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Abstract

In this paper, a procedure to design Steffensen-type methods of different orders for solving nonlinear equa-
tions is suggested. By using a particular divided difference of first order we can transform many iterative meth-
ods into derivative-free iterative schemes, holding the order of convergence of the departure original method.
Numerical examples and the study of the dynamics are made to show the performance of the presented schemes
and to compare them with another ones.
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1. Introduction

Solving nonlinear equations is a classical problem which has interesting applications in various branches of
science and engineering. In this study, we describe new iterative methods to find a simple root α of a nonlinear
equation f(x) = 0, where f : I ⊆ R→ R is a scalar function on an open interval I .

In the last years, a lot of papers have developed the idea of removing derivatives from the iteration function
in order to avoid defining new functions, and calculate iterates only by using the function that describes the
problem, trying to preserve the convergence order. The interest of these methods is to be applied on nonlinear
equations when there are many problems for obtaining and evaluating the derivatives involved, or when there
is no analytical function to derive.

The known Newton’s method for finding α uses the iterative expression

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, . . .

which converges quadratically in some neighborhood of α. If the derivative f ′(xk) is replaced by the forward-
difference approximation

f ′(xk) ≈ f [zk, xk] =
f(zk)− f(xk)

zk − xk
, (1)

where zk = xk + f(xk), the Newton’s method becomes

xk+1 = xk −
f(xk)

f [zk, xk]
, k = 0, 1, . . .
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which is the known Steffensen’s method, (see [6]). This scheme is a touch competitor of Newton’s method.
Both are of second order, both require two functional evaluations per step, but in contrast to Newton’s method,
Steffensen’s scheme is derivative-free.

Commonly, the efficiency of an iterative method is measured by the efficiency index defined as p1/d, where
p is the order of convergence and d is the number of functional evaluations per step. Kung and Traub conjectured
in [4] that the order of convergence of any multipoint method can not exceed the bound 2d−1. The schemes that
reach this bound are called optimal methods.

In this paper, by using the idea of Steffensen’s scheme, we are going to design a procedure that allows to
transform many iterative schemes for solving nonlinear equations into derivative-free method, preserving the
order of convergence.

The rest of the paper is organized as follows: in Section 2 we describe the mentioned procedure, design
some optimal derivative-free iterative schemes and establish the convergence order of these methods. In Section
3 different numerical tests, using smooth and non-smooth functions, and functions with zeros of multiplicity
greater than one, confirm the theoretical results and allow us to compare the new methods with the starting
ones. In Section 4, some dynamical aspects associated to the presented methods are studied. We finish this
manuscript with some conclusions and remarks.

2. Development of the procedure

Traub in [10] presented an iterative method with third order of convergence, which needs three functional
evaluations per step, two of the function f and one of the derivative f ′. It is known that if we replace f ′ by the
forward-difference approximation, the resulting method has the iterative expression

yk = xk − f(xk)
f [zk,xk]

,

xk+1 = yk − f(yk)
f [zk,xk]

,

where zk = xk + f(xk), and it has order of convergence three. So, we ask the following question:
Every time that f ′ is replaced by the forward-difference approximation, do you always preserve the order of
convergence?
The answer is negative as we can see now. It is known that Ostrowski’s method, given by the iterative expression

yk = xk − f(xk)
f ′(xk)

,

xk+1 = yk − f(xk)
f(xk)−2f(yk)

f(yk)
f ′(xk)

,

has order of convergence four and uses three functional evaluations per iteration, so it is an optimal method
in the sense of Kung-Traub conjecture. However, if we use the mentioned approximation of f ′, the resulting
scheme

yk = xk − f(xk)
f [zk,xk]

,

xk+1 = yk − f(xk)
f(xk)−2f(yk)

f(yk)
f [zk,xk]

,
(2)

where zk = xk + f(xk), has only order of convergence three, being its error equation

ek+1 = −c22(1 + f ′(α))
[
3 + f ′(α) + 2(1 + f ′(α))2

]
e3k +O(e4k),

where cj =
f (j)(α)
j!f ′(α) for j = 2, 3, . . . and ek = xk − α.

