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Through the use of a layered arrangement, it is shown that lossy sonic crystals can be arranged to create a structure with
extreme acoustic properties, namely anacoustic metamaterial. This artificial structure shows di erent e ective fluid
and absorptive properties in di erent orientations. Theoretical, numerical and experimental results examining thermo-
viscous losses in sonic crystals are presented, enabling the fabrication and characterization of an acoustic metamaterial
absorber with complex-valued anisotropic inertia. To accurately describe and fabricate such an acoustic metamaterial
in a realizable experimental configuration, confining structures are needed which modify the e ective properties, due to
the thermal and viscous boundary layer e ects within the sonic crystal lattice. Theoretical formulations are presented
which describe the e ects of these confined sonic crystals, both individually and as part of an acoustic metamaterial
structure. Experimental demonstrations are also reportedusing an acoustic impedance tube. The formulations devel-
oped can be written with no unknown or empirical coe cients, due to the structured lattice of the sonic crystals and
organized layering scheme, and it is shown that higher filling fraction arrangements can be used to provide a large
enhancement in the loss factor.

I. INTRODUCTION

Sonic crystals, defined as periodic distributions of sound
scatterers in a fluid or air background, have been proposed as
structures for attenuating and filtering sound waves because of
their acoustic bandgaps1–3. Their refractive properties, which
were studied in the pioneering work of Kock and Harvey4

back in 1949, were later revisited and expanded by Cervera
and coworkers5. These authors developed an acoustic lens for
airborne sound by using a cluster of rigid rods with external
lenticular shape. The lensing behavior was understood to re-
sult from the e ective properties of the cluster that, at low fre-
quencies, behaves like a homogeneous fluid with some given
e ective mass density and bulk modulus. In fact, it has been
demonstrated that sonic crystals, with hexagonal and square
symmetries, behaves like isotropic fluids whose e ective pa-
rameters simply depend on the lattice filling fraction6.

Research on sonic crystals below the homogenization limit
has been boosted in recent years due to the possibility of us-
ing them as artificial structures with extreme homogenized
properties, referred to as acoustic metamaterials, behaving
as broadband anisotropic fluids, or metafluids7. Moreover,
acoustic metamaterials or metafluids with mass anisotropy
are receiving increasing attention due to the extraordinary
acoustic devices predicted from transformation acoustics,
like acoustic cloaks and acoustic hyperlenses, which require
anisotropic fluids as the principal ingredient8–10. Several
designs and a few experimental demonstrations of acoustic
metamaterials with dynamical mass anisotropy have been re-
ported in the last few years9,11–15, which make use of a non-
resonant microstructure to create the desired anisotropy.
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ton DC 20375
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In most applications, acoustic metamaterials have been en-
visioned using ideal materials, with the presence of losses
seen as a hinderance to the design. However, acoustic waves
in fluids such as air or water have inherent losses which arise
from thermal and viscous e ects, and can be particularly pro-
nounced for small structures such as those encountered in
metamaterial applications. Furthermore, for sound absorber
applications, these losses can be significant, and are in fact
necessary to achieving the goal of absorbing the acoustic en-
ergy. A recent study analyzed the homogenized properties of
periodically distributed elastic cylinders embedded in a vis-
cous fluid16, however the analysis was constrained by the con-
dition of low filling fractions, where the sound absorbing ef-
fects are not significant unless the frequencies are very high,
or the structures are very small.

Recently, there has been interest in using the losses within
an acoustic metamaterial to provide an enhancement in the
absorption, using resonant structures such as membranes and
mass-spring-damper systems17–23. However, such resonant
absorption mechanisms are inherently narrowband, and thus
there is a need for nonresonant high loss structures in achiev-
ing broadband acoustic metamaterial absorbers. Broadband
sound absorption has been recently demonstrated by layered
structures of porous materials24. Two dimensional sonic crys-
tals made of cylindrical absorbing units were previously em-
ployed to fabricate acoustic barriers with broadband soundab-
sorption; their insertion loss being the result of two comple-
mentary e ects25,26: i) the absorbing properties of the indi-
vidual units and ii) the reflectance properties of the periodic
structure. Moreover, sonic crystals consisting of rigid rods ar-
ranged in a hexagonal lattice with a large filling fraction have
been recently employed to dissipate broadband acoustic en-
ergy at the core of an omni-directional sound absorber, also
known as anacoustic black hole27, though the authors did not
examine the physical mechanisms of the observed lossy be-
havior.

In this work, the use of lossy sonic crystals with high fill-
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ing fractions will be examined to demonstrate its applica-
bility for sound absorbers, and how acoustic metamaterials
with complex-valued e ective material properties can be cre-
ated and implemented, allowing for anisotropy in both the
sound absorption characteristics and the e ective properties.
Through the use of a structured sonic crystal lattice, pre-
cise layered arrangements and high filling fractions can be
achieved which enable higher losses and large anisotropy in
the e ective properties of the resulting acoustic metafluid.
Unlike resonant acoustic metamaterial absorbers, these en-
hanced losses and anisotropy in the absorption characteristic
are broadband, due to the non-resonant, sub-wavelength scale
of the sonic crystal structure.

The work performed here is described as follows. In Sec-
tion II, the theoretical formulations and parametric character-
ization of two-dimensional (2D) sonic crystals with thermo-
visous losses are presented and verified with numerical sim-
ulations. Modifications to these formulations for sonic crys-
tals in a confined test structure are developed in Section III.
The properties of these lossy sonic crystals in a complex-
valued anisotropic acoustic metafluid are then formulated in
Section IV and the experimental results are described in Sec-
tion V. Finally, Section VI gives a brief sumary of our findins.

