
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

28 September - 2 October 2009, Universidad Politécnica de Valencia, Spain
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Abstract
A nonlinear analysis of an elastic tube subjected to gravity forces and buoyancy pressure is
carried out. An update lagrangian formulation is used. The structural analysis efficiency in
terms of computer time and accuracy, has been improved when load stiffness matrices have
been introduced. In this way the follower forces characteristics such as their intensity and
direction changes can be well represented. A sensitivity study of different involved variables
on the final deformed pipeline shape is carried out.

Keywords: Geometrically nonlinear structures, large displacements, follower forces, hydro-
static actions

1. Introduction
It is considered a pipeline of total length LT = NL. For analysis purpose the pipeline is
divided into N segments of equal length L. Each element i with i = 1, 2, . . . , N is limited
by two nodes, 1 and 2, using local numbering and n− 1 e n in global numbering in which n
varies from 0 to N . The two extreme nodes 0 and N correspond to two lids of weight PLα,
with α = 0 and α = 1 as it is shown in figure 1a.

The circular constant section of the pipeline has an external radius R. The weight of
the tube is represented by a uniform distributed load of intensity p per unit of length. In
addition, the tube is floating on the sea and therefore it is subjected to an upward hydrostatic
pressure. The sea density is γw. Waves and current forces does not exist. Therefore, it is
assumed inertia forces are negligible. The tube elasto-mechanics characteristics are: Young
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Figure 1: Pipeline discretización

modulus E, flexural inertia Iz and area Ω. All loads are modeled in a first approximation as
concentrated at extreme nodes of each pipeline segment.

The objective of this paper is to find the final equilibrated deformed position of the
pipeline subjected to the former loads.

The following system of coordinate axes is adopted: General axes Oxy for load definition,
in which the origin O s the intersection of the vertical at initial pipeline section and the
horizontal corresponding to the still water level (SWL). The axis Ox is horizontal and the
axis Oy is upwards vertical (figure 1b). Ii is assumed that inertial forces due to the waves and
sea current does not exist. Finally, a local coordinate system s, n is introduced to define the
stress-resultants for each pipeline element 12. The origin of these local axes is at node 1 and
the axis s is the straight line joining the node 1 and 2. The axis n is normal to the axis s. The
axes s, n rotated in such a way that their directions became parallel to horizontal and vertical,
i.e. to the general axes Oxy are designated by x̄, ȳ.

The stress-resultant and displacement analysis will be carried out within a geometrically
nonlinear elastic in large displacements framework and an updated Lagrangian formulation.
Standard notation will be used in the nonlinear analysis of the structures [3]. The occurrence
od a variable in the configuration C1, i = 1, 2, will be designated by a superscript i to the
left. The axes of reference of the occurrence of a variable are defined by a left subscript.
The subscripts and superscript to the right have either the usual meaning of components
of a matrix or a vector or they are used to distinguish the element and section dependence
of similar matrices and vectors. The initial position of equilibrium of the tube is achieved
assuming that the loads, self weight and hydrostatic pressure on the pipeline caps are null and
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therefore only the distributed loading is acting, i.e. the pipeline weight and the Archimedes
uplift pressure. In figure 2 the horizontal position of equilibrium of the pipeline is shown.
The tube is subjected in this position to its weight balanced by the Archimedes uplift. The
remaining loads, the lids weight and the hydrostatic pressure on them, are multiplied by
a factor λ = 0 i.e. they are not acting on the pipeline yet. From this initial position of
equilibrium the loading on the extreme sections of the pipeline are increasing continuously
by varying the factor λ from its initial value λ = 0 to the final one λ = 1. An incremental
analysis technique is used starting at current configuration of equilibrium C1 of the deformed
tube, that it corresponds to a value 0 < λ < 1. From this position the lids forces are increasing
by the factor λ+dλ and it is attempting to find the new target configuration of equilibrium C2

corresponding to these incremental loads. It should be noted that the weight of the pipeline
remains constant, both in intensity as in direction, along the length of the tube. Moreover,
the Archimedes pressure along the pipeline is not affected by this factor increment dλ, but
due to its follower characteristic attached to the structure, according the classification given
in [2], its intensity and direction vary because they are dependent of the deformed geometry
of the pipeline. These follower loads not only change its direction due to the incremental
rotations occurring at the tube sections along the pipeline, but also its intensity caused by the
incremental displacements produced along the pipeline.

