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Abstract. Multidimensional data is systematically analysed at multiple
granularities by applying aggregate and disaggregate operators (e.g., by
the use of OLAP tools). For instance, in a supermarket we may want to
predict sales of tomatoes for next week, but we may also be interested
in predicting sales for all vegetables (higher up in the product hierarchy)
for next Friday (lower down in the time dimension). While the domain
and data are the same, the operating context is different. We explore
several approaches for multidimensional data when predictions have to
be made at different levels (or contexts) of aggregation. One method
relies on the same resolution, another approach aggregates predictions
bottom-up, a third approach disaggregates predictions top-down and a
final technique corrects predictions using the relation between levels. We
show how these strategies behave when the resolution context changes,
using several machine learning techniques in four application domains.
Keywords: Multidimensional data, operating context, aggregation, dis-
aggregation, OLAP cubes, quantification.

1 Introduction

Most existing algorithms in machine learning only manipulate data at an indi-
vidual level (flat data tables), not considering the case of multiple abstract levels
for the given data set. However, in many applications, data contains structured
information that is multidimensional (or multilevel) in nature, such as retailing,
geographic, economic or scientific data. The multidimensional model is a widely
extended conceptual model originated in the database literature that can be used
to properly capture the multiresolutional character of many data sets [13,5,1,26].
Multidimensional databases arrange data into fact tables and dimensions. A fact
table includes instances of facts at the lowest possible level. Each row represents
a fact, such as “The sales of product ‘Tomato soup 500ml’ in store ‘123’ on
day ‘20/06/2014 totalled 25 units”. The features (or fields) of a fact table are
either measures (indicators such as units, euros, volumes, etc.) or references to
dimensions. A dimension is here understood as a particular variable that has
predefined (and hopefully meaningful) levels of aggregation, with a hierarchical
structure.
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Figure 1 shows several examples of dimensions and hierarchies. Using the
hierarchies, the data can be aggregated or disaggregated at different granulari-
ties. Each of this set of aggregation choices for all dimensions is known as a data
cube [6], which provides an easy understanding and offers flexibility for visuali-
sation (aggregated tables and cubes). OLAP technology, for instance, has been
developed to handle large volumes of multidimensional data in a highly efficient
way, and moving through the space of cubes by the use of roll-up, drill-down,
slice&dice and pivoting operators.

CO‘?”}’ section
year municipality T
el g ? category
week month district T
day store product

Fig. 1. Examples of dimension hierarchies. Left: Time dimension, Middle: Location
dimension, Right: Product dimension.

Despite the success of multidimensional schemas and its widespread use for
data warehouses for about two decades, a full integration of machine learning
and multidimensional datasets has not taken place. Even in business intelligence
tools, which aim at integrating data warehouses, OLAP technology and data
mining tools, the usual procedure is to select a cube using an OLAP query or
operator, and derive a view from it. Next, this ‘minable view’ is transferred to
the data mining tool to apply machine learning or statistical techniques to this
flat, traditional view of the data.

When we analyse the problem more carefully, we see that the main issue for a
successful integration is that we would like to use off-the-shelf machine learning
techniques but taking full potential of the hierarchical information. Machine
learning models are not designed to take hierarchical attributes. Consequently,
we need to do something different whenever the cube we want to predict for
changes. In other words, the predictions for tomatoes and weeks will be different
than the predictions for vegetables and Fridays. These two situations represent
operating contexts. In principle, a model that has been obtained for one context
cannot be directly applied to a different context.

This leads us to two major alternatives. On the one hand, we can learn one
model for each operating context and apply it for that level of aggregation,
which means retraining the model for each operating context. On the other
hand, we can learn one, more versatile, model at the lowest operating context
(highest resolution) and then aggregate their predictions, as in a quantification
problem [11,2,3]. This second point of view results in reframing the model for
each operating context. In addition to these major views, it is worth exploring
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other models such as disaggregation, where a reframing philosophy is addressed
in the opposite way, that is, working at an upper level (lower resolution) and then
disaggregating the predictions until the working level of granularity is reached.
Finally, there also exists the possibility of correcting the predictions worked out
for each operating context by means of using the coarse information from upper
levels of granularity for improving (correcting somehow) finer predictions, as
done by [10] in a multilevel (but not multidimensional) scenario.