II. TWO-DIMENSIONAL SONIC CRYSTALS

For thermoviscous fluids, the properties of the sonic crystal
are dependent on the size of the thermal and viscous bound-
ary layers relative to that of the cylinder and lattice dimen-
sions. In particular, an expression for the e ective homoge-
nized properties is sought for a lattice of cylinders which are
non-interacting, both fluid dynamically (i.e. boundary lay-
ers which do not touch) and acoustically (neglecting multi-
ple scattering e ects). Extensive work has been performed on
the topic of porous media, and detailed models have been de-
veloped to describe such systems. The specific formulations
in each case depend on the configuration of the microstruc-
ture. Two-dimensional sonic crystals, which consist of par-
allel cylinders in a structured lattice, represent an idealized
arrangement of a fibrous porous media, and previous work on
such fibrous porous materials can provide a basis for develop-
ment of a model for lossy sonic crystals. A theoretical formu-
lation for 2D lossy sonic crystals is presented in Section IIA,
from which a nondimensional parameter space is developed
and discussed in Section II B. The theoretical results are then
compared and verified with Comsol Multiphysics simulations
in Section II C.

A. Theoretical formulation for 2D sonic crystals

The general form of the bulk density for rigid fibrous me-
dia consisting of parallel cylinders, such as the configuration
illustrated in Fig. 1, can be expressed as28

e 0
¯

1 f
(1)

FIG. 1. Geometry for a sonic crystal with lattice parametera, cylin-
der radiusr0, and representative cell of radiusR.

where 0 is the density of the host fluid,f is the filling frac-
tion, and ¯ is dynamic tortuosity given by29

¯ 1
F̄
j ¯

(2)

with denoting the high frequency limit of the tortuosity
and the functions̄F and ¯ defined as

F̄ 1 j
1
2

¯M (3)

¯ 0

(1 f )
(4)

M
8

(1 f ) 2
(5)

From these equations, it can be seen that the e ects of the
losses arise from the dynamic viscosity , the static flow re-
sistivity and the characteristic viscous length , which is a
viscous parameter defined by Johnsonet al.29. For the density
of a porous medium, the losses arise from viscous e ects, and
result in an e ective density which contains both a real and
imaginary part.

For a lattice of rigid parallel cylinders embedded in an ideal
gas, like that illustrated in Fig. 1, the bulk modulus can be
written as

e
P0

(1 f )
1

Cfiber
(6)

where is the ratio of specific heats,P0 is the ambient static
pressure, andf is the filling fraction. The sound speed can
be determined from Eqs. (1) and (6) byce e e . In
Eq. (6), Cfiber is the dynamic compressibility, which can be
obtained from the thermal boundary conditions.

For thermally conducting fibers in air, the conduction
through typical solid materials is several orders of magnitude
larger than that of air, giving nearly isothermal conditions.
Similarly, when the cylinder spacing is large compared with
the thermal boundary layer (corresponding to either relatively
high frequencies or low filling fractions), any thermal interac-
tion with the surrounding cylinders can be neglected, which
yields adiabatic conditions at the outer radiusR. Applying
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these thermal boundary conditions, the dynamic compressibil-
ity can be obtained,30

Cfiber 1 ( 1)
2 f

(1 f )
H̄ (7)

H̄
1

kTr0

J1(kTr0)H(2)
1 (kTR) J1(kTR)H(2)

1 (kTr0)

J0(kTr0)H(2)
1 (kTR) J1(kTR)H(2)

0 (kTr0)
(8)

where H(2)
m is the mth order Hankel function of the second

kind, r0 is the cylinder radius,R is the radius defined by the
filling fraction f (r0 R)2, and the thermal wavenumber
kT (1 j) Pr . The thermal e ects are quantified by the
the Prandtl number Pr Cp and the viscous boundary layer
is defined as (2 ) ( 0), where is the viscosity, is
the thermal conductivity and Cp is the specific heat capacity.
It can be seen that the e ects of the losses arise from both vis-
cous and thermal e ects, leading to a complex value for the
bulk modulus.

1. Formulation of relevant model parameters

Due to the random nature of the fibrous media which has
traditionally been examined for absorptive acoustic materi-
als, the existing literature has focused on the case of low
volume fractions (often on the order of a few percent), us-
ing parameters which often require experimental characteri-
zation of specific samples since the precise microstructureis
not known30–34. For such naturally occurring materials, higher
volume fractions without a precisely arranged microstructure
will tend to clump and intersect, creating what would essen-
tially appear like pores. As a result, the situations of moder-
ate to high concentrations of fibrous porous media have typi-
cally been neglected. For lossy sonic crystals, however, these
closely packed arrangements are of particular interest, and
represent the exact microstructure that one wishes to exam-
ine. The three relevant model parameters characterizing the
viscous and thermal e ects of the lattice structure are: the vis-
cous characteristic length , the tortuosity and the flow
resistivity .

The viscous characteristic length is a metric of the viscous
e ects proposed by Johnsonet al.29. Evaluation of this quan-
tity analytically for the viscous fluid flow around a rigid cylin-
der yields28

r0

2 f
(1 f 2) (9)

Note that for small filling fractions, Eq. (9) yields r0 (2 f ),
the same as that obtained by Allard and Champoux28. How-
ever, for the moderate to high filling fractions that can be
achieved using sonic crystals, the higher precision of the exact
expression given by Eq. (9) is necessary to accurately describe
the acoustic performance.

