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The scattering of flexural waves by a hole in a thin plate traversed by a beam is modeled here by

coupling the Kirchhoff–Love and the Euler–Bernoulli theories. A closed form expression is

obtained for the transfer matrix (T-matrix) relating the incident wave to the scattered cylindrical

waves. For this purpose, a general method has been developed, based on an analogous impedance

method for acoustic waves, for calculating the T-matrix for flexural wave scattering problems. The

T-matrix for the problem considered displays a simple structure, composed of distinct sub-matrices

which decouple the inside and the outside fields. The conservation of energy principle and numeri-

cal comparisons with a commercial finite element simulator have been used to prove the theory.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4904551]
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I. INTRODUCTION

Propagation of flexural waves in thin plates has been a

longstanding topic in the study of elastic materials.

Recently, it is receiving increasing attention due to the possi-

bilities in their control offered by new structures like pho-

nonic crystals,1,2 with applications such as positive3,4 and

negative refractive lenses.5–7 Moreover, by introducing ani-

sotropy in the system, more complicated structures were

designed in order to obtain novel elastic devices8,9 or others

based on thickness variation of the plate.10–13

In addition to the phenomena described above, it was

demonstrated that by embedding local resonances in a thin

plate, the elastic properties can be adjusted to open band gaps

and modifying effectively the propagation of flexural

waves.14,15 Usually the band gaps originate from the perio-

dicity of the structure, falling into the wavelength region on

the order of the structural period, but in this case, the band

gap position is associated with the frequency of the reso-

nance. This method opens the door to the possibility of study-

ing new devices for controlling flexural wave propagation.

The local resonances have been achieved by introducing

surface “inclusions” on top of semi-infinite mediums16 or

thin plates, such as hollow spheres or cylinders,17 spring-

masses,18,19 simple pillars,20 or composite pillars.21 Experiments

have been reported proving the existence of tunable band gaps

by using stubs22,23 or piezoelectric shunts24 on plates. Examples

of potential applications of this local resonator, range from vibra-

tion absorption25 to an elastic analogous of graphene.26 For more

information on this topic, the reader is referred to the

reviews27–29 and references therein.

This work presents a theory that models resonators

obtained by cutting out cylindrical segments of a thin plate.

The method can be easily generalized to more complicated

structures with any combination of connected cylindrical plates

with radial beams, such as the resoator described in Ref. 30.

The present method is focused on generating the transfer matrix

(T-matrix), which relates arbitrary incident waves to scattered

waves. While it is straightforward to derive the diagonal T-

matrix for homogeneous cylindrical targets,31 and the computa-

tion of the non-diagonal T-matrix for rigid inclusions and holes

of arbitrary shape can be performed by quadrature,32 the present

case is more complicated. The T-matrix is not diagonal and it

depends crucially upon the internal structure. This issue is

addressed using a flexural wave formulation of the impedance

matrix method33 proposed for acoustics.

The paper is structured as follows: An introduction to the

main problem, the equations used and the boundary conditions

are given in Sec. II. The impedance method used to obtain the

flexural T-matrix of the system is described in Sec. III. Section

IV summarizes the results that are used in Sec. V, where nu-

merical simulations are presented that confirm the solution and

examine its properties. Conclusions are presented in Sec. VI.

Finally, the Appendixes provides an extended explanation of

some steps and results required for the general solution.

II. PROBLEM DEFINITION

Figure 1 shows a three dimensional (3D) scheme (left

view) and a two dimensional (2D) scheme (right view) of the

system analyzed in this work. A flexural wave with linear

wavefront is incident in an arbitrary direction on a hole
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(cylindrical boundary X) in the thin plate. Inside, there is a

beam connected to the plate at two anchor points (Wi; i¼ 1,

2). The beam is inclined at an angle of hb and is made of the

same material as the plate. The problem can be easily general-

ized to the case of different materials as the equations are eas-

ily coupled. The motion of the flexural wave W interacts with

the motion of the beam V and creates a scattered wave. Time

harmonic solutions of the form e�ixt are assumed throughout,

where x is the angular frequency.

