

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/HPCSim.2015.7237110

http://hdl.handle.net/10251/65643

IEEE
Catalog Number: CFP1578H-CDR

Petit Martí, SV. (2015). Current challenges in simulations of HPC systems. International
Conference on High Performance Computing & Simulation (HPCS 2015). IEEE
Catalog Number: CFP1578H-CDR. doi:10.1109/HPCSim.2015.7237110.

Current Challenges in Simulations of HPC Systems
Salvador Petit

Department of Computer Engineering
Universitat Politècnica de València

València, Spain
Email: spetit@disca.upv.es

EXTENDED ABSTRACT

Simulation is the common technique used to assess the
behavior of future computing systems, ranging from embedded
to High Performance Computing (HPC) systems, and includ-
ing personal devices. Simulators are used to predict not only
performance, but also energy consumption, power dissipation,
reliability information, packaging costs, etc. However, with
the increased complexity of multicore and many-core HPC
systems, performing a detailed, cycle-accurate simulation of a
next-generation computing system can take several months,
negatively affecting time-to-market while also requiring an
expensive simulation infrastructure.

The purpose of this paper is to provide a general overview
of the recent research in software-based simulation frame-
works allowing architects to increase simulation speed while
retaining appropriate accuracy as well as providing a complete
system model. Next sections discuss a subset of representative
proposals regarding: i) accelerating simulation time through
the use of the simulation host available parallelism, ii) lossy
simulation techniques that trade-off simulation accuracy for
speed, iii) advanced trace-driven simulation approaches, and
iv) comprehensive simulation frameworks.

A. Parallel simulators

Simulation frameworks aimed at modeling tens of cores
or more require from parallelization strategies to speedup
simulation time. Parallel simulators often rely on well-known
techniques such as Parallel Discrete Event Simulation (PDES)
[1], although some simulators implement strategies to acceler-
ate the simulation of time consuming components, which often
provide shorter simulation times than conventional PDES.

P-GAS [2] is a cycle-accurate parallel implementation of the
Godson-T Architecture Simulator (GAS) [3] based on PDES.
Other interesting cycle-accurate parallel implementations not
based on PDES can be found in [4] and [5]. In [4], a full-
system simulator is extended to identify distinct guest execu-
tion threads that are mapped to the different host cores taking
into account synchronization patterns among the guest threads.
In [5], Almer et al. parallelize Just In Time (JIT) Dynamic Bi-
nary Translation (DBT) techniques to leverage the computing
power of parallel hosts. Both techniques successfully allow

simulating many-core systems exceeding one thousand cores
at reasonable speeds. The microarchitecture of the simulated
core, however, is simple (e.g., in-order execution, few pipeline
stages), which is not appropriate for design spaces covering
advanced core microarchitectures or the impact of realistic out-
of-order execution on the memory subsystem.

Recently, two novel techniques have been proposed and
implemented in the ZSim simulator to make thousand-core
cycle-accurate simulation of out-of-order cores practical [6].
The first technique is using DBT techniques to avoid functional
modeling and push most of the work usually performed by
timing models onto the instrumentation phase, which is per-
formed only once per instruction. The second technique relies
on the fact that at small simulation scales (e.g. one thousand
cycles), most concurrent accesses target unrelated cache lines,
which provides opportunities to avoid synchronization among
cores in the host.

On the other hand, parallelization techniques can also be
applied to simulate specific subsystems such as the NoC. For
instance, in [7], Lis et al. present DARSIM, a cycle-accurate
parallel NoC simulator.

B. Lossy simulation techniques

Despite the recent advances that speedup cycle-accurate
modeling of many-core systems, modeling a cycle accurate
core could be either not necessary or significantly slowdown
the simulation time. To deal with this fact, more scalable
non-cycle-accurate or lossy alternatives have been proposed.
Two main orthogonal approaches can be found in the recent
literature: approximate component models and sampling.

1) Approximate component models: Approximate compo-
nent models sacrifice cycle-accuracy to accelerate the sim-
ulation of individual components. Of course, these models
can be used for those components whose simulation is most
time-consuming and/or require a high amount of computing
resources. It is also important to provide models that offer a
good trade-off between accuracy and complexity.

An interesting alternative approach is taken by TaskSim
[8]. TaskSim presents multiple simulation modes to model
the execution of parallel applications with different levels of

abstraction. These levels range from a simple burst mode
based on memory access and synchronization traces to a
detailed instr mode allowing cycle accurate core modeling,
including options to precisely model the cache hierarchy.