Figure 2: Initial configuración C0 of the tube in equilibrium

This paper is structured as follows. First, it is studied the hydrostatic pressure on a
pipeline slice and its incremental changes when the slice undergoes a differential rotation
dθ and a differential displacement dv0. Next, for a pipeline element the incremental equilib-
rium equations between the configurations C1 and C2 are set up by applying the principle of
virtual work. All variables involved in these equilibrium equations are expressed in axes of
the known configuration C1. In this way the equivalent loads at element nodes are obtained
and the stiffness and load matrices are computed as well. The load matrices are caused by the
follower forces, i.e. loads whose intensity and direction are depending on element displace-
ments. Once the FE discretization of the whole pipeline has been performed the linearized
incremental equilibrium equations can be found. The equilibrium equations can be solved
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iteratively until a final equilibrium position at the end of step load λ+dλ is reached. In these
equations the appearance of load stiffness matrices due to the follower loads. By an incre-
mental procedure or a step by step technique the final equilibrium position of the pipeline, i.e.
the pipeline position corresponding to the final value of the load factor λ = 1 can be found.
It was found that the inclusion in the analysis of these load matrices allows greater computa-
tional efficiency and a better accuracy in the results. Several application examples are shown
and in some of them a sensitivity analysis of some key variables illustrate the computational
techniques developed. Finally the paper is closed with some general conclusions.

2. Distribution and resultant of the pressure loading on a
tube slice

It is assumed a pipeline slice inclined respect to horizontal an angle θ. In figure 3 the hydro-
static pressure distribution on a semi-submerged cross-section of the pipeline is shown. This
pressure p(yc, θ, ϕ) is function of following variables: the ordinate yc of the center of the cir-
cle, the slope θ of the section respect to the vertical plane and the position of the application
point of the pressure defined by the angle ϕ. The resultant force, ph(yc, θ)ds, of this pressure
distribution on a pipeline slice of thickness ds is contained in its middle plane.

Figure 3: Pressure distribution on a circular section

In the following the expressions of the pressure distribution p(yc, θ, ϕ) and its resultant
ph(yc, θ)ds as function of the position of the tube center measured by the ordinate yc are
given:
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• Slice in the air yc ≥ R cos θ

p(yc, θ, ϕ) = 0 (1)
ph(yc, θ) = 0 (2)

• Semi-submerged slice R cos θ ≥ yc ≥ −R cos θ

p(yc, θ, ϕ) = γw [R cos θ cos ϕ− yc] (3)

with ϕc ≥ ϕ ≥ −ϕc and ϕc = arctan
( yc

R cos θ

)

ph(yc, θ) = 2
∫ ϕc

0

p(yc, θ, ϕ) cos ϕRdϕ =

γwR2

[
arccos

( yc

R cos θ

)
− yc

R cos θ

√
1−

( yc

R cos θ

)2
]

(4)

• Submerged slice −R cos θ ≥ yc

p(yc, θ, ϕ) = γw (R cos θ cos ϕ− yc) with − π ≥ ϕ ≥ π (5)

ph(yc, θ) = 2
∫ π

0

p(yc, θ, ϕ) cos ϕRdϕ = γwπR2 cos2 θ (6)

The variation of the pressure resultant caused by a modification of the position of the grav-
ity center of the slice defined by an infinitesimal vertical displacement v0 and an infinitesimal
rotation θ0 are found by the expression:

dpt(yc, θ) =
∂ph(yc, θ)

∂yc
v0 +

∂ph(yc, θ)
∂θ

θ0

in which ∂ph(yc,θ)
∂yc

and ∂ph(yc,θ)
∂θ are defined according to the pipeline slice position as fol-
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lows:

Slice in the air yc ≥ R cos θ

∂ph(yc, θ)
∂yc

= 0 (7)

∂ph(yc, θ)
∂θ

= 0 (8)

Semi-submerged slice R cos θ ≥ yc ≥ −R cos θ

∂ph(yc, θ)
∂yc

= −2γwR cos θ

√
1−

( yc

R cos θ

)2

(9)

∂ph(yc, θ)
∂θ

= −2γwR2 cos θ sin θ arccos
( yc

R cos θ

)
(10)

Submerged slice−R cos θ ≥ yc

∂ph(yc, θ)
∂yc

= 0 (11)

∂ph(yc, θ)
∂θ

= −2γwπR2 cos θ sin θ (12)

3. Equivalent loads at element nodes

3..1. Analysis procedure
The analysis of the pipeline structure is carried out according to an incremental procedure,
eventually iterative within load steps. That means, the final position of the pipeline is reached
by successive finite increments of the load dλ, starting at the value λ = 0 and increasing
until the final load value λ = 1. The analysis is described according to an updated lagrangian
formulation (UL), in which in each load step the equilibrate configuration C1 is known and
the adopted local coordinate axis for reference s and n are attached to the known configuration
C1 as it is shown in figure 4. The axis s joints nodes 1 and 2 of element and the normal axis
n corresponds to an anticlockwise rotation of π

2 of the axis s.