In this paper we analyse all these approaches systematically with several
machine learning techniques in four different application environments.

The rest of the paper is organised as follows. Section 2 formalises the notion
of multidimensional context and properly defines the two main approaches that
we will study: the same-level (retraining) approach and the low-level (reframing)
approach. Furthermore, the disaggregation model and the same-level correction
model are also defined in this section. Section 3 discusses how datamarts have to
be understood when models are required to predict some of the measures of the
fact table and also states some measurement considerations. Section 4 presents
the techniques, datamarts and error measure that will be used in the experi-
ments. After that, results for each approach are analysed. Section 5 discusses
some related work and section 6 closes the paper with some take-away messages
and some future work.

2 Multidimensional contexts

We consider a multidimensional data set D (or datamart) of schema (X,Y)
where X = {X1,..., X4} is the set of d dimensions (used as predictor attributes
or features) and Y, which is the target attribute (one measure or indicator that
can be numeric or nominal). We use D4 to denote the projection of dataset
for attribute A. Note that datasets and projections are multisets (i.e., they can
have repeated values). Each dimension X; has an associated hierarchy h(X;) of
m; elements or levels {Xfl), . ,Xi(mi)} with a strict partial order <. In this
paper we will assume that hierarchies are linear, so the partial order becomes
a total order from the lowest level Xi(l) to the highest level Xi(mi). This is not
a strong restriction, as a non-linear dimension can be converted into several
linear dimensions (one for each possible pathway in the lattice). For instance, if
X5 = location, as in Figure 1 (middle), we have X2(1) = store, X2(2) = district,
X§3) = municipality and Xé4) = country with store < district < municipality <
country and their transitive closure. We will consider that the top level m; for
every hierarchy is all-i, such that for every [ € h(X;), I < all-i. Non-hierarchical
attributes are just special cases, by just considering that m; = 2 (the bottom
and the top all-i level). These dimensions then just become regular attributes
but with the possibility of aggregating them to the top level all.

Each level Xi(J ) of a hierarchy h(X;) has an associated domain Xi(J ), which
can be nominal or numeric. We will assume that there are no levels with the same
name in the same or different hierarchies. In this way, if the name of a level is
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name then we can just refer to the level by X("@M&) and the associated domain
by X("3Me) For instance, the domain of the level country for dimension location,

ie., X2(4), or X(COUNTTY) “might be the set with values {UK, Spain, France}. For

©)

every pair of consecutive levels Xz-j and XZ-(j W in a hierarchy we define a

regrouping function ¢/ between the values of XZ-(j ) to the values of Xi(j U For
instance, ¢3(Valencia) = Spain. We denote by (/ﬁg:k, with j < k the successive
application of ¢ from j to k, i.e., gi)g:k(v) = d)i-“(...d){“(qﬁg (v))...). Given a value v
at a level X Z.(k) of the dimension i, we denote by L (v) the set of all the values at

the lowest level of that hierarchy that belongs to, i.e., {w € Xi(l) | p3* (w) = v}.
For instance, 1 (Valencia) would be all the stores of all the districts of Valencia.

Definition 1. A multidimensional operating context or resolution is a d-tuple of
levels (l1,...,la), with each l; € h(X;). A multidimensional context determines
the level for every dimension of the dataset.

Definition 2. Given a multidimensional context, a selection of D at a context
(I, ..., la) with values {v1,...,vq) is defined as follows:

J[h:m,...,ld:vd](D) £ {<$17 <oy Xd, y> |5L'1 S J—('Ul), .., &g € J—(Ud)} (1)

For instance, if we have three dimensions X; = product, X5 = location and X3 =
time, and Y is representing units, we could select all the facts for the context
(item, municipality, year) with values tomato, Valencia and 2013 respectively

with U[item:Tomato,munic.:Valencia,year:QOlB]<D)'
Finally, we can define an aggregation operator as follows:

Definition 3. Given an aggregation function, agg, as a function from sets to
real numbers, the aggregation of a datamart D for a context (l1,...,1lq) is defined
as follows:

V[L;f,g__.,zd](D) L .. xq,2) |21 € X pg e xla),

z = agg({y| <’U1, -+ Ud, y> € Olly=x1,...,la=24) (D)})}

The above aggregation is extended for unlabelled datasets with no y attribute.

