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Abstract
In this paper we propose an optimization-based approach to finding a tensegrity structure
based on the ground structure method. We first solve a problem which maximizes the num-
ber of struts over the self-equilibrium condition and the discontinuity condition of struts.
Subsequently we solve the minimization problem of the number of cables in order to remove
redundant self-equilibrium modes. The optimization problem at each step can be formulated
as a mixed integer programming (MIP) problem. The method does not require any connec-
tivity information of cables and struts to be known in advance, while the obtained tensegrity
structure is guaranteed to satisfy the discontinuity condition of struts rigorously.

Keywords: Tensegrity; Shape design; Self-equilibrated configuration; Mixed integer pro-
gram; Topology optimization.

1. Introduction
Tensegrity structure is a class of tension structures, which consists of pin-jointed members
transmitting only axial forces. According to the definition given by Fuller [3], a tensegrity
structure is a prestressed pin-jointed structure consisting of continuous tensile members (ca-
bles) and discontinuous compressive members (struts). Later, the concept of tensegrity has
been generalized extensively; see, e.g., [7] and the references therein.
In this paper we propose an optimization-based approach to find a tensegrity structure which
rigorously satisfies the discontinuity condition of struts. It is emphasized that our method
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doesnot require any information of the connectivity of cables and struts to be known in
advance.

Therehave been many studies on form-finding of tensegrity structures; see, e.g., the review
papers [5, 9] and the references therein. However, as input data, those methods require to
specify the connectivity of members as well as the labeling indicating whether each member
is to be a cable or strut. Based on the group representation theory, a systematic approach was
presented to enumerate topologies, i.e. connectivities and labelings of members, of tenseg-
rity structures which share a common group-theoretic symmetry property [1]. Particularly,
for tensegrity structures with a rotational symmetry property, form-finding methods utilizing
such a symmetry property have been proposed [6, 8, 10]. However, these methods based
on the group theory assume that the group symmetry underlying a family of tensegrities is
known in advance, i.e. it is necessary to specify a symmetry property of tensegrity structures
before the form-finding process. Thus, it still remains as a challenging problem to find a
completely new pair of the connectivity and the labeling of members of a tensegrity structure
satisfying its definition rigorously.

We propose an approach to find a tensegrity structure based on the ground structure method.
Given a pin-jointed structure with the specified locations of nodes and sufficiently many
candidate members, our problem is to find a labeling of members which indicates whether
each member is to be a cable, a strut, or removed, so that the resulting structure becomes
a tensegrity structure. It is emphasized that our approach does not require any labeling of
members or any underlying group symmetry property to be known in advance.

Our approach consists of two parts; at the first step we find a self-equilibrium mode of axial
forces satisfying the discontinuous condition of struts, while at the second step we remove
redundant cables from the structure obtained at the first step. At each step we solve amixed
integer programming(MIP) problem.

2. Maximization of number of struts
Based on the conventional ground structure method, consider a pin-jointed structure in the
three-dimensional space, which consists of the nodes with the specified locations and suffi-
ciently many members that can exist. LetV andE denote the set of nodes and the set of
members, respectively. We denote byq = (qi) ∈ R|E| the vector of the member axial forces.
Note that a cable and a strut transmit only compressive and tensile forces, respectively, and
hence we haveqi > 0 for a cable andqi < 0 for a strut.

Although there exist various definitions of tensegrity structures [7], we employ the one
which consists of the self-equilibrium condition and the discontinuity condition of struts.
Let E(n j) ⊂ E denote the set of indices of the members which are connected to the node
n j ∈V. We denote byH ∈R3|V|×|E| the equilibrium matrix. Since any two struts do not share
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acommon node, the self-equilibrium mode,q̂, should satisfy

q̂ 6= 0 : Hq̂ = 0, (1)

|{i ∈ E(n j) | q̂i < 0}| ≤1, ∀n j ∈V. (2)

We next introduce a binaryvariable,xi ∈ {0,1}, for each member in order to indicate whether
the memberi is a strut or not, i.e.xi = 1 implies that the memberi is to be a cable, while
xi = 0 implies that the memberi is to be either a cable or a removed member. LetM andε
be positive constants, whereM is sufficiently large, i.e. 0< ε �M. It is easy to see that the
condition (2) is rewritten as

−Mxi ≤ qi ≤M(1−xi)− ε, ∀i ∈ E, (3)

∑
i∈E(n j )

xi ≤ 1, ∀n j ∈V, (4)

wherexi ∈ {0,1} (∀i ∈ E).

Note that the total number of struts is given by∑i∈E xi . Since it is natural to attempt to choose
as many struts as possible from the given ground structure, we consider the maximization
problem of the number of struts. From (3) and (4), the maximization problem of the number
of struts of a tensegrity structure is formulated as

(MIP-1) : max
q,x ∑

i∈E
xi (5a)

s.t. Hq = 0, (5b)

−Mxi ≤ qi ≤M(1−xi)− ε, ∀i ∈ E, (5c)

∑
i∈E(n j )

xi ≤ 1, ∀n j ∈V, (5d)

x ∈ {0,1}|E|. (5e)

Note that the problem (5) is a 0–1 mixed integer programming problem. Let(q̂, x̂) denote
the optimal solution of (5). Observe thatq̂ = 0 implies x̂ = 0. Since we attempt to maximize
∑i∈E xi ≥ 0 in the problem (5), at its optimal solution the condition (1) is satisfied, unless
q = x = 0 is a unique feasible solution of (5).