A. Flexural wave solution in the plate

The equation of motion of the flexural wave is given by

the Kirchhoff–Love theory for thin plates as

r4W � k4
pW ¼ 0; (1)

where

r ¼ @

@r
r̂ þ 1

r

@

@h
ĥ

in polar coordinates. Additionally, W is the displacement in the

ẑ-direction, kp ¼ qhx2=D
� �1=4

is the wavenumber, h is the

thickness of the plate, D ¼ Eh3=12 1� �2ð Þ is the flexural

stiffness, E is the Young’s modulus, q is the mass density, and

� is the Poisson’s ratio. The displacement W can be expressed

as an infinite sum of Bessel, Jq(x), Hankel, Hq xð Þ½�H 1ð Þ
q xð Þ�,

and modified Bessel functions, Iq(x) and Kq(x), as

W ¼
X

q

Wq rð Þeiqh ¼
X

q

Winc
q rð Þ þWscat

q rð Þ
h i

eiqh ¼
X

q

A Jð Þ
q Jq kprð Þ þ A Ið Þ

q Iq kprð Þ þ B Hð Þ
q Hq kprð Þ þ B Kð Þ

q Kq kprð Þ
h i

eiqh;

(2)

where A Jð Þ
q and A Ið Þ

q are the incoming wave coefficients and

B Hð Þ
q and B Kð Þ

q are the scattered wave coefficients. The index

q ranges from –1 to þ1. Let us define two column vectors

Âq ¼ ½A Jð Þ
q A Ið Þ

q �
t
and B̂q ¼ ½B Hð Þ

q B Kð Þ
q �

t
.

The four boundary conditions for a thin plate are the

continuity of the displacement W, the slope W0r ¼ @W=@r,

the radial moment Mr and the radial Kirchhoff stress Vr,

where

Mr ¼ �D
@2W

@r2
þ � 1

r

@W

@r
þ 1

r2

@2W

@h2

� �� �
; (3a)

Vr ¼ �D
@

@r
DW þ 1� �ð Þ 1

r2

@

@h
@2W

@r@h
� 1

r

@W

@h

� �� �
:

(3b)

B. Beam solution

Inside the hole is a rectangular section beam with length

2 R, height h, and width b. The equation of motion of the

beam is

@4V

@x4
� k4

bV ¼ 0; (4)

where V is the displacement in the ẑ-axis, kb ¼ mx2=EI
� �1=4

is the wave number, E is the Young’s modulus, I ¼ bh3=12

is the second moment of area, m ¼ bhq is the mass per unit

length of the beam, and q is the mass density. The displace-

ment V can be expressed

V xð Þ ¼ CIeþikbx þ CIIe�ikbx þ DIeþkbx þ DIIe�kbx; (5)

where CI and CII are the coefficients of the forward traveling

waves and DI and DII are the coefficients of the backward

traveling waves.

The four boundary conditions for a beam are the conti-

nuity of the displacement V, the slope V0r ¼ @V=@r, the

moment Mx, and the shear stress Qx,

Mx ¼ �EI
@2V

@x2
; (6a)

Qx ¼
@Mx

@x
¼ �EI

@3V

@x3
: (6b)

C. Coupling boundary conditions

The boundary conditions for a hole in a thin plate are

Mr¼ 0 and V r¼ 0 at the boundary X. For the problem con-

sidered, the beam introduces additional conditions at the

anchor points in Wi requiring that the displacement and the

slope are continuous and the sum of the moments and the sum

of the stresses are zero. See Appendix A for more informa-

tion. In summary, the boundary conditions are the following:

W R; 0ð Þ ¼ V Rð Þ and W R; pð Þ ¼ V �Rð Þ; (7a)

@W

@r

���� r¼R
h¼0

¼ @V

@x

����
x¼R

and
@W

@r

���� r¼R
h¼0

¼ �@V

@x

����
x¼�R

;

(7b)

FIG. 1. (Color online) 3D Scheme (left) and 2D scheme (right) of a thin

plate with a hole (cylindrical boundary X) traversed by a beam (oriented at

angle of hb) connected to the plate at two anchor points (Wi; i¼ 1, 2).
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Mr

���� r¼R
h¼0

¼ Mx

R

����
x¼R

and Mr

���� r¼R
h¼p

¼ Mx

R

����
x¼�R

; (7c)

Vr

���� r¼R
h¼0

¼ Qx

R

����
x¼R

and Vr

���� r¼R
h¼p

¼ �Qx

R

����
x¼�R

: (7d)

III. T-MATRIX SOLUTION

This section develops the explicit solution for the T-

matrix that relates the incoming and the scattered coeffi-

cients as B̂ ¼ TÂ. The T-matrix is central to describing scat-

tering solutions as it allows us to express the scattered field

for any type of incident wave. Additionally, we will obtain

the coefficients (CI, CII) and (DI, DII) that describe the wave

motion on the internal beam.