1 a sum
For instance, V[item,municipality,year]

sible combination of values at the level item in the dimension product, at the
level municipality in the dimension location and at the level year in the dimen-
sion time, where the output variable is constructed by summing all the y of the
corresponding rows according to the hierarchies.

Given the above notation, now we consider a predictive problem from X to
Y. For instance, how many tomatoes we expect to sell in Valencia next week?
Assuming we have a training dataset, how would we train our model? As a first
idea, it seems reasonable to aggregate the training data using the v operator

(D) returns all the tuples for each pos-
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above for the context ¢ = (item, municipality, week), producing a model M that
will be applied to the deployment data with the same context. However, if some
time later we are interested in predicting sales for all vegetables for next Fri-
day, what would we do? We could aggregate the training data for the context
¢’ = (category, municipality, day), learn a new model M’ and predict for the de-
ployment data. This is what we see in Figure 2 (top). We refer to this approach
as the Same-Level (SL) approach or the retraining approach.

Definition 4. Given a training data T with measure Y and a deployment data
D, a model learnt for measure Y at the same level, denoted by SL, in context
(l1,...,1q) is defined as follows. We first aggregate T for that context, i.e., T4 =
75??..,“] (T). Then we train a model M4 : X2 — YA, For the deployment data

D we also aggregate the original data as DA = 'V[Clbff]...,ld] (D). We finally add an

attribute Y to DA by setting it equal to the predictions of the model MA for
each of these aggregated rows, so producing D?. This yields pairs (X,Y) at that
context.

An alternative approach goes as follows. Consider that we train a predictive
model M for the lowest level in D. Once a new multidimensional appears, we
apply the model to the deployment data and aggregate the predictions. With
this approach, one model is used for every possible context. This is illustrated in
Figure 2 (middle). We refer to this approach as the Lowest-Level (LL) approach
or the reframing approach.

Definition 5. Given a training data T with measure Y and a deployment data
D, a model learnt for measure Y at the lowest level, denoted by LL, and deployed
at a context (l1,...,lq) is defined as follows. We first train a model M : X —Y
for the whole training dataset T. Now, for each row at the lowest level in the
deployment data D we apply M. We add a new attribute Y, and set it to the result
of the model for each row, giving a new dataset D. Finally, given an aggregation
function agg, we now calculate the predictions for a context (ly, ... 1) as DA A&
75??..,1(1]([))7 which produces pairs (X,Y) at that context.

Another alternative is to disaggregate predictions from a higher level of gran-
ularity. Figure 2 (bottom), trains a predictive model M for a higher level and
keeps the frequencies or proportions that are shared on the lower levels for the
training set. Then with a new prediction at a higher level, the frequencies are
used for the disaggregation. We refer to this approach as the Disaggregation
(dAg) approach. Figure 3 shows a disaggregation example taking into account
the two first levels of the product dimension from Fig.1. This example takes into
account one dimension and only one level of disaggregation. However, it could
be extended to more than one level of disaggregation, for instance from section
to product in the same dimension (2 levels), and for more than one dimension,
for instance taking into account dimensions product and location, which would
also imply working out all the combinations. Nonetheless, for simplicity, in the
rest of the paper, we have limited the disaggregation approach to the following
setting:
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Fig. 2. Retraining (Same-Level approach), reframing (Lowest-Level approach) and dis-
aggregation for two different multidimensional contexts c and ¢’. Retraining (top) needs
to convert the training data for the two contexts ¢ and ¢’ and then aggregating the
output into z or 2’ respectively. Two models M. and M, are learnt (one for each con-
text) at the same level the predictions must be done. Reframing (middle) shows how
the training data is used just once at the lowest level to create a single model M that is
applied to different operating contexts c or ¢’ by aggregating the outputs appropriately.
Disaggregation (bottom) shows how the training data is used just once at a higher level
to create a single model M that is applied to different operating contexts c or ¢’ by
disaggregating the outputs appropriately.

— Only one level per dimension has been disaggregated for each result, that is,
we just disaggregate to the level immediately below.

— All the dimensions are taken into account, although we only disaggregate
one dimension for each result.