In the context of sonic crystals, the unique homogenized
bulk properties arise from dynamic e ects, and thus for the
static flow resistivity it is more appropriate to consider this as
a quasi-static condition of low but non-zero oscillatory flow.

For a lattice of parallel rigid cylinders, an expression forthe
flow resistivity of a structured lattice has been derived by
Tarnow35

4 f

r2
0

1
2 ln f 3

4 f 1
4 f 2

(10)

which is equivalent to the earlier solution derived for a square
lattice following a similar approach by Kuwabara36. In both
cases, the solution was developed by using a circular represen-
tative volume of fluid surrounding each cylinder (illustrated in
Fig. 1), and assuming free conditions at the boundary of each
cell.

For parallel cylindrical lattices, Tournatet al.37 derived an
expression for the tortuosity, 1f . Although originally
developed as an approximate solution valid only for small fill-
ing fractions, this solution holds for all filling fractionsin the
absence of multiple scattering e ects. This can be seen by
comparing Eq. (1) in the limit of zero viscosity to the lossless
quasi-static dynamic density for a sonic crystal, given by6,38

e 0 0
1 f
1 f

(11)

2. Effective density of a 2D sonic crystal with losses

With the expressions for , and presented above, the
complex e ective density given by Eq. (1) for a sonic crystal
with viscous losses can be written as

e 0
1 f
1 f

1 j
F̄sc

¯sc
(12)

F̄sc 1 j
1
2

¯scMsc (13)

¯sc
1

2 f ( r0
)2

1 f
1 f

1
2

ln f
3
4

f
1
4

f 2 (14)

Msc
8 f

1 f 2 2

1 f
1 f

1
2

ln f
3
4

f
1
4

f 2 (15)

From these equations, it is clear that besides the host fluid den-
sity, the only parameters that a ect the density are the filling
fraction f and the ratio of the viscous boundary layer thick-
ness to the cylinder radius r0. From the definition of , it
can be seen that this term includes all the relevant viscous
e ects and the frequency dependence. Unlike unstructured
porous media, which require estimated or experimentally de-
termined scaling parameters39, there are no free parameters
required for modeling the bulk e ective properties of a lossy
sonic crystal. Therefore, the expression presented above for
the complex density of a sonic crystal is an explicit expres-
sion in terms of the host density and filling fraction, with all
the viscous and dispersive e ects accounted for by a single
dimensionless parameter,r0, which can be calculated based
on the frequency and the properties of the viscous host fluid.
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3. Effective bulk modulus of a 2D sonic crystal with losses

In a similar manner, Eqs. (6)-(8) can be used to express the
bulk modulus of a sonic crystal with viscous losses,

e
P0

(1 f )
1

Csc
(16)

Csc 1 ( 1)
2 f

(1 f )
H̄ (17)

As with the complex density, the complex bulk modulus is
a function only of the properties of the host fluid (including
thermal properties), the filling fraction and the parameterr0.

B. Parametric representation of lossy sonic crystals

From Eqs. (8), (12)–(17), theoretical values for the com-
plex density and bulk modulus can be obtained. These ex-
pressions do not contain any empirically derived coe cients,
and for a given host fluid can completely describe any com-
bination of lattice geometries and frequency using two inde-
pendent parameters: the filling fractionf and the normalized
viscous boundary layer thickness,r0. Therefore, it is pos-
sible to create parametric plots of the e ective sonic crystal
properties, which can encompass the entire range of possible
e ective properties for 2D sonic crystals with thermoviscous
losses, for a given host fluid. Use of such plots allow for the
design and interpretation of sonic crystal e ective properties
when thermoviscous losses are present, and enable one to bet-
ter characterize the potential absorption properties of a sonic
crystal.

Parametric plots are illustrated in Fig. 2 for the complex
density, sound speed and bulk modulus of a 2D sonic crystal
in air, as a function of the filling fraction and r0. The pa-
rameter space has been limited to values where the thermal
and viscous boundary layers are su ciently small so as they
do not touch the boundary layer of the adjacent cylinders. The
limiting case where the boundary layers touch is denoted by
a solid black line. FIG. 2(a), (c) and (e) shows the real part
of the property and Fig. 2(b), (d) and (f) shows the loss fac-
tor (imaginary part divided by the real part) on a color scale,
ranging from low values (dark) to high values (light). Note
that while fibrous porous materials have been extensively uti-
lized for sound absorbing applications, these have tradition-
ally been limited to low filling fractions, on the order of a few
percent, which represents the left-most region of the plots.

Expanding the parameter space to include the higher filling
fractions made possible by the structured lattice of the sonic
crystals, one can identify several desirable features which
could be utilized for acoustic absorbers. In particular, itis ob-
served that there is a broad region across the moderate to high
filling fractions where the loss factor is large, and in the case
of the density approaches unity, compared with very small
values for the region covered by traditional fibrous porous ab-
sorbers. In addition, from Fig. 2(b) it can be seen that signifi-
cant reductions in the real part of the sound speed, which rep-
resents the speed of the wave through the homogenized sonic

FIG. 2. (Color online) Intensity plots of the real part and loss factor
for the complex e ective density, sound speed and bulk modulus.
The color scale of the plots ranges from low values (dark) to high
values (light). All the values are normalized to the corresponding
ones of the air background.