Nevertheless, if we use zk = xk + f(xk)
2 then the iterative method (2) has order of convergence four,

preserving the order and the optimality of Ostrowski’s scheme. As a more general result, if we apply this idea
to the King’s family schemes, which contains the Ostrowski’s method for a particular value of the parameter
(see [3]), we obtain an uniparametric family of optimal derivative-free methods of order four.
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Theorem 1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R → R in an open
interval I . If x0 is close enough to α, then the iterative method described by

yk = xk − f(xk)
f [zk,xk]

,

xk+1 = yk − f(xk)+βf(yk)
f(xk)+(β−2)f(yk)

f(yk)
f [zk,xk]

,
(3)

where zk = xk+f(xk)
2 and β is a real parameter, has optimal fourth convergence order and its error equation

is
ek+1 = c2

(
−c2f ′(α)2 + (1 + 2β)c22 − c3

)
e4k +O(e5k),

where cj =
f (j)(α)
j!f ′(α) for j = 2, 3, . . . and ek = xk − α.

Proof. By using Taylor’s expansion about α, we have

f(xk) = f ′(α)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k

]
+O(e5k) (4)

and
zk − α = ek + f ′(α)2

[
e2k + 2c2e

3
k + (2c3 + c22)e

4
k

]
+O(e5k). (5)

Then

f(zk) = f ′(α)ek + f ′(α)(c2 + f ′(α)2)e2k + f ′(α)(c3 + 4c2f
′(α)2)e3k

+f ′(α)(c4 + 5(c3 + c22)f
′(α)2 + c2f

′(α)4)e4k +O(e5k).

By substituting these expressions in the first step of (3), we obtain

yk − α = c2e
2
k + (c2f

′(α)2 − 2c22 + 2c3)e
3
k + (−c22f ′(α)2 + 4c32 + 3c3f

′(α)2 − 7c2c3 + 3c4)e
4
k

+O(e5k)

and using again Taylor’s expansion

f(yk) = c2f
′(α)e2k + f ′(α)(c2f

′(α)2 − 2c22 + 2c3)e
3
k

+f ′(α)(−c22f ′(α)2 + 5c32 + 3c3f
′(α)2 − 7c2c3 + 3c4)e

4
k +O(e5k).

Finally, by replacing these expressions in the second step of (3), we obtain the error equation of the method

ek+1 = c2
(
−c2f ′(α)2 + (1 + 2β)c22 − c3

)
e4k +O(e5k)

and this completes the proof.
We can extend the previous results in the following way.

Theorem 2. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R → R in an open
interval I . If x0 is close enough to α, then the iterative method described by

yk = xk − f(xk)
f [zk,xk]

,

xk+1 = yk − f(xk)+βf(yk)
f(xk)+(β−2)f(yk)

f(yk)
f [zk,xk]

,

where zk = xk + γf(xk)
n and β, γ are real parameters, has optimal fourth convergence order for all n ≥ 2

and for all β, γ, γ 6= 0. Its error equation is

ek+1 = c2
(
−γc2f ′(α)2 + (1 + 2β)c22 − c3

)
e4k +O(e5k), for n = 2

and
ek+1 =

(
(1 + 2β)c32 − c2c3

)
e4k +O(e5k), for n ≥ 3.

3



Can we extend this technique for higher order schemes? For methods of order greater than four we con-
sider, for example, the three-point iterative method introduced by Sharma et al. in [8], with optimal order
of convergence eight, derived from King’s family followed by a new step obtained by a particular rational
approximation:

yk = xk − f(xk)
f ′(xk)

,

wk = yk − f(xk)+βf(yk)
f(xk)+(β−2)f(yk)

f(yk)
f ′(xk)

,

xk+1 = xk − (P+Q+R)f(xk)
Pf [wk,xk]+Qf ′(xk)+Rf [yk,xk]

,

(6)

where P = (xk − yk)f(xk)f(yk), Q = (yk − wk)f(yk)f(wk) and R = (wk − xk)f(wk)f(xk).
By using the approximation f ′(xk) ≈ f [zk, xk], where zk = xk + γf(xk)

n, we obtain a two-parametric
derivative-free family

yk = xk − f(xk)
f [zk,xk]

,

wk = yk − f(xk)+βf(yk)
f(xk)+(β−2)f(yk)

f(yk)
f [zk,xk]

,

xk+1 = xk − (P+Q+R)f(xk)
Pf [wk,xk]+Qf [zk,xk]+Rf [yk,xk]

,

(7)

verifying the following result.