A. Impedance method for plates

In order to couple the dynamics of the external plate with

the internal beam, we develop here a method for flexural

waves that is analogous to the one described for acoustic

waves in Ref. 33. In this work, the author provides a method

of obtaining the T-matrix of the fluid–fluid interface as the

combination of three impedance matrices. Two of them

describe the background and the third one describes the inter-

nal media. In our case (see Appendix B for more information),

Tqs ¼ MHK
qq kpð Þ

h i�1

Zscat
qs þ Zqs

h i�1

� Zinc
qs � Zqs

h i
MJI

ss kpð Þ
	 


; (8)

where the three impedance matrices are defined by

Mr

Vr

� �ðincÞ

q

¼ �ZðincÞ
qs

W
W0r

� �ðincÞ

s

on X; (9a)

Mr

Vr

� �ðscatÞ

q

¼ ZðscatÞ
qs

W
W0r

� �ðscatÞ

s

on X; (9b)

Mr

Vr

" #ðincÞ

q

þ
Mr

Vr

" #ðscatÞ

q

0
@

1
A

¼ �Zqs

W

W0r

" #ðincÞ

s

þ
W

W0r

" #ðscatÞ

s

0
@

1
A on X; (9c)

and the two additional matrices appearing in Eq. (8) follow

from

M!U
qq kið Þ ¼

!q kiRð Þ Uq kiRð Þ

ki!0q kiRð Þ kiU0q kiRð Þ

2
64

3
75; (10)

where ki is a dummy variable. For example, ki ¼ kp in Eq. (8).

B. Background impedances

Based on the definitions of Eqs. (9a) and (9b), the back-

ground impedances are obtained as

Z incð Þ
qq ¼ �NJI

qq kpð Þ MJI
qq kpð Þ

h i�1

; (11a)

Z scatð Þ
qq ¼ NHK

qq kpð Þ MHK
qq kpð Þ

h i�1

; (11b)

where

N!U
qq kið Þ ¼

S!
q kið Þ SU

q kið Þ

T!
q kið Þ TU

q kið Þ

2
64

3
75: (12)

The following notation applies:

Sn
q kið Þ ¼ �

D

R2
q2 1� �ð Þ7 kiRð Þ2
h i

nq kiRð Þ � 1� �ð Þ½ � kiRð Þn0q kiRð Þ
n o

; (13a)

Tn
q kið Þ ¼ �

D

R3
q2 1� �ð Þ
	 


nq kiRð Þ � q2 1� �ð Þ6 kiRð Þ2
h i

kiRð Þn0q kiRð Þ
n o

; (13b)

where the upper signs are used for n¼ J,H and the lower signs

for n¼ I,K. To simplify Sn
q kið Þ and Tn

q kið Þ, the second order

ordinary differential equations of these functions and the

Wronskian identities Jq xð ÞH0q xð Þ � J0q xð ÞHq xð Þ ¼ 2i=px and

Iq xð ÞK0q xð Þ � I0q xð Þ Kq xð Þ ¼ � 1=xð Þ have been used.

C. Internal impedance

The third impedance matrix required for the solution of

Eq. (8), which is associated with the internal beam, is derived

here. On the circular boundary we have X, Mr ¼ 0;Vr ¼ 0ð Þ
8h except for (h¼ 0, h¼ p), hence the two boundary condi-

tions (7c) and (7d) can be rewritten

Mr hð Þjr¼R � Mx hð Þ

¼ 1

R
Mx Rð Þd h� hW1ð ÞþMx �Rð Þd h� hW2ð Þ
	 


;

(14a)
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Vr hð Þjr¼R � Qx hð Þ

¼ 1

R
Qx Rð Þd h� hW1ð Þ � Qx �Rð Þd h� hW2ð Þ
	 


:

(14b)

Knowing that hW1
¼ hb and hW2

¼ hb þ p and expanding

Eqs. (14a) and (14b) in azimuthal orders, using

d h� hið Þ ¼ 1=2pð Þ
P

qeiq h�hið Þ, we obtain

Mx hð Þ ¼
X

q

Mqeiqh

¼ 1

2pR

X
q

Mx Rð Þ þ �1ð ÞqMx �Rð Þ
	 


eiq h�hbð Þ;

(15a)
Qx hð Þ ¼

X
q

Qqeiqh

¼ 1

2pR

X
q

Qx Rð Þ � �1ð ÞqQx �Rð Þ
	 


eiq h�hbð Þ:

(15b)

These equations can be combined and rewritten in matrix

form as

Mx

Qx

2
4

3
5

q

¼ e�iqhb

2pR

MR

QR

2
4

3
5þ �1ð Þq

M�R

�Q�R

2
4

3
5

0
@

1
A: (16)

Following the steps explained in Appendix C, we obtain

the 4� 4 stiffness matrix K that relates the displacement

and the slope at the two ends of a beam with the moments

and shear stresses, as

M�R

�Q�R

MR

QR

2
666664

3
777775 ¼ K

V�R

�V0�R

VR

V0R

2
666664

3
777775 ¼

K1 K2

K2 K1

2
664

3
775

V�R

�V0�R

VR

V0R

2
666664

3
777775;

(17)

where the stiffness matrix K is defined as

(18)

with the abbreviated notation c ¼ cos 2kbRð Þ, s ¼ sin 2kbRð Þ,
ch ¼ cosh 2kbRð Þ, and sh ¼ sinh 2kbRð Þ. For the purpose of this

work it is useful to rewrite Eq. (17) as two separate relations,

M�R

�Q�R

� �
¼ K1

V�R

�V0�R

� �
þK2

VR

V0R

� �
; (19a)

MR

QR

� �
¼ K2

V�R

�V0�R

� �
þK1

VR

V0R

� �
: (19b)

Combining Eqs. (16) and (19) yields the following result:

Mx

Qx

" #
q

¼ e�iqhb

2pR
K1 þ �1ð ÞqK2

	 


�
VR

V0R

" #
þ �1ð Þq V�R

�V0�R

" # !
: (20)

The two remaining boundary conditions (7a) and (7b)

may be written in terms of Fourier coefficients as

�
VR

V0R

�
¼
X

s

�
WR

W0R

�
s

eishb ;

�
V�R

�V0�R

�
¼
X

s

ð�1Þs
�

WR

W0R

�
s

eishb :

(21)

Combining these boundary conditions with Eq. (20) we obtain

Mr

Vr

� �
q

¼ �
X

s

Zqs
WR

W0R

� �
s

; (22)

where the 2� 2 blocks of the internal impedance matrix are

given by

Zqs ¼ �
ei s�qð Þhb

2pR
1þ �1ð Þqþs
	 


K1 þ �1ð ÞqK2

	 

: (23)

This concludes the derivation of the required impedance

matrices. The full solution is summarized next.

IV. SCATTERING AND INTERNAL COEFFICIENTS

The results of the Secs. II and III are summarized here.

This provides in one place simple formulas for the coefficients

of the incoming, the scattered and the beam solution.

A. Incident wave coefficients

While the general solution can handle arbitrary inci-

dence, here we focus on plane wave or a point source, which

will be used in the numerical examples later. The coeffi-

cients of an incoming wave for these two possible cases are

as follows:
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Âq ¼
iq

0

� �
e�iqhs for a plane wave in direction hs;

(24a)

Aq ¼
Hq kpRsð Þ

2i

p
Kq kpRsð Þ

2
4

3
5e�iqhs for a point source at Rs; hsð Þ:

(24b)

B. Scattered coefficients

The coefficients defining the scattered wave are

obtained from B̂q ¼ TqsÂs, where the T-matrix has 2� 2

block elements

Tqs ¼ MHK
qq kpð Þ

h i�1

Zscat
qs þ Zqs

h i�1

� Zinc
qs � Zqs

h i
MJI

ss kpð Þ
	 


; (8)

with

ZðincÞ
qq ¼ �NJI

qq kpð Þ
h
MJI

qq kpð Þ
i�1

; (11a)

ZðscatÞ
qq ¼ NHK

qq kpð Þ
h
MHK

qq kpð Þ
i�1

; (11b)

Zqs ¼ �
ei s�qð Þhb

2pR
1þ �1ð Þqþs
� �

K1 þ �1ð ÞqK2

	 

; (23)

where Eqs. (10), (12), and (18) were used in simplifying

terms.

C. Beam coefficients

The coefficients for the flexural waves in the internal

beam are, see Eq. (5),

CI

CII

DI

DII

2
66664

3
77775 ¼ L01

	 
�1
X

q

�1ð ÞqMJI
qq kpð Þ �1ð ÞqMHK

qq kpð Þ

MJI
qq kpð Þ MHK

qq kpð Þ

2
664

3
775

�

A Jð Þ
q

A Ið Þ
q

B Hð Þ
q

B Kð Þ
q

2
6666664

3
7777775

eiqhb : (25)

These follow from Eqs. (10), (C4), and other results

described in Appendix C.