Definition 6. Given a training data T with measure Y and a deployment data
D,, a model learnt for measure Y wusing disaggregation, denoted by dAg, and
deployed at a context (l1,...,14), is defined as follows. Let us suppose the context
(h,...,1%) as the context at the level immediately below to (l1,...,lq). We first

aggregate T for the upper context, i.e., T,ﬁ = Elgg ld]( ) and for its immediately

context below, i.e., T2 = 'yﬁ,gg n (T). We define a function F that counts the
number of observatzons that fall into each of the disjoint categories. This is done
as an aggregation function as in Definition 3 but using count as the aggregation
function. Let us also suppose that we have predictions for the deployment data
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D2 at the high level using the SL approach. Now, for each row at the lower
context in the deployment data DZAO we apply F' on the predictions for D,ﬁ to
create the predictions for the lower level.

Real values pI'OdUCt Freqs
Derived values or [ WhlSky 100 0.10
predictions Category J beer 200 0.20
Alcohol 1000 |7 _ 700 0'70 * TRAINING
. ~ | wine o
V‘;”;‘;y Vegetables 600 \ 4 " 500 083
f | omatoes 5
Wine ~
Tomatoes \ oranges 100 0.17
Oranges J

Frequencies from training used for disaggregation

product product
T ~| whisky 1208
cae0oy | beer i 240 [ I
category | Aicohol 1200 ¥ : W], Predictionsfor | L TEST
T [ Vegetabl 400 - | wine : 840 §| " Disaggregation |
egetables - A [
Vigetabls 2 | |tomatoes |4 332 ;!
| | oranges ‘\68‘,'

Fig. 3. Disaggregation example for the product dimension. The frequency of each prod-
uct (whisky, beer, tomatoes, etc.) within each category (Alcohol, Vegetables) is learned
during the training. These frequencies are then applied to the predictions made for a
higher level of granularity resulting in the disaggregated predictions for the lower level.
Light blue cells represent real values whereas light red represent derived values (such
as frequencies) or predictions.

Finally, in [10], the authors presented a method for improving the current
predictions using the coarse information from upper levels of granularity. Their
methodology uses the approximation values of the aggregated targets (in our
case the predictions) and the predictions of the individual targets for producing
new modified predictions. Figure 4 shows an example of this procedure taking
into account the two first levels of the product dimension from Fig.1. As it can
be seen, we work out a correction € as the relation between the sum of the
predictions at the category level and the sum of the predictions at the product
level, using then this value for uniformly distributing the differences among the
predictions of the lower level. This approach is actually a correction of the same-
level model and we thus refer to this approach as the same-level correction model

(SLe).

Definition 7. Let us consider the deployment data at two different contexts,
Dy, and Dy;, where deployment data Dy, is defined at the context immediately
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below to Dy;. DA and ﬁ,ﬁ have been produced applying the SL model to each

lo
deployment data respectively and, therefore, Y, and Yy; attributes with predic-
tions can be found for each context respectively. Thus, the same-level correction
model, denoted by Slc, is defined as follows. We first work out sYi, =, Yi, [i]

and sYj,; = > Yii [i] and let us define e = % For the deployment data Dy,
lo

we correct the attribute Yy, for each row by means of multiplying each Y, value

by e.

product pro_duct
catogory| || hisky 50| | whisky ';'1121\‘ s
Alcohol 560 ra b?er 120 b(fzer ' 274 ‘,l 120
wine 80 wine 1 183
Vegetables P “a | | tomatoes 350 | | tomatoes '\ 800 ,:
sum 1600 \‘ oranges 100 oranges ‘\228,"
=g =285 sum 700 SLc pr;d'ictions

Fig. 4. Same-level correction example for the product dimension. Cells in light red
represent predictions.

3 Measure properties and mean models

The first thing we need to consider is the kind of machine learning tasks that are
common with multidimensional data. The way the information is arranged in a
multidimensional schema, with a fact table containing measures suggests that
many machine learning tasks, especially predictive ones, are usually focussed on
predicting the measures. For instance, if facts are sales, consumptions, failures,
usages, etc., it is common to become interested in predicting some of the mea-
sures in these tables (e.g., units, dollars, hours, etc.) from past data. As measures
are usually numerical, many problems will turn out to be regression problems.
Nonetheless, some measures can be nominal, such as whether a purchase has
been satisfactory or not. In that case, however, the measure becomes a percent-
age, i.e., a number, when we aggregate, so binary nominal measures can also be
taken as numbers.