Theorem 3. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊆ R → R in an open
interval I . If x0 is close enough to α, then the iterative methods described by (7), for all values of parameters
β and γ, γ 6= 0, have the following error equations:

(i) If n = 1, the new methods have order of convergence 5 and they error equation is

ek+1 = −f ′(α)2γ2(1 + γf ′(α))2c42e
5
k +O(e6k).

(ii) If n = 2, the new scheme reaches seventh convergence order and its error equation is

ek+1 = f ′(α)2γc32(−f ′(α)2γc2 + (1 + 2β)c22 − c3)e7k +O(e8k).

(iii) If n ≥ 3, we obtain an optimal derivative-free family of order eight (preserving the order of the original
scheme (6)). The error equation for n = 3 is

ek+1 = c22((1 + 2β)c22 − c3)(c32 + c2(f
′(α)3γ − 2c3) + c4)e

8
k +O(e9k)

and for n ≥ 4
ek+1 = c22((1 + 2β)c22 − c3)(c32 − 2c2c3 + c4)e

8
k +O(e9k).

Let us note that the factor (1 + γf ′(α))2, in case n = 1, allows us to apply the techniques used for
several researchers (see, for example [11]) in order to obtain iterative schemes with memory and with order of
convergence greater than 5. These procedures can not be applied in cases n = 2 and n ≥ 3.

We obtain similar results to Theorem 3 by applying this idea to any scheme with optimal order of conver-
gence eight. For example, we consider the three-point iterative method introduced by Sharma et al. in [9], with
optimal eighth-order convergence

yk = xk − f(xk)
f ′(xk)

,

wk = yk − f(xk)
f(xk)−2f(yk)

f(yk)
f ′(xk)

,

xk+1 = wk −
(
1 + f(wk)

f(xk)

)
f [xk,yk]f(wk)

f [xk,wk]f [yk,wk]
.

(8)

By using the approximation f ′(xk) ≈ f [zk, xk], where zk = xk+γf(xk)
n, we obtain a derivative-free scheme

verifying, for every non-zero value of parameter γ:
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(i) If n = 1, the new method has order of convergence 5 and its error equation is

ek+1 = −f ′(α)2γ2(1 + γf ′(α))2c42e
5
k +O(e6k).

(ii) If n = 2, the new scheme reaches seventh convergence order and its error equation is

ek+1 = −f ′(α)2γ(f ′(α)2γc2 − c22 + c3)e
7
k +O(e8k).

(iii) If n ≥ 3, the convergence order of Sharma’s scheme is held and we obtain optimal derivative-free
schemes of order eight. The error equation for n = 3 is

ek+1 = c22(c
2
2 − c3)(3c32 + c2(f

′(α)3 − 4c3) + c4)e
8
k +O(e9k)

and for n ≥ 4
ek+1 = c22(c

2
2 − c3)(3c32 − 4c2c3 + c2c4)e

8
k +O(e9k).

This idea also provides good results in optimal schemes obtained from weight functions procedure. By
using this technique, Liu and Wang presented in [5] the iterative scheme

yk = xk − f(xk)
f ′(xk)

,

wk = yk − f(xk)
f(xk)−2f(yk)

f(yk)
f ′(xk)

,

xk+1 = wk − f(wk)
f ′(xk)

[(
f(xk)−f(yk)
f(xk)−2f(yk)

)2
+ f(wk)

f(yk)+f(wk)
+G(µk)

]
,

where µk = f(wk)
f(xk)

. They proved that if x0 is close enough to the solution and G is a sufficiently differentiable
function such that G(0) = 0 and G′(0) = 4, then the scheme is convergent with order eight. We modify this
method in the following sense:

yk = xk − f(xk)
f [zk,xk]

,

wk = yk − f(xk)
f(xk)−2f(yk)

f(yk)
f [zk,xk]

,

xk+1 = wk − f(wk)
f [zk,xk]

[(
f(xk)−f(yk)
f(xk)−2f(yk)

)2
+ f(wk)

f(yk)+f(wk)
+G(µk)

]
,

(9)

where µk =
f(wk)
f(xk)

and zk = xk + γf(xk)
n, and we can establish the following result.

Theorem 4. Assume that f and G are sufficiently differentiable functions and f has a simple zero α ∈ I . If
the initial estimation x0 is close enough to α, then the methods defined by (9) converge to α with eighth-order
for all n ≥ 3, γ 6= 0 and under conditions G(0) = 0 and G′(0) = 4. The error equation is

ek+1 = c2(c
2
2 − c3)(14c42 + c22(γf

′(α)3 − 17c3) + c23 + c2c4)e
8
k +O(e9k), for n = 3

and
ek+1 = c2(c

2
2 − c3)(14c42 − 17c22c3 + 2c23 + c2c4)e

8
k +O(e9k), for n ≥ 4.