V. NUMERICAL SIMULATIONS

In this section the theory developed previously is tested

to prove its efficiency. Conservation of energy is used as one

measure of the accuracy of the method in predicting the far-

field produced over a wide bandwidth. The results are also

compared against a commercial finite element method

(FEM) simulator.

A. Energy flux

The principle of conservation of energy has to be met, so

if the system is not capable of absorbing or creating waves,

the result of calculating the energy flux crossing a circle

around the system has to be zero. The energy conservation

relation is known from a previous result in the literature31 as

x
D

2
=
þ

X
W
@

@r
DW� � DW�

@W

@r

� �
Rdh ¼ 0: (26)

Applying this result to our work yields the following rela-

tionship which has to be fulfilled by the coefficients Âq and

B̂q if there is no absorption in the medium:

4xDk2
p

X
q

jB Hð Þ
q j

2 þ < A Jð Þ
q

� ��
B Hð Þ

q

 ��

þp
2
= A Ið Þ

q

� ��
B Kð Þ

q

 ��
¼ 0: (27)

Equation (27) was used to verify all of the numerical calcu-

lations. Convergence studies have been performed and val-

ues below 10�4 were obtained for all cases by setting the

range of q 2 �15; 15½ �.

B. Commercial FEM simulator

A commercial finite element simulator (COMSOL v4.4)

has been used to calculate the behavior of the system. This simu-

lator solves the full elastic equation (including longitudinal, shear

vertical, and shear horizontal waves) to calculate the displace-

ment field in a 3D model of the system. As incoming wave we

have selected a plane wave (hs¼ 0) at three values of the non-

dimensional frequency, kpR ¼ p; 2p; 5p½ �. The system is also

considered for three possible orientations of the internal beam:

hb ¼ 0�;�45�;�90�½ �, see Fig. 1. The data is subsequently

exported and compared visually against the analytical simulator

coded using the theory described in Sec. IV.

The FEM simulator runs in an Intel Core i7-3930K @

3.2 GHz machine with 32 GB of RAM. Each simulation

shown in Figs. 2 and 3 required 192.000 free tetrahedral ele-

ments to mesh the whole 3D volume and took approximately

one hour to finish. The ones in Fig. 4 took 7 h to be com-

pleted due to the huge number of elements needed (over

1� 106) to perform an accurate calculation.

Figure 2 shows the absolute value of the displacement

obtained from the analytical simulator (left panels) and the

FEM simulator (right panels) when a plane wave (hs¼ 0) of

non-dimensional frequency kpR ¼ p impinges on the system.

In a similar way, Fig. 3 and Fig. 4 show the results obtained

from the analytical simulator (left panels) and the FEM sim-

ulator (right panels) for a non-dimensional frequency of

kpR ¼ 2p and kpR ¼ 5p, respectively. Notice that the scat-

tering pattern created by the two simulators are very similar

for all combinations of frequency and beam angle consid-

ered. Note particularly, the case when the beam is tilted at

hb ¼ �45�, where the discontinuities of the non-symmetric

scattering pattern have been perfectly reproduced by the ana-

lytical simulator. It is evident from the three simulations that
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the flexural wavelength in the internal beam are the same in

both simulations, although the FEM simulator shows some

2D wave effects within the beam that are not modeled by the

1D beam theory.

From the comparison shown in Figs. 2–4 we can con-

clude that our semi-analytical modeling is stable and accu-

rate in a broad band of frequencies, at least until kpR ¼ 5p,

which is the maximum value considered here. We note that

there are clearly some restrictions to our model: (i) it has the

same limitations implicit in the Kirchhoff–Love and

Euler–Bernoulli theories, which have been employed in the

modeling; and (ii) the present analysis only applies to objects

with axial symmetry. Restriction (i) could be relaxed using

higher order plate and beam theories, although the analysis

and matrix algebra will be more complicated. Regarding (ii),

more general shapes could be considered following the

methods described in Ref. 34.

C. Far-field

The amplitude of the far-field flexural waves is calcu-

lated as31

rsc kp; hð Þ ¼
ffiffiffiffiffiffiffi
2

pkp

s X
q

�ið ÞqB Hð Þ
q eiqh

�����
�����: (28)
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FIG. 3. (Color online) The same as for Fig. 2 except that the non-

dimensional frequency is kpR ¼ 2p.