One of the most well-known simulation frameworks that
makes a comprehensive use of approximate models is Graphite
[9]. In Graphite, approximate models are not only used for
the core, but also for the uncore. For example, Graphite
allows memory ordering violations to occur provided that
this strategy does not incur in too high clock differences
(i.e., too much slack) between distinct tiles of the modeled
system. When the slack grows beyond to a few thousand
cycles the threads that run ahead are suspended and tightly
synchronized with PDES until the target slack is achieved.
Although this strategy mitigates scalability problems of cycle-
accurate PDES, contention modeling accuracy suffers because
events at contention points are reordered.

Sniper [10] is a fork of Graphite that, among other ex-
tensions, provides more accurate core models. In particu-
lar, Sniper includes the interval simulation model [11]. The
interval simulation model allows ROB stalls due to misses
and mispredictions to be modeled without the complexity of
cycle-accurate core pipeline simulation. Moreover, recently,
the Instruction-Window (IW) -centric model [12] has been also
added to Sniper. The IW-centric model improves the accuracy
of interval simulation by modeling structural hazards inside
the core and providing a more realistic interaction between the
cores and the memory subsystem. This increase of accuracy is
performed with a marginal increase in complexity with respect
to interval simulation.

2) Sampling: Using well-known sampling techniques, ar-
chitects simulate only a small percentage of a long-running
workload and use the obtained simulation results to predict
the performance of the complete execution. Sampling can be
statistical [13], [14] or based on application phase detection
[15].

Recent research on sampling show that for multithreaded
applications, IPC and other metrics based on instruction counts
cannot be used to predict runtime due to synchronization
events and uncore contention. Thus, time-based sampling
techniques become necessary [16]. In addition, application
synchronization timing effects must be taken into account
during fast forwarding phases between sampling periods. Oth-
erwise, the accuracy of execution time estimates provided by
sampling decreases [17].

C. Trace-driven simulation

Other option to deal with simulation complexity is the use of
trace-driven methodologies. To obtain a realistic trace-driven
simulation of multithreaded applications, however, a solution
that captures timing-dependent thread execution interleaving is
required. Moreover, capturing this timing information should
be done in a way that allows the same trace to be used for
simulating variants of the target architecture. In [18], Rico

et al. propose a methodology for trace-driven simulation that
augments classical traces with information about parallelism-
management operations (parops) (e.g., synchronization opera-
tions). The extended trace drives a simulation tool that takes
into account the modeled architecture and simulates parops
with an execution-driven engine. In this way, authors combine
the best from both trace and execution driven methodologies.

Other recent trace-driven approaches perform simulations in
two phases. During the first phase, a fast functional simulation
is performed to get the events that will be relevant to timing.
Then, during the second phase the timing caused by these
events is properly accounted. This technique can be applied
to speedup simulation of complex out-of-order cores [19] as
well as multicores [20].

D. Putting it all together: simulation frameworks

Current heterogeneous systems consist of multiple com-
ponents whose simulation requires different levels of detail
depending on the purpose of the design process. Thus, com-
plex simulation frameworks [21], [22] have arisen trying to
ease the replacement of component models. Nevertheless,
when a simulation framework is not complete enough, it
often becomes necessary to extend it in ways that were not
expected to add new components (e.g., NoC, DRAM) and/or
metrics (e.g, power dissipation, temperature, etc.). Thus, for
researchers an important requirement is the capability to access
and modify the source code of the framework.

E. Conclusion

Simulation of many-core HPC systems is nowadays an ac-
tive and fruitful area of research. Recent and future proposals
are driven by the need of a fast, efficient, and comprehensive
simulation framework. This simulation framework should be
complete in several ways. First, it should model a wide range
of components and provide the mechanisms necessary to plug-
in more components as needed. Second, it should allow the
designer to focus on critical components while avoiding a large
part of the simulation complexity. Each of these components
should be able to be evaluated with multiple models with
distinct detail levels, ranging from simply analytical models
to detailed cycle-accurate simulations. Third, a complete sim-
ulation framework should provide a wide range of metrics of
interest for the designer and the market. Finally, support for
heterogeneous architectures combining CPU and GPU, as well
as some degree of reconfigurability is surely required. Building
such titanic framework is and will be a collaborative process
between researchers around the globe and it is expected to be
a hot research topic for the next years.

Keywords—HPC systems; simulation frameworks; parallel
simulators; approximate models; sampling; trace-driven simu-
lation

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministerio
de Economı́a y Competitividad (MINECO), by FEDER funds
through Grant TIN2012-38341-C04-01, and by the Intel Early
Career Faculty Honor Program Award.