Remark Every time that we apply the approximation of the derivative f ′(xk) ≈ f [zk, xk], with zk = xk +
γf(xk)

n, on an optimal scheme of order four (22) or eighth (23), we need to use n ≥ 2 or n ≥ 3, respectively.
So, we conjecture that if the optimal order is 2q, we will need n ≥ q for preserving the order of convergence.
We also conjecture that this idea provides analogous results when it is applied to scheme with optimal order of
convergence 2q, q = 1, 2, 3, . . ..

When the original scheme has not optimal order p, the approximation f ′(xk) ≈ f [zk, xk], with zk =
xk + γf(xk)

n, allows to hold the order of convergence, but we are not sure about the minimum value of n that
gives the order of the original scheme.
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3. Numerical results

In this section, we compare the derivative-free schemes described with the methods used to design them.
Specifically, we compare Ostrowski’s method (OM) and the schemes obtained by using in it the approximation
f ′(xk) ≈ f [xk + f(xk)

n, xk] for n = 1 and n = 2, denoted by OM-DF1 and OM-DF2, respectively. For
eighth-order we use Sharma (SM) and SGG’s method (SGGM), described by equations (8) and (6), with β = 0,
respectively; and the schemes obtained by using in it the previous approximation of f ′(xk) for n = 1, n = 2
and n = 3, denoted by SM-DF1, SM-DF2, SM-DF3, SGGM-DF1, SGGM-DF2 and SGGM-DF3, respectively.
These methods are employed to solve some nonlinear equations of two classes: smooth functions

(1) f1(x) = sin2 x− x2 + 1, α ≈ ±1.4044916,

(2) f2(x) = xex
2 − sin2 x+ 3 cosx+ 5, α ≈ −1.2076478,

(3) f3(x) = esinx − 1− x/5, α = 0,

(4) f4(x) =
√
x2 + 2x+ 5− 2 sinx− x2 + 3, α ≈ 2.331968,

(5) f5(x) = (x− 1)3 − 1, α = 2.

and non-smooth functions or functions with multiple roots

(1) g1(x) =
√
x− 1, α = 1,

(2) g2(x) =
{
x(x− 1), x < 0,
−2x(x+ 1), x ≥ 0,

α = 0,

(3) g3(x) = |x2 − 9|, α = 3,

(4) g4(x) =
{
x, x ≤ 0,
x2, x > 0,

α = 0,

(5) g5(x) = (sin2 x− 2x+ 1)3, α ≈ 0.714835, m(α) = 3.

Let us note that the derivative of g1 is not defined in the root α = 1. Functions g2, g3 and g4 are non-
differentiable in x = 0, x = ±3 and x = 0, respectively. Finally, g5 is a function with a multiple zero.

Numerical computations with smooth functions have been carried out using variable precision arithmetic,
with 2000 digits, in Matlab 7.13, whereas that for functions gi, i = 1, 2 . . . , 5 we have used Mathematica. The
stopping criterion used is |xk+1 − xk| < tol or |f(xk+1)| < tol, with tol = 10−500 for smooth functions and
tol = 10−50 for the other functions. In any case, we show, in the different tables, incr1 = |xk+1 − xk| and
incr2 = |f(xk+1)| for the last iteration, the number of iterations needed to reach the wished tolerance and the
approximate computational order of convergence (ACOC), according to (see [2])

p ≈ ACOC =
ln (|xk+1 − xk|/|xk − xk−1|)
ln (|xk − xk−1|/|xk−1 − xk−2|)

.

The value of ACOC that appears in Tables from 1 to 4 is the last coordinate of vector ACOC when the variation
between its values is small. In other case we will denote it by ’-’. On the other hand, ’nc’ denotes that the
method does not converge with, at least, 104 iterations. In Tables 1 and 2 we summarize the results obtained by
Ostrowski’s method and its variants when their are applied to smooth and non-smooth functions, respectively.
In Table 1 we can observe that, for initial approximation near to the solution, the behavior of all methods is
similar, stable and the ACOC is very near of the theoretical order of convergence. However, derivative-free
methods have problems of convergence (see for instance f2) when the initial estimation is not near of the
solution.