3..2. Displacement independent loads
The load of this type acting on the pipeline is the weight and it is assumed this constant
load is applied to a beam element of length L inclined an angle α respect to horizontal.
The equivalent nodal forces to the weight loading are p = (px1, py1,mz1, px2, py2, mz2)T

at nodes 1 and 2 and they can be approximately expressed in axes x̄, ȳ by means of this
formulae:

pxi = pti cos α− pni sin α = 0 i = 1, 2 (13)

pyi = pti sin α + pni cosα =
pL

2
i = 1, 2 (14)

mzi = mni i = 1, 2 (15)
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in which

pti =
∫ L

0

N1
i pds, i = 1, 2 (16)

pn1 =
∫ L

0

N3
1 pds, mn1 =

∫ L

0

N3
2 pds (17)

pn2 =
∫ L

0

N3
3 pds, mn2 =

∫ L

0

N3
4 pds (18)

In the former expressions the interpolation linear functions have been designed by N1
i =

N1
i (s) with i = 1, 2 and N3

i = N3
i (s) with i = 1, 2, 3, 4 are the cubic interpolation functions

of Hermite. They are defined by the expressions:

N1
1 = 1− ξ, N1

2 = ξ (19)

N3
1 = 1− 3ξ2 + 2ξ3, N3

3 = 3ξ2 − 2ξ3 (20)

N3
2 = 1Lξ(1− ξ)2, N3

4 = 1L(ξ3 − ξ2) (21)

with ξ =
s

1L
.

The formulae (16)-(18) are valid only in a linear analysis, however their use in a nonlinear
analysis can be acceptable if the beam element length L is small in comparison to the total
pipeline length. In the contrary case, the distributed loading on the beam element should be
taken into account in the expression of the nonlinear stiffness matrix of the element. Then the
expression (72) of this matrix, given later, should be modified and to include terms related to
the the distributed force p.

3..3. Follower forces
In the case of follower forces the deformed structure should be taken into account in the
analysis. This fact leads to the concept of load stiffness matrix. To this end it is assumed,
according to an updated lagrangian formulation, that the equilibrated configuration is known
C1. From this known configuration it is arrived to configuration C2 when unknown displace-
ments u(s), v(s) and θ(s) are produced due to a load increment. These displacements are
expressed in the local coordinates of the element s and n.

The geometry of the deformed tube element in the configuration C1 referred to the local
exes can be written if the rotations 1θ1 and 1θ2 at nodes 1 and 2 are known, as follows:

1yn(ξ) = N3
2 (ξ)1θ1 + N3

4 (ξ)1θ2 with ξ =
s

1L
(22)

where 1L =
√

(1x2 − 1x1)2 + (1y2 − 1y1)2.
The rotation variation along the deformed beam element is

1θn(ξ) =
d1yn(ξ)

ds
=

dN3
2 (ξ)
ds

1θ1 +
dN3

4 (ξ)
ds

1θ2 (23)
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Figure 4: Large displacements in a beam element

If (1xi,
1 yi), with i = 1, 2, are the general coordinates of the element nodes then the deformed

element C1 in referred to the general axes is:

1y(ξ) = 1y1 + 1Lξ sin 1α + 1yn(ξ) cos 1α, 1θ(ξ) = 1θn(ξ) + 1α (24)

with 1α = arctan(1y2 − 1y1)(1x2 − 1x1)−1.
The resultant pressure 1ph(ξ) on the slice ξ, noting yc(ξ) = y(ξ), can be expressed

according to section 2.:

1ph(ξ) = 1ph[1yc(ξ), 1θ(ξ)] = 1ph[1y(ξ), 1θ(ξ)] (25)

and the local components of this pressure referred to axes s and n are

1phs(ξ) = −1ph(ξ) sin 1θ and 1phn(ξ) = 1ph(ξ) cos 1θ (26)

The displacements un(ξ), vn(ξ) and θn(ξ) of the former slice leads this slice from the con-
figuration C1 to the configuration C2. These displacements expressed in local axes s and n
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are:

un(ξ) =
∑

i=1,2

uniN
1
i (ξ) (27)

vn(ξ) =
∑

i=1,3

vniN
3
i (ξ) +

∑

i=2,4

θniN
3
i (ξ) (28)

θn(ξ) =
∑

i=1,3

vni
dN3

i (ξ)
ds

+
∑

i=2,4

θni
dN3

i (ξ)
ds

(29)

where uni, vni and θni are the unknown displacements of node i referred to the element local
axes in configuration C1.