BIOGRAPHY

SALVADOR PETIT received the PhD degree in Computer
Engineering from the Universitat Politècnica de València
(UPV), Spain. Since 2009, he is an associate professor in
the Computer Engineering Department at the UPV, where he
has taught several courses on computer organization. He has
published more than 100 refereed conference and journal pa-
pers. His research topics include multithreaded and multicore
processors, memory hierarchy design, simulation techniques,
task scheduling, as well as real-time systems. Prof. Petit is a
member of the IEEE Computer Society.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Communications
of the ACM, vol. 33, no. 10, pp. 30–53, 1990.

[2] H. Lv, Y. Cheng, L. Bai, M. Chen, D. Fan, and N. Sun, “P-gas: Par-
allelizing a cycle-accurate event-driven many-core processor simulator
using parallel discrete event simulation,” in Principles of Advanced and
Distributed Simulation (PADS), 2010 IEEE Workshop on, May 2010,
pp. 1–8.

[3] D. Fan, H. Zhang, D. Wang, X. Ye, F. Song, J. Zhang, and L. Fan, “High-
efficient architecture of godson-t many-core processor,” in Proceedings
of Hot Chips, vol. 23, 2011.

[4] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Faraboschi,
“How to simulate 1000 cores,” SIGARCH Comput. Archit. News,
vol. 37, no. 2, pp. 10–19, Jul. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1577129.1577133

[5] O. Almer, I. Bohm, T. von Koch, B. Franke, S. Kyle, V. Seeker,
C. Thompson, and N. Topham, “Scalable multi-core simulation using
parallel dynamic binary translation,” in Embedded Computer Systems
(SAMOS), 2011 International Conference on, July 2011, pp. 190–199.

[6] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems,” in Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 475–486.
[Online]. Available: http://doi.acm.org/10.1145/2485922.2485963

[7] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and S. Devadas,
“Darsim: a parallel cycle-level noc simulator,” in MoBS 2010-Sixth
Annual Workshop on Modeling, Benchmarking and Simulation, 2010.

[8] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, and M. Valero, “On the simulation of large-scale architec-
tures using multiple application abstraction levels,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 8, no. 4, p. 36,
2012.

[9] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010,
pp. 1–12.

[10] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 52.

[11] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation:
Raising the level of abstraction in architectural simulation,” in High
Performance Computer Architecture (HPCA), 2010 IEEE 16th Interna-
tional Symposium on. IEEE, 2010, pp. 1–12.

[12] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions
on Architecture and Code Optimization (TACO), vol. 11, no. 3, p. 28,
2014.

[13] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Computer Architecture, 2003. Proceedings. 30th Annual
International Symposium on. IEEE, 2003, pp. 84–95.

[14] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,
and J. C. Hoe, “Simflex: statistical sampling of computer system simula-
tion,” IEEE MICRO Special Issue on Computer Architecture Simulation
and Modeling, vol. 26, no. PARSA-ARTICLE-2007-001, pp. 19–31,
2006.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGOPS Operating
Systems Review, vol. 36, no. 5, pp. 45–57, 2002.

[16] E. K. Ardestani and J. Renau, “Esesc: A fast multicore simulator using
time-based sampling,” in High Performance Computer Architecture
(HPCA2013), 2013 IEEE 19th International Symposium on. IEEE,
2013, pp. 448–459.

[17] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation of
multi-threaded applications,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 2–12.

[18] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero,
“Trace-driven simulation of multithreaded applications,” in Performance
Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium on. IEEE, 2011, pp. 87–96.

[19] K. Lee and S. Cho, “In-n-out: reproducing out-of-order superscalar pro-
cessor behavior from reduced in-order traces,” in Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2011 IEEE 19th International Symposium on. IEEE, 2011, pp. 126–
135.

[20] H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, and S. Cho,
“Two-phase trace-driven simulation (tpts): a fast multicore processor
architecture simulation approach,” Software: Practice and Experience,
vol. 40, no. 3, pp. 239–258, 2010.

[21] J. Wang, J. Beu, R. Bheda, T. Conte, Z. Dong, C. Kersey, M. Rasquinha,
G. Riley, W. Song, H. Xiao et al., “Manifold: A parallel simulation
framework for multicore systems,” in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on. IEEE,
2014, pp. 106–115.

[22] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“Cotson: infrastructure for full system simulation,” ACM SIGOPS Op-

erating Systems Review, vol. 43, no. 1, pp. 52–61, 2009.