In Table 2 we can observe the erratic behavior of the methods on non-smooth functions. For g1, g4 and
g5 Ostrowski’s scheme has only linear convergence which coincides with that of the other schemes when they
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Table 1: Ostrowski-type methods for smooth functions

OM OM-DF1 OM-DF2
f1, x0 = 1
incr1 0.125e-439 0.973e-418 0.116e-361
incr2 0.250e-1753 0.516e-1249 0.150e-1440
iter 6 8 6
ACOC 4.0000 3.0000 4.0000
f2, x0 = 3
incr1 0.114e-192 nc nc
incr2 0.130e-764 nc nc
iter 14 nc nc
ACOC 4.0000 - -
f3, x0 = 0.5
incr1 0.127e-155 0.785e-188 0.360e-196
incr2 0.514e-618 0.217e-560 0.788e-782
iter 5 6 5
ACOC 4.0000 3.0000 4.0090
f4, x0 = 2
incr1 0.337e-324 0.283e-291 0.302e-237
incr2 0.273e-1293 0.189e-871 0.137e-944
iter 5 6 5
ACOC 3.9998 3.0000 4.0000
f5, x0 = 1.7
incr1 0.139e-130 nc 0.116e-285
incr2 0.736e-517 nc 0.449e-1136
iter 5 nc 6
ACOC 4.0000 - 4.0000

Table 2: Ostrowski-type methods for other functions

OM OM-DF1 OM-DF2
g1, x0 = 0.7
incr1 0.896e-50 nc 0.617e-50
incr2 0.563e-25 nc 0.496e-25
iter 143 nc 212
ACOC 1.0000 - 1.0000
g2, x0 = 0.5
incr1 0.291e-30 0.225e-15 nc
incr2 0.144e-121 0.774e-62 nc
iter 4 4 nc
ACOC 4.0000 3.9220 -
g3, x0 = 0.5
incr1 0.402e-42 nc nc
incr2 0.726e-171 nc nc
iter 5 nc nc
ACOC 4.0000 - -
g4, x0 = 0.5
incr1 0.776e-25 0.103e-24 0.284e-24
incr2 0.668e-51 0.118e-50 0.898e-50
iter 42 41 41
ACOC 1.0000 1.0000 1.0000
g5, x0 = 1
incr1 0.161e-16 0.173e-16 0.161e-16
incr2 0.173e-50 0.213e-50 0.171e-50
iter 44 44 44
ACOC 1.0000 1.0000 1.0000

converge. In particular, derivative-free methods have a bad behavior for g3, with independence of the initial
approximation.

We show in Tables 3 and 4 the results obtained by Sharma and SGG’s methods (with β = 0 in case of
SGGM) and their variants when they are applied to smooth and non-smooth functions, respectively. Again,
theoretical results are confirmed by numerical ones, as Sharma and SGG’s method and their derivative-free
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variants have a very similar behavior. Indeed, if an initial estimation far away from the solution is chosen, the
derivative-free variants can not converge, although SGG-type methods seem to be more stable and robust than
Sharma-type schemes, for smooth functions.