The equations of the deformed tube element in the configuration C2 expressed in local
coordinates, s and n, are:

2xn(ξ) = un(ξ), 2yn(ξ) = 1yn + vn(ξ), and 2θn(ξ) = 1θn(ξ) + θn(ξ) (30)

which referred to the general axes became:

2x(ξ) = 1x(ξ) + un(ξ) cos 1α− 1vn(ξ) sin 1α = 1x(ξ) + u(ξ) (31)
2y(ξ) = 1y(ξ) + un(ξ) sin 1α + 1vn(ξ) cos 1α = 1y(ξ) + v(ξ) (32)
2θ(ξ) = 1θ(ξ) + θn(ξ) (33)

The hydrostatic pressure resultant 2ph(ξ) on the slice ξ in the configuration C2 is now modi-
fied to the following value:

2ph(ξ) = 1ph[2x(ξ), 2y(ξ), 2θ(ξ)] = 1ph[2x(ξ)] (34)

with x(ξ) = [2x(ξ), 2y(ξ), 2θ(ξ)]. These pressure components 2phs(ξ) and 2phn(ξ) referred
to local axes s and n are respectively:

2phs(ξ) = −1ph[2x(ξ), 2y(ξ), 2θ(ξ)] sin 2θn(ξ)

= −1ph[2x(ξ)] sin[1θn(ξ) + θn(ξ)] (35)
2phn(ξ) = 1ph[2x(ξ), 2y(ξ), 2θ(ξ)] cos 2θn(ξ)

= −1ph[2x(ξ)] cos[1θn(ξ) + θn(ξ)] (36)

In order to find the resultant pressure, ph(ξ), variation in the slice ξ produced when the slice
changes from configuration C1 to C2 is necessary to compute the difference 2ph(ξ)−1ph(ξ).
This difference can be expressed in a Taylor expansion in the neighborhood 1ph(ξ). Taking
into account (31), (32) and (33) the following expression is obtained:

2ph[2x(ξ)] = 1ph[1x(ξ)] + A(ξ)
∂1ph

∂yc
+ B(ξ)

∂1ph

∂θ
(37)
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where

A(ξ) = sin 1α
∑

i=1,2

uniN
1
i (ξ) + cos 1α


 ∑

i=1,2

vniN
3
2i−1(ξ) +

∑

i=1,2

θniN
3
2i(ξ)




B(ξ) =
∑

i=1,2

vni

dN3
2i−1(ξ)
dξ

+
∑

i=1,2

θni
dN3

2i(ξ)
dξ

and therefore resultant pressure components in local exes are:

2phs(ξ) = −1ph[2x(ξ)] sin(1θn + θn) = −1ph[2x(ξ)] sin 1θn − 1ph[2x(ξ)]θn cos 1θn

= 1phs[1x(ξ)]− sin 1θn

[
A(ξ)

∂1ph

∂yc
+ B(ξ)

∂1ph

∂θ

]
− 1phn[1x(ξ)]B(ξ)

2phn(ξ) = 1ph[2x(ξ)] cos(1θn + θn) = 1ph[2x(ξ)] cos 1θn − 1ph[2x(ξ)]θn sin 1θn

= 1phn[1x(ξ)] + cos 1θn

[
A(ξ)

∂1ph

∂yc
+ B(ξ)

∂1ph

∂θ

]
+ 1phs[1x(ξ)]B(ξ)

The load increments 2ph(ξ)−1ph(ξ) caused by the element displacement from configura-
tion C1 to C2 are substituted by the following equivalent nodal forces p = (phsi, phni, phmi)
at element nodes i = 1, 2, according to the following expressions in local axes:

phsi = 1L

∫ 1

0

N1
i

[
2phs −1 phs

]
dξ with i = 1, 2 (38)

phn1 = 1L

∫ 1

0

N3
1

[
2phn −1 phn

]
dξ, phm1 = 1L

∫ 1

0

N3
2

[
2phn −1 phn

]
dξ (39)

phn2 = 1L

∫ 1

0

N3
3

[
2phn −1 phn

]
dξ, phm2 = 1L

∫ 1

0

N3
4

[
2phn −1 phn

]
dξ (40)

3..4. Load stiffness matrices
The follower forces produce equivalent nodal forces that can be represented as stiffness ma-
trices. In the following the variation of the follower forces from configuration C1 to C2 is
expressed in this more convenient way. With this purpose the functions A(ξ) and B(ξ) are
written in matrix form