The time dimension is found in most datamarts. In a predictive scenario,
the time dimension becomes slightly special: predictions are about future facts,
so training is usually performed with available data up to a given time and
the model is then used to extrapolate from that point on (next week, next
month, next year, depending on the resolution). This occurs in three out of four
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datamarts used in this work. Some other databases are sparse and only collect
positive cases (e.g., 0 sales are not included) and have to be preprocessed to
contain this information for them to be meaningful.

Another important issue about multidimensional schemas is whether the
measures we want to predict are additive, semi-additive or non-additive. A mea-
sure is additive when, for any dimension and any set of values S at level j that
we want to aggregate up to level n+ k, the summation of these values using any
partition of S is equivalent, i.e., gives consistent results. For instance, units sold
in a supermarket aggregate well for all dimensions, i.e., the result is independent
of the way it has been aggregated. However, percentages do not aggregate well,
as the denominator is not known when performing the aggregation. Therefore
percentages are non-additive. Finally, the term semi-additive measure is used for
those measures that aggregate well for some dimensions but not for others. For
instance, measures that accumulate or depend on the state, such as stock levels
are usually semi-additive.

The aggregated function that is used for aggregating datamarts, as in Def-

inition 3, does not have to always be sum(S) = > scg 8- For instance, it could

be an average, avg(S) = %L%S) Some functions just work for some measures.

For instance, consumption (e.g., in kWh) can be aggregated by averaging it.
However, we have to be very careful about how this aggregation is performed.
For instance, avg is not composable.

In regression tasks, we usually look at a baseline method that consists in
averaging the values for the training data and apply these values systematically
during deployment. This is known as the mean or constant model. In this work,
we define our baseline method as follows:

Definition 8. Given a training data T with measure Y and a deployment data
D, the MEAN model for measure Y at the same level in context (ly,..., 1),
denoted by SL.MEAN, is defined as follows. We first aggregate T' for that context,
ie., TA & 'yﬁf’f”’ld](T), Then we calculate YA £ avg(T?y), the average of the
measure Y for this context. For the deployment data D we also aggregate the
original data as D? £ 7[(;?:(]...,ld](D>' We finally add an attribute Y to DA by

setting it equal to ya for every row in D?, so producing DA. This produces
pairs (X,Y) at that context.

4 Experimental setting and results

The MEAN approach is useful as a baseline, but we of course are interested in the
use of machine learning methods to get good predictions. We have also considered
other four techniques: LRW (linear regression using RWeka in R [14,22]), M5P
(regression tree using RWeka), SVM (package 1071 in R, linear kernel) and
KNN (package kknn in R). The datamarts used are now presented:

— GENOMICS: Originally, this human genome dataset contains genomic
data (HGDB) from several public and private research databases, including
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information about genes, chromosomes, mutations, diseases, etc. structured
in 20 (numerical and nominal) attributes [20]. Data goes from years 1970
to 2012 and the output variable is the number of variations. We converted
it into a multidimensional datamart, where each fact showed the number
of variations according to five different dimensions (hierarchies in paren-
thesis): SPEC (Eff < All), GENOTYPE (ID < Chrom < All), PHENOTYPE
(Name < ICD10 < ICD10.Cat < All), DBANK (Dbnk < All) and DATE (Year).
Note that as we use the DATE dimension to split the data we only consider
one level here. The number of possible multidimensional contexts is then
2x3x4x2x1=48.

— AROMA: This is an artificial dataset constructed from IBM sales informa-
tion. It contains sales data for coffee and tea products sold in stores across
the United States [16]. The data is almost directly converted into a multi-
dimensional datamart where each fact describes the sales of products using
two measures (units and dollars, although we will only use dollars as the
output variable) according to five dimensions (hierarchies in parenthesis):
PROMO (KeyPromo < PromoType < All), CLASS (KeyClass < All), PROD-
UCT (KeyProduct < All), STORE (KeyStore < KeyMKT < MKT-HQ-City <
MKT-HQ-State < MKT-District < MKT-Region < All) and PERIOD (Year).
Note that as we use the PERIOD dimension to split the data we only con-
sider one level here. Data goes from years 2004 to 2006 and the number of
possible multidimensional contexts is 3 x 2 x 2 x 7 x 1 = 84.