Table 3: Sharma and SGG-type methods for smooth functions

Sharma Sharma-DF1 Sharma-DF2 Sharma-DF3 SGGM SGGM-DF1 SGGM-DF2 SGGM-DF3
f1, x0 = 1
incr1 0.502e-182 0.861e-448 0.924e-116 0.243e-227 0.738e-244 0.829e-150 0.123e-129 0.702e-240
incr2 0.336e-1444 0 0.182e-798 0.107e-1805 0.153e-1939 0.497e-741 0.135e-895 0.559e-1906
iter 4 6 4 4 4 5 4 4
ACOC 8.3628 5.0000 6.5748 7.6851 8.0000 5.0000 7.0005 8.0001
f2, x0 = 3
incr1 0.158e-128 nc nc nc 0.384e-308 nc nc nc
incr2 0.316e-1016 nc nc nc 0.108e-2008 nc nc nc
iter 4 nc nc nc 21 nc nc nc
ACOC 8.0000 - - - 8.0000 - - -
f3, x0 = 0.5
incr1 0.184e-292 0.287e-116 0.168e-236 0.116e-286 0.251e-235 0.155e-136 0.146e-247 0.998e-308
incr2 0.240e-2009 0.491e-575 0.447e-1648 0.106e-2009 0.167e-1872 0.226e-676 0.165e-1725 0.166e-2010
iter 4 4 4 4 4 4 4 4
ACOC 7.7729 - 7.1520 7.7375 - 5.0000 7.0000 8.0000
f4, x0 = 2
incr1 0.119e-86 0.143e-150 0.279e-323 0.984e-487 0.178e-82 0.273e-151 0.156e-324 0.165e-488
incr2 0.986e-686 0.860e-749 0.108e-2008 0.108e-2008 0.123e-652 0.433e-752 0.0 0.0
iter 3 4 4 4 3 4 4 4
ACOC - 5.0141 6.9275 7.9346 7.9666 5.0000 7.0005 -
f5, x0 = 1.7
incr1 0.109e-220 0.231e-295 0.179e-90 0.147e-70 0.775e-280 0.425e-237 0.804e-106 0.684e-110
incr2 0.652e-1753 0.285e-1467 0.133e-620 0.128e-550 0.0 0.599e-1176 0.487e-728 0.263e-865
iter 4 8 4 4 4 6 4 4
ACOC 8.2431 4.9998 6.7072 - 8.0000 5.0000 7.0024 7.9593

In Table 4 we observe that, for functions g1, g4 and g5 Sharma and SGG’s schemes and their variants have
lost the eighth-order convergence. In addition, derivative-free variants have a confuse behavior, as sometimes a
better approximation of the derivative deserves a worst result.

In the following section we will try to find answers to the questions arisen in numerical tests. Is the stability
worst when the exponent of f(xk) increases? Does this behavior depend on the original scheme and the problem
to be solved?

4. Dynamical Analysis

In the following, a brief discussion will be made on the dynamical aspects associated to the introduced
methods. It is important to note that dynamics has been revealed as a very useful tool to deep in the under-
standing of the rational functions that rise when an iterative scheme is applied to solve a nonlinear equation
f(z) = 0. The dynamical properties of this rational function give us important information about numerical
features of the method as its stability and reliability. In order to get this aim, we will recall some basic concepts
that can be found in (see [1]).

Given a rational function R : Ĉ→ Ĉ, where Ĉ is the Riemann sphere, the orbit of a point z0 ∈ Ĉ is defined
as:

{z0, R (z0) , R
2 (z0) , ..., R

n (z0) , ...}.

We analyze the phase plane of the map R by classifying the starting points from the asymptotic behavior of
their orbits. A z0 ∈ Ĉ is called a fixed point if R (z0) = z0. A periodic point z0 of period p > 1 is a point
such that Rp (z0) = z0 and Rk (z0) 6= z0, for k < p. A pre-periodic point is a point z0 that is not periodic but
there exists a k > 0 such that Rk (z0) is periodic. Moreover, a fixed point z0 is called attractor if |R′(z0)| < 1,
superattractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1. Then, the basin of
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Table 4: Sharma and SGG-type methods for other functions

Sharma Sharma-DF1 Sharma-DF2 Sharma-DF3 SGG SGGM-DF1 SGGM-DF2 SGGM-DF3
g1, x0 = 0.7
incr1 0.801e-50 nc 0.524e-50 0.588e-50 0.379e-50 nc 0.412e-50 nc
incr2 0.376e-25 nc 0.442e-25 0.323e-25 0.373e-25 nc 0.381e-25 nc
iter 72 > 104 96 75 103 nc 113109 nc
ACOC 1.0 - 1.844 1.0 1.0 - 1.0 -
g2, x0 = 0.5
incr1 0.591e-27 0.628e-13 nc 0.299e-27 0.2912e-30 0.8871e-12 nc 0.5053e-36
incr2 0.892e-217 0.463e-91 nc 0.130e-219 0.104e-243 0.5189e-83 nc 0.2973e-289
iter 3 4 nc 3 3 4 nc 3
ACOC - - - - - 4.860 - -
g3, x0 = 0.5
incr1 0.137e-8 nc nc nc 0.791e-21 nc nc nc
incr2 0.791e-75 nc nc nc 0.328e-173 nc nc nc
iter 4 nc nc nc 5 nc nc nc
ACOC 5.546 - - - - - - -
g4, x0 = 0.5
incr1 0.160e-24 0.534e-24 0.154e-24 0.158e-24 0.181e-24 0.102e-24 0.182e-24 0.182e-24
incr2 0.715e-51 0.804e-51 0.664e-51 0.707e-51 0.668e-51 0.289e-51 0.675e-51 0.674e-51
iter 30 29 30 30 28 28 28 28
ACOC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
g5, x0 = 1
incr1 0.208e-16 0.213e-16 0.207e-16 0.208e-16 4.206e-16 3.994e-16 4.209e-16 4.206e-16
incr2 0.780e-51 0.842e-51 0.777e-51 0.780e-51 3.623e-52 3.103e-52 3.632e-52 3.622e-52
iter 32 32 32 32 30 30 30 30
ACOC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