A(ξ) = a(ξ)dn, B(ξ) = b(ξ)dn (41)

where dn = (dn1, dn2)T is a vector of dimension 6× 1 partitioned in the submatrices dni =
(uni, vni, θni)T of dimension 3× 1 with (i = 1, 2) and

a(ξ) = [a1(ξ), a2(ξ)], ai(ξ) = [sin 1αN1
i , cos 1αN3

2i−1, cos 1αN3
2i]

b(ξ) = [b1(ξ), b2(ξ)], bi(ξ) = [0,
dN3

2i−1

dξ
,
dN3

2i

dξ
]
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The components of the unbalanced resultant total pressure ∆ph(ξ) = 2ph(ξ)− 1ph(ξ) at
section ξ can be written as follows

2phs − 1phs = − sin 1θn

[
a(ξ)

∂1ph

∂yc
+ b(ξ)

∂1ph

∂θ

]
dn − 1ph cos 1θnb(ξ)dn (42)

2phn − 1phn = cos 1θn

[
a(ξ)

∂1ph

∂yc
+ b(ξ)

∂1ph

∂θ

]
dn − 1ph sin 1θnb(ξ)dn (43)

These components unbalanced forces ∆phs(ξ) = 2phs(ξ) − 1phs(ξ) and ∆phn(ξ) =
2phn(ξ) − 1phn(ξ) are replaced by the equivalent nodal forces phsi, phni and phmi at nodes
i, (i = 1, 2) of the pipeline element, that are referred to the local axes and their values are
computed according to the expressions (39), (38) and (40). The final results are then1

phsi = 1L

∫ 1

0

N1
i ∆phs(ξ)dξ = kL1jdn + kL2jdn with i = 1, 2 (44)

where j = 1 if i = 1; j = 4 if i = 2

phni = 1L

∫ 1

0

N3
i ∆phn(ξ)dξ = kL1jdn + kL2jdn with i = 1, 3 (45)

where j = 2 if i = 1; j = 5 if i = 3

phmi = 1L

∫ 1

0

N3
i ∆phn(ξ)dξ = kL1jdn + kL2jdn with i = 2, 4 (46)

where j = 3 if i = 2; j = 6 if i = 4
(47)

The first row vectors kL1j are coming from the integration of terms of the following type

kL1j = ±1L

∫ 1

0

N
(1,3)
i

(
sin 1θn

cos 1θn

)[
a(ξ)

∂1ph

∂yc
+ b(ξ)

∂1ph

∂θ

]
dξ (48)

and they correspond to the variation of the intensity of the follower forces. The second row
vectors kL2j are obtained as a consequences of the integration terms

kL2j = ±1L

∫ 1

0

N
(1,3)
i

1ph

(
sin 1θn

cos 1θn

)
b(ξ)dξ (49)

and in this case they correspond to the variation of the direction of the follower force.
The load stiffness matrices kL1 and kL2 relate the force vectors at nodes to the corre-

sponding displacements and they can written

pn = kL1dn + kL2dn = kLdn (50)

1It is usual to distinguish between the load matrices of de dimension 6 × 6 the matrices kL1 generated by an
increment of differential vertical displacement yc and the matrices kL2 produced by un angle change θ of the section
of application of the load pressure. The former load matrices kL1 and kL2 are partitioned in row matrices j, kL1j

and kL2j .
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where

pn =
[

pn1

pn2

]
, dn =

[
dn1

dn2

]
, kLj =




kLj1

kLj2

kLj3

kLj4

kLj5

kLj6




(j = 1, 2)

where la matriz kL is partitioned as follows
[

pn1

pn2

]
=

[
kL11 kL12

kL21 kL22

] [
dn1

dn2

]

Finally, the expressions of these matrices in general axes are modified by means of suit-
able axes transformations. In this way the following final expressions are found

P = KLD, i.e.
[

P1

P2

]
=

[
KL11 KL12

KL21 KL22

] [
D1

D2

]
(51)

where
Pi = (pxi, pyi,mzi)T , Di = (dxi, dyi, θzi)T

These vectors are related to the former vectors expressed in local axes by the transformation
formulae

Pi = Tpni, Di = TT dni KLαβ = TkLαβTT

where

T =




cos 1α − sin 1α 0
sin 1α cos 1α 0

0 0 1




¿From a computational point of view it is convenient to use the matrices as functions of the
type kL = kL(yc1, yc2,

1α) and p = p(yc1, yc2,
1α).

4. Pressure resultante on the pipeline lids
Similarly to the section 2. the loads on the two extreme sections or lids of the pipeline are
studied. En particular the force and moment resultants of the pressure distribution on each of
these extreme sections are obtained.