FIG. 2. (Color online) Absolute value of the displacement field produced

when a plane wave (hs¼ 0) with a non-dimensional frequency kpR ¼ p
impinges on the system for three different beam orientations

hb ¼ 0�;�45�;�90�½ �. The left column panels shows the results obtained by

the analytical simulator and the right column panels show the ones obtained

from the commercial finite element simulator.

FIG. 4. (Color online) The same as for Fig. 2 except that the non-

dimensional frequency is kpR ¼ 5p.
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Figure 5 show the far-field produced when a plane wave

(hs¼ 0) with non-dimensional frequencies ranging from

kpR ¼ 0:5p to kpR ¼ 5p impinges on the system. Figure 5(a)

is the far-field produced by a hole in the plate. Notice that for

the beam oriented at hb ¼ 0� [Fig. 5(b)] the far-field around

h ¼ p is lower than on Fig. 5(a) because the wave can enter

the beam easily and propagate across it. On the other hand, in

the position at hb ¼ �90� [Fig. 5(d)], the wave encounters a

hole and so it is reflected producing more back-scattering. In

the case of the position at hb ¼ �45� [Fig. 5(c)] there less

back-scattering in [0; p] than in [p; 2p] because the entrance

to the beam is located at hb þ p ¼ 3p=4.

VI. CONCLUSIONS

In this work, the impedance method for obtaining the

T-matrix for flexural waves in a plate has been described. As

an example of this method, the T-matrix of a thin plate with a

hole traversed by a beam was solved. The procedure explicitly

separates the Kirchhoff–Love and the Euler–Bernoulli solutions

in the plate and beam and couples them in a manner that can be

easily generalized to other theories and configurations.

Additionally, an analytical simulator has been coded using the

theory described in this work and the conservation of energy

principle has been used for verification. Moreover, the results

have been also tested against a commercial finite element simu-

lator. Finally, the far-field behavior of the system has been pre-

sented for a wide bandwidth and different beam orientations,

indicating a strong variability in the scattered field depending

on the relative alignment of the beam with the incident wave.
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APPENDIX A: BOUNDARY CONDITIONS

In this section, we explain how to obtain the boundary

conditions for the system at hand. In the whole extent of this

work, both displacements are positive in the positive ẑ-axis.

Also, a positive slope is represented as an inclined black

line. The moments in a 3D figure are represented using the

double-headed arrow notation and the right-hand grip rule.

In the case of a 2D figure, � and 	 represent an ingoing and

outgoing double arrow, respectively. Finally, the shear

stresses are defined with a single-headed arrow.

Figure 6 shows all the moments and shear stresses

defined for the Kirchhoff–Love plate theory. Notice that M0ij
¼ Mij þ @Mij=@xi

� �
dxi and Q0ij ¼ Qij þ @Qij=@xi

� �
dxi.

In a similar way, Fig. 7 displays the direction of the

moments and shear stresses defined for the Euler–Bernoulli

beam theory. Notice that M0x ¼ Mx þ @Mx=@xð Þdx and

Q0x ¼ Qx þ @Qx=@xð Þdx.

Finally, Fig. 8 shows the plate and the beam together. W1

is the right anchor point at r; hð Þ ¼ R; 0ð Þ and xð Þ ¼ þRð Þ;
and W2 is the left anchor point at r; hð Þ ¼ R; pð Þ and

FIG. 5. (Color online) Far-field produced when a plane wave (hs¼ 0) with non-dimensional frequencies ranging from kpR ¼ 0:5p to kpR ¼ 5p impinges a

hole in a plate (a) and a hole with a crossing beam at three different orientations: hb ¼ 0� (b), hb ¼ �45� (c), and hb ¼ �90� (d).
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(x)¼ (–R). The upper panel shows the displacements and the

slopes and the lower panel shows the moments and the shear

stresses. Notice that the Kirchhoff stress is defined as Vr

¼ Qr � 1=rð Þ@Mrh=@h so its direction is the same as Qr.