attraction of an attractor α is defined as:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

The Fatou set of the rational function R, F (R) , is the set of points z ∈ Ĉ whose orbits tend to an attractor
(fixed point, periodic orbit or infinity). Its complement in Ĉ is the Julia set, J (R). That means that the basin
of attraction of any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong
to the Julia set.
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(b) n = 2

Figure 1: Dynamical planes associated to modified Ostrowski’s scheme on p(z) = z2 − 1

Let us start by the simplest case: if Ostrowski’s scheme is applied on a quadratic polynomial, it is known
that the associated dynamical plane will be composed by two semi-planes as the only connected components of
the basins of attraction of the the two roots. When the modified Ostrowski’s schemes (for n = 1 and n = 2) act
on the same polynomial (see Figure 1), the basins remain wide for n = 1, although the number of connected
components has increased to infinity. This makes smaller the region of stable behavior. However, they are
greater than the ones obtained for n = 2. This seems to be the cost for holding the order of convergence
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of the original method. Moreover, in both cases back regions appear, that represent starting points with no
convergence.

When the non-smooth function g2(z) is considered, for z ∈ C,

g2(z) =

{
z(z + 1), z < 0
−2z(z − 1), z ≥ 0.

Then, modified Ostrowski’s scheme shows a stable behavior, with clean basins of attraction are observed and
little black areas, pre-images of the infinity appear (see Figure 2). In addition, three basins of attraction,
corresponding to the roots z = −1, z = 0 and z = 1, are showed in different colors.
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(b) n = 2, order 4

Figure 2: Dynamical planes associated to modified Ostrowski’s scheme on g2(z)

Let us now consider the behavior of eighth-order schemes: in Figures 3, 4 and 5, the dynamical planes
for variants of both methods, SM and SGGM, by using exponents up to n = 3 are showed. Analyzing the
dynamical planes associated to modified Sharma’s scheme on p(z) = z2 − 1 (see Figures 3), it can be noticed
that they have better conditions for convergence than modified Ostrowski’s scheme for n = 1 and n = 2, as
there are no wide black regions; nevertheless, dynamics becomes ’interesting’ when n = 3, with the appearance
of 2-periodic orbits, whose detail can be observed in Figure 4. Respect to the derivative-free variants of SGGM,
it can be noticed that their behavior is more similar to the Ostrowski-like schemes: there exist wide black
regions, but the vicinity of the roots is ”clean”, there are wider balls centered at the roots with full convergence
to the solutions. In case of n = 3 (Figure 5c)), the wideness of the basins have been reduced respect to the ones
of n = 1 and n = 2.

In Figures 6 and 7, the dynamical planes associated to modified Sharma and SGG’s schemes on g2 are
showed. We can observe that the role of the function is capital, as the complexity of the dynamical plane is
much higher than in simpler cases.

5. Conclusions

We have introduced a simple technique, based in a particular divided difference of first order, which applied
to an iterative scheme for nonlinear equations provides a derivative-free iterative method, holding the order of
convergence. Some numerical test are provided on smooth and non-smooth functions to show the performance
of the new methods. The analysis of the dynamics shows that, in general, some of the basins of attraction widen
when the powers increase, the stability is worse when the original order is recovered and also pre-images of the
infinity appear.
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Figure 3: Dynamical planes associated to modified Sharma’s scheme on p(z) = z2 − 1
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Figure 6: Dynamical planes associated to modified Sharma’s scheme on g2(z)

13



IRe{z}

IIm
{z

}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) n = 1, order 5

z=+i

IRe{z}

IIm
{z

}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) n = 2, order 7

IRe{z}

IIm
{z

}

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) n = 3, order 8

Figure 7: Dynamical planes associated to modified SGG’s scheme on g2(z)
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