Sample r0 (mm) a (mm) Length,L (mm) Filling fraction, f

A 1 0 2 5 42 5 0 541
B 1 0 3 8 43 1 0 234
C 1 0 5 0 45 0 0 134

TABLE I. Lattice properties for the three sonic crystal samples fab-
ricated in this work.

crystal, occur at moderate to high filling fractions. Although
this does not change the absorption per cycle, it does a ect the
wavelength of the sound passing through the absorber. De-
creasing the sound speed, as shown in Fig. 2(b), will decrease
the wavelength, and therefore lead to an absorber which ap-
pears acoustically “thicker” and thereby increasing the total
absorption.

C. Comparison of results with Comsol

To verify the theoretical formulation developed in Sec-
tion II A, the complex density and bulk modulus are compared
with Comsol simulations. In the Comsol models, the cylin-
ders are assumed to be rigid, and a thermoviscous host fluid
with the properties of air is used. Although the dimensionless
parameter r0 is utilized for the theoretical analysis, the use
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FIG. 3. (Color online) Comparison of theoretical results and Comsol
for the real and imaginary parts of the density and bulk modulus of a
sonic crystal withr0 1 mm, for Sample A, B, and C given in Table I,
shown in red, blue and green, respectively. Theoretical results for the
2D sonic crystal configurations are obtained from Eqs. (12) and (16).

of Comsol requires specific dimensions and a corresponding
frequency range for the acoustical modeling to be performed.
Based on the definition of , r0 can be calculated for a spe-
cific fluid (in this case air) and frequency range and the cylin-
der radiusr0.

Results calculated from Eqs. (12) and (16) are compared
with Comsol simulations in Fig. 3, for Samples A, B, and C,
the dimensions of which are listed in Table I. For reference,
e ective properties for the lossless case are shown in Fig. 3(a),
(c) and (e) and denoted by a dashed line. In this figure, it is
clear that there is excellent agreement between the theoreti-
cal model developed here and the Comsol data, for both the
real and imaginary parts of the density, sound speed and bulk
modulus. Conversely, the e ective properties for the lossless
cases fail to capture the trends in the data for even the real
part of the e ective properties as a function of frequency, and
the overall magnitude deviates from that of either the theory
with losses or Comsol at higher filling fractions. Based on
these results, the theoretical formulation with losses provides
a relatively simple yet accurate explicit formulation for the
e ective properties of a lossy sonic crystal structure.

1 cm

FIG. 4. (Color online) Photograph of a confined sonic crystalsample
inside an acoustic impedance tube. The plastic sheath surrounding
the sonic crystal allows its insertion in the tube.

III. MODIFIED FORMULATION FOR CONFINED SONIC
CRYSTALS

Through the process of producing a finite sized sonic crys-
tal sample which can be investigated and characterized, a con-
fined sonic crystal or acoustic metamaterial will inevitably
be created due to the walls and structure enclosing it. Al-
though creating confined sonic crystals can be done as a
design choice, in many practical cases this occurs as a re-
sult of using standard acoustic testing techniques, such asan
impedance tube. An illustration of a confined sonic crystal
sample situated inside an impedance tube is shown in Fig. 4.
In this section, modifications to the theoretical results pre-
sented in Section II will be discussed, which can account for
these e ects.

The presence of the walls within the sonic crystal sample,
as with the air-filled portion of the impedance tube, will be af-
fected by the viscous and thermal boundary layers emanating
from these surfaces. However, these boundary layers within
the sample will be a ected by the e ective viscous and ther-
mal properties of the sonic crystal sample, which consists of
both solid cylinders and the surrounding air. At moderate to
high filling fractions, these e ective thermoviscous properties
can vary significantly from those of ambient air, leading to
observable di erences in the e ective sonic crystal properties.
In Section III A, expressions for e ective thermal and viscous
properties are presented, based on e ective medium theory.
In Section III B, these e ective medium properties are used to
determine the appropriate thermal boundary conditions anda
revised expression for the dynamic compressibility and bulk
modulus for a confined sonic crystal is developed.
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Material properties Air ABS plastic
Density, 1 21kg m3 1050kg m3

Bulk modulus, 142 kPa 2 4 GPa
Shear modulus, – 0 81 GPa
Compressional wave speed,c 343 m s 1834 m s
Thermal conductivity, 0 0263 W m K 0 17 W m K
Specific heat capacity, Cp 1000 J kg K 1300 J kg K
Ratio of specific heats, 1 4 1 0
Viscosity, 18 5 Pa s –

TABLE II. Physical properties of air and ABS plastic used forthe
fabricated sonic crystal samples examined in Section V.

A. Effective thermal and viscous properties

For moderate to high concentrations of inclusions, the bulk
properties of the e ective medium can be significantly influ-
enced by the number and proximity of the inclusions to one
another. While this has not traditionally been a factor for pre-
vious works on unstructured fibrous porous media in air, this
e ect has been studied quite extensively for elastic composite
structures and for fluid emulsions.