The force resultant, pα
hL and the moment mα

hL of the pressure distribution acting at ex-
treme sections represented in figure 5 at the center of gravity of the section, are computed as
follows. For each lid of the pipeline (α = 0 and α = 1) i.e. according to section x = 0
and x = L of the initial pipeline position respectively, the computation of these forces and
moments, as well as their derivatives respect to to the ordinate ycLα and to the inclination
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Figure 5: Pressure distribution on the end section of the pipeline

angle θLα of the tube, are carried out. This inclination angle respect to the horizontal or slope
at each tube end section is in general different to each end pipeline section α.

The following results for the force pα
hL and the moment mα

hL pressure resultants on the
pipeline end section α:

Section in the air ycLα ≥ Rext cos θLα (52)
pα

hL = 0
mα

hL = 0
Semi-submerged section Rext cos θLα ≥ ycLα ≥ −Rext cos θLα (53)

pα
hL = ε2γwR2

ext

[
ycLα

2

(
ϕα + sin ϕα cosϕα +

π

2

)
− Rext cos3 ϕα

3

]

mα
hL = ε2γwR3

ext

[
−ycLα cos3 ϕα

3
+

Rext

16
(2ϕα − sin 2ϕα cos 2ϕα + π)

]

Submerged section ycLα ≤ −Rext cos θLα (54)

pα
hL = εγwπR2

extycLα

mα
hL = ε

1
3
γwπR4

ext

where
sin ϕα = − ycLα

Rext cos θLα
and ε = (−1)α (55)

The occurrence of small variations, v0 and θ0, of the depth ycLα and rotation θLα respec-
tively, of section α, the increment of the resultant pressure force pα

hL and its moment mα
hL
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are given by the formulae

∆pα
hL =

∂pα
hL

∂ycLα
v0 +

∂pα
hL

∂θα
θ0 and ∆mα

hL =
∂mα

hL

∂ycLα
v0 +

∂mα
hL

∂θα
θ0 (56)

The expressions of the derivatives ∂pα
hL

∂ycLα
, ∂mα

hL

∂ycLα
de pα

hL and mα
hL respect to ycLα are

obtained as follows:

Section in the air ycLα ≥ Rext cos θLα (57)
∂pα

hL

∂ycLα
= 0

∂mα
hL

∂ycLα
= 0

Semi-submerged section Rext cos θLα ≥ ycLα ≥ −Rext cos θLα (58)

∂pα
hL

∂ycLα
= ε2γwR2

ext

[
1
2

(
ϕα + sin ϕα cosϕα +

π

2

)
+

(yhLα cos2 ϕα + Rext cos2 ϕα sin ϕα)
∂ϕα

∂ycLα

]

∂mα
hL

∂ycLα
= ε2γwR3

ext

[
− cos3 ϕα

3
+ (ycLα cos2 ϕα sin ϕα + Rext sin2 ϕα cos2 ϕα)

∂ϕα

∂ycLα

]

Submerged section ycLα ≤ −Rext cos θLα (59)
∂pα

hL

∂ycLα
= εγwπR2

ext

∂mα
hL

∂ycLα
= 0

where
∂ϕα

∂ycLα
= − 1

Rext cos θLα

1√
1− sin2 ϕα

(60)
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The derivatives ∂pα
hL

∂θLα
, ∂mα

hL

∂θLα
de ∂pα

hL and ∂mα
hL respect to θLα are respectively:

Section in the air ycLα ≥ Rext cos θLα (61)
∂pα

hL

∂θLα
= 0

∂mα
hL

∂θLα
= 0

Semi-submerged section Rext cos θLα ≥ ycLα ≥ −Rext cos θLα (62)

∂pα
hL

∂θLα
= ε2γwR2

ext

[
(ycLα cos2 ϕα + Rext cos2 ϕα sin ϕα)

∂ϕα

∂θLα

]

∂mα
hL

∂θLα
= ε2γwR3

ext

[
(ycLα cos2 ϕα sin ϕα + Rext sin2 ϕα cos2 ϕα)

∂ϕα

∂θLα

]

Submerged section ycLα ≤ −Rext cos θLα (63)
∂pα

hL

∂θLα
= 0

∂mα
hL

∂θLα
= 0

where
∂ϕα

∂θLα
= − ycLα

Rext cos2 θLα
sin θLα (64)

The two groups of former expressions of the derivatives of the pressure follower forces on
the lids of the pipeline represent two elastic springs attached to the pipeline extreme sections
α. One of them elastically restrained the end section displacement and the another the end
section rotation. From the computational point of view it is convenient to express the analysis
in general coordinates by means the following transformation formulae:

∆pα
hLx = ∆pα

hL cos θLα =
(

∂pα
hL

∂ycLα
v0 +

∂pα
hL

∂θLα
θ0

)
cos θLα (65)

∆pα
hLy = ∆pα

hL sin θLα =
(

∂pα
hL

∂ycLα
v0 +

∂pα
hL

∂θLα
θ0

)
sin θLα (66)

∆mα
hLz = ∆mα

hL =
∂mα

hL

∂ycLα
v0 +

∂mα
hL

∂θα
θ0 (67)

These equations can be written in the compact form

∆pα
hL = kα

hLdα
hL with kα

hL =




0
∂pα

hL

∂ycLα
cos θLα

∂pα
hL

∂θLα
cos θLα

0
∂pα

hL

∂ycLα
sin θLα

∂pα
hL

∂θLα
sin θLα

0
∂mα

hL

∂ycLα

∂mα
hL

∂θα




(68)
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and where the force and displacement vector at pipeline end sections α = 0, 1 are defined as
follows:

∆pα
hL = [∆pα

hLx,∆pα
hLy, ∆mα

Lz]
T and dα

hL = [dα
x , dα

y , θα]T

Similarly the load vector acting at pipeline end section α is defined as

pα
hL = [pα

hLx, pα
hLy,mα

Lx]T

5. Stiffness matrix of an element
In addition to the the load stiffness matrices obtained in the previous section the nonlinear
stiffness matrix of each beam element of pipeline should be computed. With this objective
the incremental equilibrium equations between configurations C1 and C2 are formulated and
they are discretized by means of the FE method. The obtained results assuming all loads,
Fi = (Fxi, Fyi,Mzi)T , (i = 1, 2), are applied at end nodes i, i = 1, 2, can be written
according to [3], [1], en forma matricial como sigue:

[
1kl + 1kg

]
d = 2f− 1f (69)

with kl and kg the linear and the geometric stiffness matrix of a 2-D beam element respec-
tively. The displacement increments produced by the change of configuration from C1 to C2

caused by the the increasing of the external loads, 2f− 1f, are collected in the vector

d =
[

d1

d2

]
and the forces are kf =

[
kf1
kf2

]
(70)

with di = (dxi, dyi, θi) the displacement increments of node i (i = 1, 2). The applied
external loads are kfi = (kFxi,

kFyi,
kMzi)T with k = 1, 2 and i = 1, 2

The expression of the linear stiffness matrix is:

kl =




EΩ
L 0 0 −EΩ

L 0 0
0 12EIz

L3 6EIz

L2 0 −12EIz

L3 6EIz

L2

0 6EIz

L2 4EIz

L 0 −6EIz

L2 2EIz

L

−EΩ
L 0 0 EΩ

L 0 0
0 −12EIz

L3 −6EIz

L2 0 12EIz

L3 −6EIz

L2

0 6EIz

L2 2EIz

L 0 −6EIz

L2 4EIz

L




(71)

with Ω the area of the resistant cross-section of the beam and Iz is the moment of inertial of
the cross-section about the axis z.

The geometric stiffness matrix is

kg =
[

kg11 kg12

kg21 kg22

]
(72)
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where

kg11 =




Fx2
L 0 −Mz1

L

0 6
5

Fx2(ΩL2+10Iz)
ΩL3

1
10

Fx2(ΩL2+60Iz)
ΩL2

−Mz1
L

1
10

Fx2(ΩL2+60Iz)
ΩL2

2
15

Fx2(ΩL2+30Iz)
ΩL


 (73)

kg12 =



−Fx2

L 0 −Mz2
L

0 − 6
5

Fx2(ΩL2+10Iz)
ΩL3

1
10

Fx2(ΩL2+60Iz)
ΩL2

Mz1
L − 1

10

Fx2(ΩL2+60Iz)
ΩL2

1
30

Fx2(−ΩL2+60Iz)
ΩL


 = kT

g21 (74)

kg22 =




Fx2
L 0 Mz2

L

0 6
5

Fx2(ΩL2+10Iz)
ΩL3 − 1

10

Fx2(ΩL2+60Iz)
ΩL2

Mz2
L − 1

10

Fx2(ΩL2+60Iz)
ΩL2

2
15

Fx2(ΩL2+30Iz)
ΩL


 (75)

It is noticed that the former stiffness matrices, kl and kg, are symmetric as correspond to a
conservative (adjoint) problem.