The characteristics of members are determined by




q̂i > 0 ⇒ the memberi is to be a cable;

q̂i < 0 ⇒ the memberi is to be a strut;

q̂i = 0 ⇒ the memberi is to be removed.

(6)
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Thuswe can obtain a tensegrity structure satisfying the discontinuity condition of struts.

3. Minimization of number of cables
Wehave shown in section 2 that a tensegrity structure satisfying the discontinuity conditions
of struts, as well as the self-equilibrium condition, can be obtained by solving (MIP-1) in (5).
Since (MIP-1) requires only the existence of self-equilibrium mode of axial forces which sat-
isfies the discontinuity condition of struts, the self-equilibrium mode of the obtained tenseg-
rity structure is not unique in general. In such a case, there may exist some cables which
can be removed from the tensegrity structure without changing the locations of struts. This
motivates us to consider in this section the minimal tensegrity for the given set of struts.

Let (q̂, x̂) denote the optimal solution of (MIP-1). DefineEcable, Estrut⊂ E by

Ecable= {i ∈ E | q̂i > 0}, (7)

Estrut = {i ∈ E | q̂i < 0}. (8)

Let Ēcable be the set of candidates of cables, whereĒcable⊇ Ecable and Ēcable∪Estrut = /0.
Consider a ground structure, which consists of the set of nodesV and set of membersEstrut∪
Ēcable. We say that a tensegrity structure satisfying the discontinuity condition of struts is a
minimal tensegrity if it includes no redundant cable. This condition is rigorously stated as





q

∣∣∣∣∣∣∣∣

Hq = 0
qi′ = 0
qi ≥ 0 (∀i ∈ Ēcable\{i′})
q j < 0 (∀ j ∈ Estrut)





= /0, ∀i′ ∈ Ēcable. (9)

For eachi ∈ Ēcable, we introduce a binary variableyi ∈ {0,1} which indicates whether the
cablei can be removed or not. Consider the linear inequalities

0≤ qi ≤Myi , (10)

whereM is a sufficiently large positive constant. Sinceyi ∈ {0,1}, we see that (10) is equiv-
alent to

qi ≥ 0, (11){
qi > 0 ⇒ yi = 1,

qi = 0 ⇐ yi = 0.
(12)

We remove the memberi if yi = 0. From (12) it follows that by minimizingyi over (10),yi

becomes equal to one if and only ifqi > 0. Consequently, the minimization problem of the
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numberof cables with the specifiedEstrut is formulated as

(MIP-2) : min
q,y ∑

i∈Ēcable

yi (13a)

s.t. Hq = 0, (13b)

qi ≤−ε, ∀i ∈ Estrut, (13c)

0≤ qi ≤Myi , ∀i ∈ Ēcable, (13d)

y ∈ {0,1}|Ēcable|, (13e)

where 0< ε �M. Note that (13) is a 0–1 mixed integer programming problem.

Let (q∗,y∗) denote the optimal solution of the problem (13). Observe that in (13) we attempt
to minimize the sum ofyi , from which and (12) we obtain

{
q∗i > 0 ⇔ y∗i = 1,

q∗i = 0 ⇔ y∗i = 0,

at the optimal solution. Hence, the optimal value of the problem (13) is equal to the number
of remaining cables. By removing cables corresponding toy∗i = 0, we can obtain the minimal
tensegrity which does not include any redundant cables.

4. Numerical examples
Consider a ground structure shown in Figure 1, where|V|= 10 and|E|= 41. This structure
consists of three layers, where the top and bottom layers are in triangular shapes and the
middle one in a rectangular shape. Note that the configuration of this structure is symmetric
by the reflection with respect to theyz-plane and the rotation around thex-axis with the angle
π. It is often that the symmetry of a tensegrity configuration causes the rank-deficiency of the
equilibrium matrix, and hence the conventional Maxwell counting rule does not necessarily
hold [2].

We solve (MIP-1) and (MIP-2) by using CPLEX Ver.11.2 [4] with the default settings. The
optimal solution of (MIP-1) is shown in Figure 2(a), which consists of 5 struts and 18 cables.
For finding the tensegrity with the minimum number of cables, we next solve (MIP-2), where
the ground structure for (MIP-2) is given by Figure 1, i.e.Ēcable := E \Estrut in (13). The
optimal solution of (MIP-2) is illustrated in Figure 2(b), which has 5 struts and 16 cables. We
see that the tensegrity in Figure 2(b) satisfies 21= 5+16< 3|V|−6 = 24, which implies that
the conventional Maxwell rule does not hold. However, this tensegrity can be stabilized by
introducing prestresses, which is verified from an actually constructed model.

5. Conclusions
In this paper we have presented a numerical method for finding a tensegrity structure based
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Figure1: A ground structure with 10 nodes and 41 members.

on the ground structure method. In our method we solve the two MIPs (mixed integer pro-
gramming problems) sequentially in order to find a tensegrity structure which satisfies the
self-equilibrium condition as well as the discontinuity condition of struts.

At the first step we solve an MIP which maximizes the number of struts over the self-
equilibrium condition and the discontinuity condition of struts. Note that it is very difficult
to deal with the discontinuity condition of struts rigorously by existing methods for design
of tensegrities. We have shown that this condition can be written as a system of linear in-
equalities in terms of the axial forces and some additional binary variables. Since the optimal
solution obtained at the first step has some self-equilibrium modes in general, we solve an
MIP which minimizes the number of cables as the second step.
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(a)The optimal solution of (MIP-1). (b) The optimal solution of (MIP-2).

Figure 2: The optimal solutions of a 10-node example.
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