— CARS: This is a dataset for car fuel consumption and emissions which is
created as a reduced representation of [9] (some attributes are removed)
in order to construct a datamart. It describes fuel consumption in cars
from years 2000 to 2013, being published by the UK’s Vehicle Certification
Agency (VCA). The target variable is car fuel emissions (COz) and we have
six dimensions (hierarchies in parenthesis): CAR (Man.Model.Description <
Man.Model < Manufacturer < All); ENGINE (EngineCapacity < All), TRANS
(Transmission < TransType < All), EURO (EuroSTD < All), FUEL (FuelType <
All) and TIME (Year). Note that as we use the TIME dimension to split the
data we only consider one level here. The number of possible multidimen-
sional contexts is 4 x 2 x 3 x 2 x 2 x 1 = 96.

— UJIndoorLoc: This is a dataset for benchmarking indoor localisation al-
gorithms [25]. UJIndoorLoc contains the Wi-Fi access points readings for
all the spaces (offices, laboratories, etc.) of the School of Technology and
Experimental Sciences of the University Jaume I. The average signal in-
tensity has been used as the target variable (INTENSITY). We have
three dimensions in this case (hierarchies in parenthesis):WHERE (Space <
Floor < Building < All), TIME (Hour < Day < WeekDay < All), PHONE
(Model < Manufacturer < All), being the number of possible multidimen-
sional contexts 4 x 4 x 3 = 48.

We split GENOMICS, AROMA and CARS datasets into training and test
on the basis of a split-year. Parameter split-year has been set to 2006 for all the
datasets, being the split-year included in the test set. On the other hand, for
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UlJIndoorLoc dataset, the authors already provide the training and evaluation
subsets (see [25]). No rows with zeros were added to CARS and UJIndoorLoc
datasets, as missing cases are just absence of information. The target variable
is a ratio, so the aggregation function that makes sense for these datasets is
avg, which is neither additive nor associative. Finally, we clip the predictions
of all methods to 0 if they are negative, as in the four datamarts the measures
cannot be negative. This is important for methods that could potentially predict
negative values such as M5P or LRW.

As the four datamarts have led to regression problems, we may use the Mean
Squared Error (MSE) as the error measure. However, for the two datamarts that
use sum as aggregating function, the magnitude of the error will be much higher
for highly aggregated contexts, and the values will be difficult to compare. A
good way of getting rid of this problem is to divide SE (or MSE) by the SE
(or MSE) of the MEAN model. Interestingly, in a classical regression setting, the
MSE of the MEAN model equals its error variance. So, actually, what we are
doing is to show the MSFE by some kind of error variance. We use the SL.MEAN
model, as it ensures that it is constant for the deployment multidimensional
context.

Definition 9. The normalised squared error (NSE) of a technique TECH is

MSE(TECH)
defined as o ST EAN, -

GENOMICS

AROMA

CARS

UJIndoorLoc

SL LL dAg SLc

SL LL dAg SLc

SL LL dAg SLc

SL LL dAg SLc

MEAN|1.00 0.57 0.46 0.62(1.00 0.54 0.28 0.53|1.00 0.92 1.39 1.73|1.00 0.97 2.51 6.99
SVM {0.49 0.50 0.44 0.63|0.11 0.03 0.02 0.05/0.73 0.46 1.25 1.64(1.02 1.21 2.49 7.00
M5P 10.92 0.14 0.42 0.85]0.87 0.04 0.34 0.40]0.79 0.77 1.31 1.62|1.06 2.81 2.49 7.07
LRW |1.02 0.58 0.44 0.82{1.09 0.67 0.33 0.56|0.84 0.92 1.31 1.66|1.07 0.82 2.49 7.05
KNN [0.87 0.08 0.36 0.71{1.07 0.03 0.27 0.34|0.79 0.48 1.51 1.88|1.08 1.31 2.53 6.95
Table 1. Comparison NSE among LL, SL, dAg and SLc.
GENOMICS AROMA CARS UlJIndoorLoc