To determine the necessary e ective properties, recall that
the Prandtl number Pr was used to quantify the relative
strength of the thermal and viscous e ects, which is deter-
mined by the specific heat capacity, thermal conductivity and
viscosity of the medium. The e ective value for the heat ca-
pacity, which is given by the product Cp, is simply40

Cp e
f Cp inc

(1 f ) Cp fluid
(18)

where the subscripts “inc” and “fluid” refer to the inclusion
and fluid components, respectively. Material properties for air
and the ABS plastic used for the fabricated samples examined
in Section V are given in Table II. Note that the density of the
cylinder is several orders of magnitude larger than that of air,
while the specific heat capacity for most solids are of the same
order of magnitude to those for air, so the e ective specific
heat capacity is Cp e Cp inc. In a similar manner, the thermal
conductivity along the axial direction of the e ective medium
(the vertical direction as shown in Fig. 4) can be determined
using the rule of mixtures, which yields41

e f inc (1 f ) fluid (19)

In addition to the thermal properties, the e ective viscosity
will be a ected by the presence of the inclusions. This well-
known phenomenon has been traditionally examined for sus-
pensions, and the classic solution for a low concentration of
rigid spheres in a viscous fluid is attributed to Einstein42. Al-
though this expression is extensively used, its applicability is
limited to objects with a spherical shape. For the case of rigid
cylinders in a viscous fluid, the e ective viscosity can be de-
termined by analogy with elastic composites, which yields41

e (1 2f ) (20)

The e ective density for a confined sonic crystal is given by
the same expression as for the unconfined case described by
Eq. (12), except with an increase in the e ective viscosity,
as described by Eq. (20). Note that this increased viscosity
corresponds to higher flow resistivity according to Eq. (10),
and therefore an increase in the imaginary part of the density
and ultimately higher losses.

B. Effective bulk modulus for confined sonic crystals

For a confined sonic crystal, the presence of the surround-
ing surfaces will a ect how the thermoviscous boundary lay-
ers interact with the cylinders and the resulting e ective bulk
modulus of the homogenized structure. Although the funda-
mental equations are the same as for the unconfined sonic
crystal, the cylinders within the confined sonic crystal will
experience a di erent thermal boundary condition atr R,
the outer radius of the unit cell. For high filling fraction ap-
plications relative to the boundary layer thickness, the outer
unit cell boundary conditions are often set equal to those of
the e ective medium, to compensate for the net interaction
from the surrounding cylinders40. This approach of treating a
unit cell surrounded by an e ective homogenized medium is
also utilized extensively in e ective medium theory for elastic
solids41.

In the idealized 2D expressions developed in Section II, it
was appropriate to assume that the interactions between cylin-
ders could be neglected, since the thermal and viscous e ects
were confined to the relatively thin boundary layers close to
each cylinder. For the confined sonic crystal, however, viscous
and thermal boundary layers emanate from the walls of the
confining structure, with thermoviscous properties of the ef-
fective medium. Even at low filling fractions, these boundary
layers can be significantly larger than those in air for thermally
conductive cylinders, and under these circumstances it is ap-
propriate to apply thermal boundary conditions atr R equal
to those of an e ective homogenized sonic crystal medium.
For an e ective homogenized medium surrounding the unit
cell containing low to moderate filling fractions of thermally
conducting cylinders, this will yield an approximately isother-
mal boundary condition, for which the expression for the dy-
namic compressibility becomes

CSC conf 1 ( 1)
2 f

(1 f )
H̄conf (21)

where

H̄conf kT r0J1(kTr0) kTRJ1(kTR) H(2)
0 (kTr0) H(2)

0 (kTR)

J0(kTr0) J0(kTR) kTr0H(2)
1 (kTr0) kTRH(2)

1 (kTR)

J0(kTr0) H(2)
0 (kTr0) H(2)

0 (kTR)

J0(kTr0) J0(kTR) H(2)
0 (kTr0)

1

(22)

Therefore, the bulk modulus of a confined sonic crystal can
be described by Eq. (16), with the dynamic compressibility
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given by Eqs. (21) and (22). Although Eq. (22) is a some-
what complicated expression, it is expected that a decreasein
the e ective bulk modulus will be observed due to the change
from adiabatic to isothermal conditions.

IV. ACOUSTIC METAMATERIAL USING ALTERNATING
LOSSY SONIC CRYSTAL LAYERS

Recent work has examined anisotropic acoustic metamate-
rials theoretically, numerically and experimentally14,15. De-
spite these thorough investigations and demonstrations ofre-
alizable structures, such works have neglected thermoviscous
losses due to a primary focus on broadband, nonresonant
acoustic metamaterials which operate without any appreciable
losses. Comparison of theoretical results with Comsol simu-
lations for 2D sonic crystals (presented in Fig. 3) shows that
significant di erences were observed between e ective prop-
erties obtained assuming a lossless host fluid and those which
include thermoviscous losses. These di erences resulted in
a non-zero (and at some frequencies quite large) imaginary
part, and also resulted in incorrect trends predicted by the
lossless theory, including underestimating the real part of the
density and overestimating the real part of the bulk modu-
lus. Therefore, in the following sections an analysis of an
anisotropic acoustic metamaterial will be performed. The the-
oretical framework for this will be discussed in Section IV A,
in which the anisotropic acoustic metamaterial will be treated
as a system of alternating e ective fluid layers, with the prop-
erties of each e ective fluid layer simply being the complex
e ective properties determined from the homogenization pro-
cess of a uniform sonic crystal. In Section IV B, the theoreti-
cal formulation is compared with 2D Comsol simulations with
thermoviscous losses for a realizable configuration.

A. Theoretical formulation

In this section, the formulation for the e ective properties
of an acoustic metamaterial with complex anisotropic iner-
tia will be examined, which consists of an alternating-layer
arrangement of sonic crystal lattices. The anisotropy in the
inertia arises from di erences in the e ective density of the
homogenized structure at di erent orientations of the struc-
ture. For the impedance tube testing under investigation inthis
work, of particular interest is the analysis relating to normal
incidence plane waves for two specific configurations, where
the impinging wave is either parallel or perpendicular to the
sonic crystal layers, which are illustrated in Fig. 5(a) and(b),
respectively.