In the former results is was assumed that the only loads applied on the element are the
ones acting at its end nodes, i.e. Fi = (Fxi, Fyi,Mzi)T , (i = 1, 2). Then the stress-resultants
at section ξ of the element produced by the loads acting directly on the element span (weight
and hydrostatic pressure) must be added the stress-resultants corresponding to the loads Fi:

Fx = Fx1 = −Fx2, Fy = −Mz1 + Mz2

L
, Mz = −Mz1(1− ξ) + Mz2ξ (76)

The equations (76) represent the stress-resultants at section ξ as function of the reactions of
the beam element at its end nodes. They have been obtained using the static equilibrium of
the beam element.

6. Incremental equilibrium equations of the pipeline
The initial configuration C0 of the pipeline without initial stresses corresponds to the tube
subjected only to the uniforme distributed loads of weight p and uplift hydrostatic pressure
ph(yc, θ). The equilibrium position corresponds to the pipeline floating horizontally, θ = 0,
at depth yc defined as the solution of the equation ph(yc, θ = 0) = p. The loads due to
the horizontal pressure on lids phL and to the weight PL of the pipeline extreme section, i.e.
to the lids, are monotonically introduced from this equilibrium position by means a factor λ
varying from 0 up to 1.

In a load step it it is assumed known at configuration C1 all the applied loads, the equiv-
alent nodal forces at element nodes i of each element j, the variation of deflections and
rotations along the pipeline span and the stress-resultants as well, i.e. the following functions
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are known

Loading: p, 1phi(ξ) (i = 1, 2, . . . , N), λPLα (α = 0, 1), λ1pα
hL (77)

Equivalent nodal forces: 1Fj
i , (i = 1, 2) (j = 1, 2, . . . , N) (78)

deflections and rotations: 1xj
i ,

1yj
i ,

1θj
i , (i = 1, 2) (j = 1, 2, . . . , N) (79)

Stres-resultants: 1F j
x(ξ), 1F j

y (ξ), 1M j
z (ξ), (j = 1, 2, . . . , N) (80)

If the following load increments, dλPLα and dλ1pα
hL, are introduced on the end sections of

the pipeline, α = 0, 1, then the pipeline experiments the displacements dj
i at nodes i = 1, 2

of all elements j. The matrix equation of equilibrium can be written

KD = P (81)

where

K =
∑
α

[kα
l + kα

g − kα
L1 − kα

L2]D + λ
∑

α=0,1

kα
hLdα

hL = dλ
∑

α=0,1

[phL + PLα]

and PLα = PLα[0,−1, 0]T is the vector of gravitational loads concentrated at section α. The
summations correspond to boolean sums or assembly of all element matrices and vectors of
the structural elements. In this way the whole global structure matrices and vector can be
built.

The solution of the system of simultaneous linear equations represented by the matrix
equation (81) can be carried our by a direct numerical solution method and the displacement
vector D expressed in global exes is obtained. It is possible to increase the solution accuracy
by iterative procedure within the current load step.

Once the displacements are know in the load step it is possible to define all the variables
of interest for the configuration C2. These variables should be changed by transforming them
to the new coordinate system defined by the achieved configuration C2, i.e. a coordinate
transformation should be performed in order to change the already known configuration C2

into the new configuration C1 for the new load step.

7. Examples

7..1. Symmetric pipeline
In order to illustrate the described analysis a simple example will be presented. The following
data of a symmetric pipeline, i.e. with equal lids will be considered: Length: 18 m, Inner
radius: 0,945 m, External radius: 1 m
Young modulus: 2 × 105 kN/m2, Specific weight: 77 kN/m3, Water specific weight: 10,29
kN/m3
The two pipeline lids are equal with thickness 6 cm and weight 14,516 kN each. The total
tube weight, lids no included, is: 465,85 kN
The pipeline is discretized in 48 elements.
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Figure 6: Symmetric pipeline

In figure 6 the deformed pipeline obtained by a linear analysis is shown. Also the de-
formed pipeline found according to a more elaborated analysis, namely, a nonlinear analysis
using an incremental and iterative procedure is presented in the figure. It can be observed that
the first order analysis produces larger displacements than the nonlinear analysis.

The initial equilibrated position of the tube (tube weight without lids and uplift Archimedes
pressure) is reached for a axis pipeline position of -0,4929 meters.

7..2. Nonsymmetric pipeline
The tube used in this example corresponds to the previous tube but with different lid thick-
nesses. One lid has 6 cm of thickness and the other 9 cm. The results are shown in figure
7

8. Conclusions
Analysis of this type of pipeline of elements represent an interesting example of the applica-
tion of nonlinear large displacement methodology. A better understanding of the structural
behavior of these structures can permit to obtain improved models for the laying process of
submarine emissaries.
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Figure 7: Nonsymmetric pipeline
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