SL LL dAg SLc|SL LL dAg SLc|SL LL dAg SLc|SL LL dAg SLc
MEAN |5.00 2.80 1.53 3.97|5.00 3.22 1.97 3.57|2.37 1.66 3.86 2.62|1.88 1.49 3.18 3.81
SVM  |3.48 3.31 1.58 4.83(4.34 3.37 2.11 3.71|2.48 1.06 3.73 3.33|1.38 2.39 2.81 3.85
M5P  4.74 1.00 2.80 4.02|5.00 1.01 2.95 3.83|2.35 1.83 3.67 2.78|1.34 3.24 2.38 3.65
LRW ]4.98 2.66 1.71 3.94|5.00 3.92 1.89 3.01|2.07 2.48 3.50 2.67(2.30 1.09 3.05 3.96
KNN [4.58 1.00 2.53 4.28|5.00 1.00 2.88 3.74(2.20 1.15 3.84 3.40|1.43 2.28 2.93 3.81
Overall|4.56 2.15 2.03 4.21(4.87 2.50 2.36 3.57|2.29 1.64 3.72 2.96|1.67 2.10 2.87 3.82

Table 2. Rank summary f

or the four datasets.
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Table 1 compares all the techniques for the four datasets in terms of the nor-
malised squared error (NSE). For the GENOMICS and AROMA datasets we
see that the LL and dAg approaches are better. LL continues its good behaviour
for CARS and UJIndoorLoc, being clearly the best one (or close to the best one
when it is the second), however a very different picture happens for the disag-
gregation strategy, which shows a quite poor performance on these datamarts,
especially on UJIndoorLoc.

In order to offer a more comprehensive perspective of the results, Table 2
rank all the strategies within each technique for each dataset individually. The
lower the better on these ranks, being the ranks averaged when they tie.

Focusing on the ranking results, for the AROMA and CARS datasets we
see that the LL approach is better, obtaining a very good ranking when the
KNN technique is used. Moreover, LL obtains the second best rank in the other
datasets. SL obtains the best rank in UJIndoorLoc dataset. However, it shows a
quite poor performance for GENOMICS and AROMA. dAg obtains good results
in GENOMICS (the best) and AROMA, however its rank is not so good for the
other datasets.

Finally, as mentioned in Sect.2, there exist many operating contexts where
several dimensions could be disaggregated at the same time. Instead of just
comparing the results when only one dimension is disaggregated, we could have
taken into account all the possible disaggregating operations for that context
and averaged the results (as an ensemble) for comparing them to the SL and LL
approaches. This option, called dAg?®¥9, was analysed experimentally and showed
worse results in general. Table 3 shows the overall rankings for each strategy and
for each dataset when all the possible dimensions in each cube have been taken
into account by means of averaging their predictions. The overall rankings for the
dAg®¥9 methodology are always worse than the ones shown in Table 2 except for
the CARS dataset whereas in UJIndoorLoc dataset, dAg and dAg®9 practically
obtain the same rank.

SL LL dAg*? SLc
GENOMICS 3.70 1.93 2.42 4.37
AROMA 3.60 1.60 3.10 4.39
CARS 2.121.40 3.63 3.54
UlJIndoorLoc 1.49 1.84 2.89 4.12

Table 3. Summary results for all the strategies and for each dataset when all the
disaggregation operations for each cube have been performed and their results have
been averaged.
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5 Related Work

As we mentioned in the introduction, the efforts for a full integration of data
mining and OLAP tools have not been as common as originally expected. There
are, though, some significant contributions for descriptive models. For instance,
multidimensional association rules were firstly introduced in [17] and, since then,
some related approaches have appeared in areas such as hierarchical association
rules, subgroup discovery, granular computing [18] and others [7].

‘Prediction cubes’ [8,7], despite the term ‘predictive’ in their name, actually
perform subgroup discovery or exploratory mining [23], where we want to have
a metric (e.g., predictive accuracy) for a model on a given subset of the data
(a cell in a cube) and see whether some cells have different metrics than others
(hence being special). It is important to note that “Prediction Cubes” are not
meant to aggregate outputs. They are not actually used to make predictions at
several resolution levels of values that are unknown. In fact, they always work
with a labelled test set to which they compare to get the metrics.