When the acoustic metamaterial is oriented perpendicular
to the incident wave, the e ective density and bulk modulus of
an alternating layer structure is given by the harmonic average
of the quantities, namely,43

e
d1

dtot

1

1

d2

dtot

1

2

1

(23)

(a)

Incident wave

Reflected wave

Transmitted wave

(b)

Incident wave

Reflected wave

Transmitted wave

FIG. 5. (a) Parallel and (b) perpendicular configurations ofthe
anisotropic acoustic metamaterial examined in this work, which con-
sists of two sets of alternating sonic crystal layers. The two sonic
crystal layers behave as e ective fluids, which have the homogenized
properties of Samples A and C given in Table I, and are denotedby
dark and light gray, respectively.

e
d1

dtot

1

1

d2

dtot

1

2

1

(24)

wheredtot d1 d2, and the subscripts 1 and 2 refer to the
first and second alternating fluids layers. To determine the
e ective properties of the acoustic metamaterial, a two-step
homogenization process will be performed. First, each sonic
crystal lattice will be homogenized to create an e ective fluid
layer, using the methods described in Section II for a 2D sonic
crystal, or for the results developed for a confined sonic crystal
discussed in Section III. Second, these e ective fluid layers
will be homogenized to obtain the e ective properties of the
acoustic metamaterial in both the parallel and perpendicular
orientations of the sonic crystal layers.

For a multilayered arrangement of an arbitrary number
of fluid layers, this analysis can be performed using the
impedance and pressure translation theorems to obtain the in-
put specific acoustic impedance,Zin, and normalized acoustic
pressure,P, which are given by44,45

Zin(xi) Zi
Zin(xi 1) coskidi jZi sinkidi

Zi coskidi jZin(xi 1) sinkidi
(25)

P(xi 1) P(xi) coskidi j
Zi

Zin(xi 1)
sinkidi

1

(26)

wherexi is the position of theith fluid interface,di xi 1 xi

is the thickness of theith layer,ki is the wavenumber of theith

layer, andZi is the specific acoustic impedance of theith layer.
Implementation of Eqs. (25) and (26) can be achieved by
solving for the input impedance first, and then evaluating the
acoustic pressure. Starting from the last layer (which radiates



8

into air) and working backwards yields the input impedance
at each successive layer, until the input impedance at the first
layer,Zin(0), is determined. Likewise, the normalized acous-
tic pressure can then be determined, starting at the first layer
and working forward, until the pressure at the last layer is de-
termined, denoted byP(L), whereL is the total length of the
multilayer structure. From these two values, the pressure re-
flection coe cient, , and transmission coe cient, , can be
determined,

Zin(0) Z0

Zin(0) Z0
P(L) (27)

The e ective homogenized properties of the ensemble
structure can be determined using and for a single
e ective fluid layer with specific acoustic impedanceZe ,
wavenumberke and lengthL. Using well-known physical
acoustic solutions for a single fluid layer46, one can obtain ex-
pressions for the e ective propertiesZe andke , such that

Ze
1 coske L

j sinke L
(28)

ke
1
L

cos 1 1 2 2

2
(29)

where cos1 denotes the inverse of the cosine function. A sim-
ilar result has been previously derived Fokinet al.47, though in
this previous work some uncertainty arises due to the periodic
but nonunique solution that results from evaluating the cos1

function in Eq. (29). Alternatively, Eq. (29) can be evaluated
by unwrapping the solution for the cos1 function, such as by
using the method proposed by Baccigalupi48.

The e ective density, sound speed, and bulk modulus can
be determined from Eqs. (28) and (29), such that

e Ze
ke ce ke

e Ze ke
(30)

In the low frequency limit, the expressions for the e ective
density and bulk modulus for alternating fluid layers oriented
in the parallel direction reduces to

e
d1

dtot
1

d2

dtot
2 (31)

e
d1

dtot

1

1

d2

dtot

1

2

1

(32)

which corresponds to the previously established results by
Schoenberg and Sen43 extensively used in anisotropic meta-
material analysis7. Note that in this case the e ective bulk
modulus reduces to the same value as in the perpendicular ori-
entation given by Eq. (24), so that the anisotropy occurs only
in the density in the quasi-static limit.

B. Comparison of results with Comsol

To further examine the theoretical formulation presented
in Section IV A, Comsol was used to determine the e ec-
tive properties of an acoustic metamaterial with complex
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FIG. 6. (Color online) Comparison of theoretical results and Comsol
for the real and imaginary parts of the density and bulk modulus of a
sonic crystal withr0 1 mm, for the anisotropic acoustic metamate-
rial configuration illustrated in FIG. 5.

anisotropic inertia, for the configuration shown in Fig. 5. The
results obtained using Comsol are presented in Fig. 6 for
the incident wave parallel (x’s) and perpendicular (circles) to
the sonic crystal layers, consisting of rigid cylinders in air
with thermoviscous losses. Theoretical values for the parallel
and perpendicular configurations represented by the dashed
and dash-dotted lines, respectively, are in excellent agreement
with those obtained with Comsol, for both the real and imagi-
nary part of the e ective properties.