The boundary conditions require that at the anchor points

Wi the displacement and the slope are continuous and the sum

of the moments and the sum of the stresses are zero. Looking

at the two panels from Fig. 8 it is easy to obtain them as

W R; 0ð Þ ¼ V Rð Þ and W R; pð Þ ¼ V �Rð Þ; (A1a)

@W

@r

���� r¼R
h¼0

¼ @V

@x

����
x¼R

and
@W

@r

���� r¼R
h¼p

¼ �@V

@x

����
x¼�R

;

(A1b)

Mr

���� r¼R
h¼0

¼ Mx

R

����
x¼R

and Mr

���� r¼R
h¼p

¼ Mx

R

����
x¼�R

; (A1c)

Vr

���� r¼R

h¼0
¼Qx

R

����
x¼R

and Vr

���� r¼R
h¼p

¼�Qx

R

����
x¼�R

: (A1d)

Notice that the moments and the shear stresses of the beam

are divided by the radius R of the hole. It is useful to take

into account the dimension of each term. The moment of

the plate, Mr, has dimensions of [N] while the moment of the

beam, Mx, has dimensions of [Nm]. At the same time, the

Kirchhoff stress, Vr, has dimension of N=m½ � and the shear

stress, Qx, has dimensions of [N]. Therefore, if we integrate

over a differential element e,ð0þ�

0��
Mr hð ÞRdh ¼ Mx; (A2a)

ð0þ�

0��
Vr hð ÞRdh ¼ Qx; (A2b)

we see that an additional term 1/R has to be added to the

moments and the shear stresses of the beam.

APPENDIX B: IMPEDANCE METHOD

The T-matrix is defined as B̂ ¼ TÂ, relating the incident

wave amplitudes to the scattered amplitudes. Using Einstein

notation it becomes B̂q ¼ TqsÂs, where

Âs ¼
A Jð Þ

s

A Ið Þ
s

" #
; B̂q ¼

B Hð Þ
q

B Kð Þ
q

" #
; Tqs ¼

T11 T12

T21 T22

� �
:

(B1)

In Ref. 33, the impedance matrices were defined by the

relation between the pressure P and the particle velocity v at

the boundary X. Notice, that the boundary condition for a

fluid–rigid interface is v¼ 0 and for a fluid–vacuum interface

it is P¼ 0. In the case of a thin plate, the boundary condi-

tions for a plate–clamped interface are W ¼ W0r ¼ 0 and for

a plate–fluid interface they are Mr ¼ Vr ¼ 0. By analogy, we

can define a new set of impedance matrices as

Mr

Vr

� �ðincÞ

q

¼ �ZðincÞ
qs

W
W0r

� �ðincÞ

s

at X; (B2a)

Mr

Vr

� �ðscatÞ

q

¼ ZðscatÞ
qs

W
W0r

� �ðscatÞ

s

at X; (B2b)

Mr

Vr

" #ðincÞ

q

þ
Mr

Vr

" #ðscatÞ

q

0
@

1
A

¼ �Zqs

W

W0r

" #ðincÞ

s

þ
W

W0r

" #ðscatÞ

s

0
@

1
A at X; (B2c)

where Zinc
qs , Zscat

qs , and Zqs are the impedances for the incom-

ing, scattered and internal wave, respectively. Notice that

they are defined at the boundary X. Solving for Equation

(B2) we obtain the following relationship:

W
W0r

� �ðscatÞ

q

¼ ~Tqs
W
W0r

� �ðincÞ

s

; (B3)

where

FIG. 6. (Color online) Scheme of the direction of all the moments and shear

stresses defined by the Kirchhoff–Love plate theory. Notice that M0ij
¼ Mij þ @Mij=@xi

� �
dxi and Q0ij ¼ Qij þ @Qij=@xi

� �
dxi.

FIG. 7. (Color online) Scheme of the direction of all the moments and shear

stresses defined by the Euler–Bernoulli beam theory. Notice that M0x
¼ Mx þ @Mx=@xð Þdx and Q0x ¼ Qx þ @Qx=@xð Þdx.

FIG. 8. (Color online) Scheme of the boundary conditions, displacements

(W, V), slopes (W0r , V0r), moments (Mr, Mx) and shear stresses (Vr, Qx),

between the plate and the beam at the two anchor points W1 and W2.
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~Tqs ¼ Zscat
qs þ Zqs

h i�1
Zinc

qs � Zqs

h i
: (B4)

As can be seen, ~T relates the displacement and the slope of the incoming and scattered wave at the boundary between the two

media. In the case of a cylinder in a plate, these are given by

W

W0r

" #ðincÞ

q

¼
Jq kpRð Þ Iq kpRð Þ

kpJ0q kpRð Þ kpI0q kpRð Þ

" #
A Jð Þ

q

A Ið Þ
q

2
4

3
5eiqh ¼

~A
Jð Þ

q

~A
Ið Þ

q

2
64

3
75eiqh; (B5a)