When looking at predictive modelling, the usual approach in the literature
has been the same level approach (i.e., generating a view for the resolutions
at hand). There is no versatile model that can work for the whole hierarchy
in every dimension. A significant exception is the area of multilevel modelling
(MLM) [4,12], also known as hierarchical (linear) modelling (HLM) [24], among
other names. This is an extension of linear, and non-linear, models such that
the variables are measured at different levels of a global, usually linear, hierar-
chy. The first and key difference between a multilevel modelling problem and a
multidimensional problem is hence that in the latter all the measurements take
place at the lowest level (e.g., they come from facts in a multidimensional data
warehouse). However, in multilevel modelling, measurements may take place at
any level. As a result, in multilevel modelling, putting all the variables at the
lowest level does not make sense, as it means that some of the input variables
would have to be disaggregated (or repeated). The second difference is that in
multilevel modelling hierarchies apply to all attributes. In other words, there is
an orthogonal hierarchy, which can be applied to each attribute, depending on
the level at which the value has been measured. So it is not actually applicable
to a multidimensional database, where each attribute can be aggregated inde-
pendently. The third difference is that in multilevel modelling the predictions are
still made generally at the lowest level. In a multidimensional setting we want
predictions at whatever level of aggregation. In addition, multilevel modelling
has usually been addressed by linear (and occasionally non-linear) regression
models with several assumptions about normality, homoscedasticity, indepen-
dence, etc. Despite the differences, in [19], multilevel models are applied to a
datamart. However, we still see a separate concept hierarchy that is applied to
all dimensions, instead of having a particular hierarchy for each dimension, as
usual in datamarts and OLAP tools, so it is not actually a multidimensional
database.

Some connections have also been found with the work of Perlich and Provost
in [21], where the authors introduce new aggregates that capture more informa-
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tion about the distributions. That is, instead of using simpler aggregates such
as the MEAN, MODE or SUM, this work presents novel aggregates that empir-
ically improve predictive modelling in high-dimensional (categorical) domains.
The setting of hierarchies is different to our multidimensional setting, and our
approach considers a given hierarchy where the natural aggregates in our case
are MEAN and SUM. Nonetheless, it could be worth studying where more ag-
gregates or statistics about the distributions (e.g., SKEW, VAR) could help to
correct the MEAN and SUM aggregates.

About the disaggregation approaches, the dAg and SLc models were inspired
by [10]. Actually, they do not disaggregate as it can be understood in a cube-
space data mining [23], but this work made us realise that the disaggregation
approach is not properly covered within the OLAP-style multidimensional data
analysis. Our proposed SLc model is not equivalent to the approach presented
in [10], since in their work authors needed the ezact, or at least accurate enough,
values for the aggregated target.

As a result, the problem of having several hierarchies, one for each dimension
and seeing the problem (including predictions) at any possible resolution, is new.
Also there is no general approach about how to apply any data mining technique
to this kind of problem (and not only linear regression models or non-linear
variants). So, the multidimensional approach presented in this paper is more
general in at least these two aspects.

6 Conclusions and future work

Multidimensional data is a rich and complex scenario where the same task can
change significantly depending on the level of aggregation over some of the di-
mensions. This is the ‘multidimensional context’. The approaches we have anal-
ysed are very general, and applicable to any set of off-the-shelf machine learning
techniques. Three of the approaches can be considered as retraining approaches,
whereas the LL approach the only reframing approach. From this distinction,
we see that resources are an important criterion, as retraining a model again
and again may become infeasible for some applications, and reframing a single,
versatile model may be a much better option in cost-effective terms. Also the
results are generally better for the LL approach. It may be the case that there are
some criteria to choose the best option at each granularity. From our analysis,
however, we have not found any clear pattern to make a different take-away
recommendation other than the LL approach. In order to facilitate repeata-
bility of the experiments, the software associated to this work is available at
http://users.dsic.upv.es/~admarus/sw.html.

This work suggests many avenues for future work. One area we are undertak-
ing is a modification of the LL approach where the aggregation function is sub-
stituted by a quantification procedure [11,2]. As quantification is able to correct
some aggregation problems, we hope some quantification techniques (especially
those for regression using crisp regression models [3] or soft regression models
[15]) to be beneficial for the LL approach. The set of predictions from different
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approaches could also be used as an ensemble, hopefully leading to better re-
sults. Another further improvement could be strengthen the existing relationship
among the different approaches by means of more experimentation, reinforcing
in this way our knowledge about dependencies in predictions, in which particular
circumstances any of the approaches is better or the different efficiencies for each
methodology, which is critical in OLAP scenarios. Finally, even if the approaches
analysed in this paper are general to work for any off-the-shelf machine learning
techniques, there may be room for improvement if specific techniques are devel-
oped for the multidimensional setting: multidimensional KNN, multidimensional
decision trees and multidimensional Naive Bayes.
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