In Fig. 6(a) and (b), the anisotropy in the density is clearly
seen, with the results for the parallel direction noticeably
higher than that for the perpendicular case. This anisotropy
in the complex density is also apparent in the results for the
sound speed illustrated in Fig. 6(c) and (d), which shows a
similar trend. In Fig. 6(e), there is only a slight di erence in
the real part of the e ective bulk modulus between the two
configurations, as expected by the quasi-static results given
by Eqs. (24) and (32). Interestingly, a more noticeable di er-
ence between the parallel and perpendicular configurationsis
observed in the imaginary part of the bulk modulus shown in
Fig. 6(f), a trend that is captured using the theory by retain-
ing the full expressions presented in Section IV A, rather than
the quasi-static approximations. From this observation, it is
clear that to correctly account for the losses, it is important to
retain the slightly more complicated general expression given
by Eqs. (28)–(30).

From a theoretical point of view, an anisotropic acoustic
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absorber can be obtained from any alternating arrangement of
lossy fluids. However, realization of such an arrangement us-
ing actual fluids is impractical, particularly for the airborne
sound absorbers examined in this work, and thus requires
the use of e ective lossy fluid structures. Furthermore, the
range of e ective fluid properties using traditional randomly
oriented fibrous media is quite limited, as discussed in Sec-
tion II B. Alternatively, the use of high filling fraction sonic
crystals enable a significant increase in the range of the ef-
fective density and bulk modulus, in addition to the increased
loss factors observed in in Section II B. This allows for the
realization of large inertial anisotropy like that theoretically
and numerically illustrated in Fig. 6.

V. EXPERIMENTAL RESULTS

To verify the theoretical model for confined sonic crystals,
several samples were fabricated and experimentally testedus-
ing a standard circular cross-section acoustic impedance tube.
The inner diameter of the impedance tube is 3.5 cm, and
the end of the tube is terminated with fiber glass insulation
to provide an anechoic termination. Noise is generated and
transmitted using a electromechanical driver, and measured
using 0.50 inch (1.27 cm) diameter G.R.A.S. condenser mi-
crophones. The microphones are arranged in a standard 4-
microphone configuration49, allowing for the magnitude and
phase of both the reflection and transmission pressure co-
e cients to be directly determined using a transfer-matrix
method50, from which the complex impedance and wavenum-
ber were obtained for the range 300–2000 Hz as done in previ-
ous experimental work on sonic crystal e ective properties51.

Some practical obstacles which arise from the fabrication of
samples are examined and accounted for in the model, includ-
ing the e ects of a thin plastic sheath around the sonic crys-
tal used for structural support in Section V A. Experimental
results for uniform sonic crystal lattices (which demonstrate
isotropic e ective inertia) for the three filling fractions de-
scribed in Table I are presented in Section V B. The multilayer
arrangement of these uniform sonic crystal lattices, whichen-
ables anisotropic inertia, are used to create the acoustic meta-
material absorber and is presented in Section V C.

A. Effects of sample sheath

In this section the e ects of the plastic sheath used to pro-
vide structural support for the fabrication and experimental
testing of the samples will be discussed. Although the plastic
sheath is quite thin compared with the radius of the impedance
tube (as seen in Fig. 4), the presence of this sheath leads to
two main e ects: an increase in the measured e ective acous-
tic impedance, and it leads to a layer of air which increases
the e ective density and decreases the e ective bulk modulus
the sample.

The addition of the plastic sheath to the sonic crystal will
lead to an increase in the measurable properties of the sonic

crystal sample. Assuming that the sheath appears rigid rela-
tive to the surrounding air, this will lead to increase ine and

e , given by

e sheath e 1 sheath
1 (33)

e sheath e 1 sheath
1 (34)

where sheath lsheath Rtube, with lsheathandRtube denoting the
sheath thickness and the radius of the tube, respectively. In
addition to the sheath encasing the sonic crystal, a slight lip
(where the sheath extended slightly past the cylinder) was
present due to the fabrication process. The result of this lip
is a thin layer of air adjacent to the front and back of sonic
crystal sample. The observed e ective properties can be quan-
tified by assuming that the resulting thin air layer acts likean
acoustic lumped element, in which case

e lip e 0 lip (35)

e lip
1

e

lip

0

1

(36)

where lip l lip Rtube. The nominal sheath thickness,lsheath,
and sheath lip,l lip , in each case tested in this work was 0 5
mm and 1 mm, respectively.

From Eqs. (33)–(36) it can be observed that the sheath and
the sheath lip will increase the measured e ective density. For
the bulk modulus, the sheath itself will lead to an increase
due to the increase in the specific acoustic impedance, though
the presence of the sheath lip acts to reduce the e ective bulk
modulus. Although which factor dominates depends on the
precise thicknesses of the sheath and sheath lip, it is clearfrom
Eq. (36) that the observable e ective bulk modulus resulting
from the sheath lip will depend on the relative magnitude of
the e ective bulk modulus of the sonic crystal compared with
that of the ambient air. Thus, the presence of the sheath lip
will be amplified as the filling fraction increase, and therefore
one would expect this e ect to dominate at higher filling frac-
tions, where e 0.

B. Experimental results with isotropic inertia

The sonic crystal samples were created using a commercial
3D printer out of ABS plastic for several di erent configura-
tions, which are listed in Table I and cover a wide range of
filling fractions. The three sonic crystal samples described in
Table I, consisting of a single uniform arrangement with con-
stant lattice parameter, were constructed to verify the results
of the modeling of the confined sonic crystals, based on the
formulations presented in Section III. A photograph of a sam-
ple mounted in the impedance tube is shown in Fig. 4. In this
figure, the thin plastic sheath surrounding the sonic crystal of
the test sample can be seen, which was necessary for structural
support to ensure the cylinders remained properly aligned.

