one-group with isotropic scattering, which
can be solved analytically, then a heterogeneous reactor with anisotropic scatter-
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ing. Secondly, more a realistic problem was treated to show the performance in
a three dimensional reactor. Firstly, two one-dimensional problems were tested, a
homogeneous one-group and isotropic scattering eigenvalue problem , which can
be solved analytically , then a heterogeneous one with anisotropic scattering. Sec-
ondly, more a realistic problem was treated to show the performance in 2D and 3D
reactor. From these analyses performed is concluded that when diffusion approxi-
mation does not give enough accurate results SP3 is a convenient, computational
cheap alternative to improve performance. However, SP5 approximation does not
worth the extra computational effort to solve this approximation.
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