W

W0r

" #ðscatÞ

q

¼
Hq kpRð Þ Kq kpRð Þ

kpH0q kpRð Þ kpK0q kpRð Þ

" #
B Hð Þ

q

B Kð Þ
q

2
4

3
5eiqh ¼

~B
J

q

~B
Ið Þ

q

2
4

3
5eiqh: (B5b)

Notice that ~B ¼ ~T ~A, from which it is easy to obtain the matrix T as a function of ~T,

Tqs ¼ MHK
qq kpð Þ

h i�1

Zscat
qs þ Zqs

h i�1
Zinc

qs � Zqs

h i
MJI

ss kpð Þ
	 


; (B6)

where M is a quasi-diagonal matrix defined as

M!U
qq kið Þ ¼

!q kiRð Þ Uq kiRð Þ
ki!0q kiRð Þ kiU0q kiRð Þ

" #
: (B7)

APPENDIX C: BEAM STIFFNESS MATRIX

From the definition of the displacement of the beam [Eq. (5)], we can write the following matrix:

V xð Þ
V0 xð Þ
V00 xð Þ
V000 xð Þ

2
666664

3
777775 ¼

ikbð Þ0eikbx �ikbð Þ0e�ikbx kbð Þ0ekbx �kbð Þ0e�kbx

ikbð Þ1eikbx �ikbð Þ1e�ikbx kbð Þ1ekbx �kbð Þ1e�kbx

ikbð Þ2eikbx �ikbð Þ2e�ikbx kbð Þ2ekbx �kbð Þ2e�kbx

ikbð Þ3eikbx �ikbð Þ3e�ikbx kbð Þ3ekbx �kbð Þ3e�kbx

2
6666664

3
7777775

CI

CII

DI

DII

2
666664

3
777775: (C1)

Evaluating this at the end points x¼6R, simplifying and ordering terms we obtain

V �Rð Þ
V0 �Rð Þ
V Rð Þ
V0 Rð Þ

2
66664

3
77775 ¼

e�ikbR eikbR e�kbR ekbR

ikbe�ikbR �ikbeikbR kbe�kbR �kbekbR

eikbR e�ikbR ekbR e�kbR

ikbeikbR �ikbe�ikbR kbekbR �kbe�kbR

2
66664

3
77775

CI

CII

DI

DII

2
66664

3
77775 ¼ L1

CI

CII

DI

DII

2
66664

3
77775; (C2)

V00 �Rð Þ
V000 �Rð Þ
V00 Rð Þ
V000 Rð Þ

2
66664

3
77775 ¼ k2

b

�e�ikbR �eikbR e�kbR ekbR

�ikbe�ikbR ikbeikbR kbe�kbR �kbekbR

�eikbR �e�ikbR ekbR e�kbR

�ikbeikbR ikbe�ikbR kbekbR �kbe�kbR

2
664

3
775

CI

CII

DI

DII

2
66664

3
77775 ¼ k2

bL2

CI

CII

DI

DII

2
66664

3
77775: (C3)

Taking into account the required boundary conditions [Eqs. (7)], the sign of some rows has to change. Therefore,

L01 ¼

1

�1

1

1

2
664

3
775L1 ; L02 ¼

1

�1

1

1

2
664

3
775L2: (C4)

By combining the three previous equations, we obtain the moment and the shear stress as a function of the displacement

and the slope as
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M�R

�Q�R

MR

QR

2
66664

3
77775 ¼ �EIk2

b L02
	 


L01
	 
�1

V�R

�V0�R

VR

V0R

2
66664

3
77775 ¼ K

V�R

�V0�R

VR

V0R

2
66664

3
77775; (C5)

where the stiffness matrix K is simplified and has the following final form:

K ¼ �EIk2
b

1� cch

�ssh k�1
b sch � cshð Þ ch � c �k�1

b sh � sð Þ
�kb csh þ schð Þ ssh kb sþ shð Þ c� ch

ch � c �k�1
b sh � sð Þ �ssh k�1

b sch � cshð Þ
kb sþ shð Þ c� ch �kb csh þ schð Þ ssh

2
6664

3
7775 (C6)

with c ¼ cos 2kbRð Þ, s ¼ sin 2kbRð Þ, ch ¼ cosh 2kbRð Þ, and

sh ¼ sinh 2kbRð Þ.
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