Figure 7 shows the experimental results for the complex
density, sound speed and bulk modulus for Samples A, B,
and C. For comparison, two theoretical models of the sonic
crystal samples are presented: the first being the 2D sonic
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Sample A (3D Theory)
Sample A (2D Theory)
Sample B (Data)
Sample B (3D Theory)
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Sample C (Data)
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Sample C (2D Theory)

FIG. 7. (Color online) Comparison of theoretical results and exper-
imental impedance tube data as a function of frequency for the real
and imaginary parts of the e ective density and bulk modulus of a
sonic crystal withr0 1 mm, for Sample A, B, and C given in Table I,
shown in red, blue and green, respectively. The e ective sonic crystal
properties are normalized relative to the properties of air. Theoreti-
cal results for the 2D sonic crystal configurations are obtained from
Eqs. (12) and (16), and the 3D e ects of the confined sonic crystals
are accounted for using Eqs. (18)–(22).

crystal model (also shown in Fig. 3), and second including
the modifications for the confined sonic crystal with the ef-
fective thermal properties and isothermal boundary conditions
for the dynamic compressibility described by Eqs. (21), (20),
and (22). For the real and imaginary parts of the density
shown in Fig. 7(a) and (b), there is an excellent agreement be-
tween both models and the experimental results, with only a
slight deviation observed with the unconfined 2D sonic crys-
tal model at the highest filling fraction (Sample A). For the
complex sound speed and bulk modulus shown in Fig. 7(c)–
(f), there is a much more significant di erence between the
modeled results, resulting from the di erent thermal bound-
ary conditions used to derive the expressions for the dynamic
compressibility, and thus the bulk modulus. In particular,it is
observed that the 2D sonic crystal model, which was in excel-
lent agreement with the 2D results presented in Fig. 3, yields
a bulk modulus which has a significantly higher real part, with
a correspondingly lower imaginary part, than the experimen-
tal data. This trend is also observed in the sound speed data
as well. However, the theoretical formulation with the modi-
fications for the confined sonic crystal correctly accounts for
this decrease in the bulk modulus and increase in the losses
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FIG. 8. (Color online) Comparison of theoretical results and exper-
imental impedance tube data for the real and imaginary partsof the
density and bulk modulus of a sonic crystal withr0 1 mm, for the
anisotropic acoustic metamaterial configuration illustrated in Fig. 5.
The e ective sonic crystal properties are normalized relative to the
properties of air. Theoretical results for the acoustic metamaterial are
given by Eqs. (23)–(30), with the sonic crystal e ective fluidproper-
ties determined from Eqs. (12), (16), and (18)–(22).

(characterized by the imaginary part of the properties), and is
in excellent agreement with the experimental results for the
entire range of filling fractions examined.

C. Experimental results with anisotropic inertia

For the realization of the acoustic metamaterial with com-
plex anisotropic inertia, two samples were constructed using
the arrangement illustrated in Fig. 5(a) and (b) to demon-
strate the anisotropy in the parallel and perpendicular direc-
tions, respectively. As seen in Fig. 5, these samples consist
of two sets of alternating sonic crystal layers, containinga
high filling fraction layer (dark) and low filling fraction (light).
The same experimental setup was used to test these acoustic
metamaterial samples, the results for which are presented in
Fig. 8. For comparison purpose, theoretical results obtained
from Eqs. (28) and (29) are also shown. These results corre-
spond to the e ective properties of the structures with parallel
(dashed lines) and perpendicular (dash-dotted liens) config-
urations, which are calculated using the homogenized layer
properties based on those for confined sonic crystals (corre-
sponding to the theoretical results presented for Sample A
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and C in Fig. 7). Upon examination of the data shown in
Fig. 8, excellent agreement is observed between the theoreti-
cal and experimental results. This corresponds to an accurate
description of both the real and imaginary parts of each e ec-
tive property, for each orientation. The anisotropic inertia for
this acoustic metamaterial is observed in the data through the
significantly di erent values in the real and imaginary partsof
the e ective density for the parallel and perpendicular orien-
tations. These trends are precisely captured by the theoretical
results, for the complex values of the density, sound speed and
bulk modulus.

VI. SUMMARY

This work has reported theoretical and experimental results
for the consideration of thermal and viscous losses on the per-
formance of sonic crystals, with filling fractions much larger
than traditional porous absorbers. Due to the ordered mi-
crostructure, expressions for the complex e ective parameters
of sonic crystals can be written with no unknown or empirical
coe cients. In addition, it was shown that they can be com-
pletely characterized by only the filling fraction and normal-
ized boundary layer thickness. From these results, paramet-
ric plots were developed and examined, and highlight desir-
able characteristics for the enhancement of sound absorption,
including loss factors near unity and low bulk moduli. The
e ects of a confining structure around a sonic crystal lattice
were examined theoretically and experimentally, with the re-
sults showing excellent agreement over a wide range of filling
fractions and frequencies. A formulation for acoustic meta-
materials with complex-valued e ective material properties
has been presented, making use of these confined sonic crys-
tal properties, which is also in excellent agreement with the
theoretical model. Although only a relatively simple config-
uration was examined, the anisotropic acoustic metamaterial
formulation discussed and developed here have the potential
for more complicated designs, enabling the construction ofef-
fective fluid sound absorbers that have anisotropy in both the
material properties and absorption characteristics, as well as
the potential for creating enhanced sound absorption perfor-
mance.
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